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Deceptive alignment (a.k.a. “scheming”)
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Backdoor detection

Adversary modifies training process to produce a “backdoored” model.

Ordinary and backdoored models behave almost the same, except when a
secret “trigger” is present.

Backdoor detection Deceptive alignment
Ordinary model Robustly aligned model
Backdoored model Deceptively aligned model
Backdoor trigger Special OOD input
Adversary Worst-case training process
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Static backdoor detection
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Static backdoor detection

Can a computationally bounded defender tell the difference between an
ordinary model and a backdoored model?

Goldwasser, Kim, Vaikuntanathan, Zamir: no.

Black-box (query access): defender cannot find an input on which the
models differ (attack works for any learning algorithm).
White-box (access to weights): defender cannot distinguish models
(attack works for Random Fourier Features learning algorithm).
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Dynamic backdoor detection

Our question:

What if we allow the defender to intervene at runtime?
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Dynamic backdoor detection

Our question:

What if we allow the defender to intervene at runtime?

Principles for our formal backdoor detection game:
a White-box
b Dynamic (i.e., runtime)
c Worst-case assumptions ...

d ... except the trigger is chosen randomly
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Statistical possibility result

With no computational constraints on the defender, the “changeover”
between offense and defense is around ε ≈ 1

VC(F) .

Theorem (CHLX)

The defender wins with confidence → 1 ⇐⇒ ε = o
(

1
VC(F)

)
.

Proof sketch.
=⇒ : Same idea as whiteboard example.
⇐= : Defender “distills” given function to remove backdoor (and takes a
majority vote [1]).

[1] S. Hanneke, A. Karbasi, M. Mahmoody, I. Mehalel, and S. Moran. On optimal
learning under targeted data poisoning. NeurIPS, 2022.
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Computational defendability

Now let’s introduce computational constraints on the defender.

Definition
F is efficiently defendable if whenever ε < 1/poly

(
n, 1

δ

), the defender can win
with probability 1 − δ using a poly

(
n, 1

δ

)
-time detection strategy.

(n ≈ number of bits needed to specify a point from X / a function from F)

Corollary
F is efficiently PAC learnable =⇒ F is efficiently defendable.
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Computational impossibility result

Unfortunately though, “realistic” function classes are not necessarily
efficiently PAC learnable.

Theorem (CHLX)
The class of polynomial size Boolean circuits is not efficiently defendable
(assuming OWF and iO).

Proof sketch.
Use a secret key to “puncture” a pseudorandom function at a particular
point, and use program obfuscation (iO) to hide the puncturing.
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Takeaways for deceptive alignment

Statistical possibility result: distillation probably doesn’t help, but perhaps
some kinds of regularization will help in practice

Computational impossibility result: cannot dynamically defend under our
worst-case assumptions

BUT maybe we can spot the “secret key” by observing training?
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Questions

For the CS theorists:

Question
Is the class of polynomial size Boolean formulas efficiently defendable?

For the alignment researchers:

Question
How can we leverage information about the training process to
dynamically detect backdoors and/or deceptive alignment?
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Thank you!

Paper: https://arxiv.org/abs/2409.03077

ARC blog: https://www.alignment.org/blog/
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