# Generalization in diffusion models arises from geometry-adaptive harmonic representations

Zahra Kadkhodaie September 2024





**Florentin Guth** 

Eero Simoncelli



 Image: State stat

Stéphane Mallat

## Diffusion models embed densities

- Sample from a **learned** density [Song & Ermon 2019; Ho et al 2020]
- How is this possible, given the "Curse of dimensionality" ?!

#### generated by a diffusion model



[Ho et al, 2022]

## Memorization vs. generalization



#### A collection of delta functions



[Carlini et al, 2023]



Underlying distribution

[Somepalli et al, 2023]

## Memorization vs. generalization

A point in training set

A collection of delta functions



# A continuous model of the underlying distribution

## Memorization vs. generalization

Underlying distribution A point in training set

#### A collection of delta functions

2. If so, how?



#### A continuous model of the underlying distribution

#### 1. Can diffusion models generalize?

#### noisy image y = x + z $z \sim \mathcal{N}(0, \sigma^2 \mathrm{Id})$

#### Denoiser is applied iteratively and partially



[Kadkhodaie & Simoncelli arXiv2020, NeurIPS2021]

**Deep Neural Network** 



#### denoised image (y)



noisy image y = x + z $z \sim \mathcal{N}(0, \sigma^2 \mathrm{Id})$ Minimize  $\mathbb{E} \left\| \|x - f(y) \|^2 \right\|$  $f^{\star}(y) = \mathbb{E}[x|y] = \int x p^{\star}(x|y) dx = f^{\star}(y) = y + \sigma^2 \nabla \log p^{\star}_{\sigma}(y)$ 

mean of the posterior distribution

Deep Neural Network



denoised image (y)

[Tweedie, via Robbins, 1956; Miyasawa, 1961]

optimal denoiser





noisy image y = x + z $z \sim \mathcal{N}(0, \sigma^2 \mathrm{Id})$ **Deep Neural Network** Minimize  $\mathbb{E} \left\| \|x - f(y) \|^2 \right\|$  $f^{\star}(y) = \mathbb{E}_{x}[x|y] = \int x p^{\star}(x|y) dx =$ 

mean of the posterior distribution

$$p^{\star}_{\sigma}(y) = \int p(y|x) \, p^{\star}(x) \, \mathrm{d}x = \int g_{\sigma}(y-x) \, p^{\star}(x) \, \mathrm{d}x$$



denoised image (y)

[Tweedie, via Robbins, 1956; Miyasawa, 1961]

$$f^{\star}(y) = y + \sigma^2 \nabla \log p_{\sigma}^{\star}(y) \frac{\operatorname{optin}}{\operatorname{den}}$$

 $p_{\sigma}(y)$  is a blurred (diffused) version of p(x)









noisy image y = x + z $z \sim \mathcal{N}(0, \sigma^2 \mathrm{Id})$ 

#### Coarse-to-fine gradient ascent





denoised image (y)

[Tweedie, via Robbins, 1956; Miyasawa, 1961]

optimal  $f^{\star}(y) = y + \sigma^2 \nabla \log p^{\star}_{\sigma}(y)$ denoiser  $\hat{f}(y) = y + \sigma^2 \nabla \log \hat{p}_{\sigma}(y)$ learned

 $\nabla_y \log \hat{p}_{\sigma}(y) \approx (\hat{f}(y) - y) / \sigma^2$ 











Samples from this



Training set size: 1 10

Samples, model trained on set A:





#### 100 1,000 10,000 100,000











#### Training set size:

1 10

Closest training example from A:

Samples, model trained on set A:



#### 100 1,000

#### 10,000



















#### Training set size:

1 10

Closest training example from A:

Samples, model trained on set A:



#### 100

#### 1,000

#### 10,000



















#### Training set size:

1 10

Closest training example from A:

Samples, model trained on set A:

Samples, model trained on set B (same seed):



#### 100

#### 1,000

#### 10,000

























#### Training set size:

1 10

Closest training example from A:

Samples, model trained on set A:

Samples, model trained on set B (same seed):

Closest training example from B:



#### 100

#### 1,000

#### 10,000



























#### Training set size:

10

Closest training example from A:

> Samples, model trained on set A:

> Samples, model trained on set B (same seed):

**Closest training** example from B:



#### 100

#### 1,000





























## Strong generalization in LSUN bedroom dataset

Closest image from  $S_1$ :

Generated by models trained on  $S_1$ :

Generated by models trained on  $S_2$ :

Closest image from *S*<sub>2</sub>:



N=1









## Strong generalization in BF-CNN architecture

Closest image from  $S_1$ :

Generated by models trained on  $S_1$ :

Generated by models trained on  $S_2$ :

Closest image from  $S_2$ :



N=1

















N=100







N = 1000









N = 10000









# How do diffusion models generalize? What are inductive biases of the denoiser?

## Denoising as shrinkage in a basis

- Classical framework for denoising:
- 2. Suppress the noise (shrinkage)
- 3. Transform back to pixel domain

#### 1. Transform the noisy image to a basis where noise and signal are separable



#### Denoising as shrinkage in a basis Fixed basis, fixed shrinkage





 $\mathbb{E}_{z} < z, e_{k} >$  same power in all frequencies

#### Denoising as shrinkage in a basis Fixed basis, fixed shrinkage





frequencies

### Denoising as shrinkage in a basis Fixed basis, adaptive shrinkage

 $f(y) = \sum_{k} \lambda_{k}(y) \langle y, e_{k} \rangle e_{k}$ Wavelet basis

Coefficients fall faster in wavelet basis. More compact representation of signal. Easier separation between noise and signal with sparse signal



[Donoho & Johnstone 94]

### Denoising as shrinkage in a basis Fixed basis, adaptive shrinkage



Coefficients fall faster in wavelet basis. More compact representation of signal. Easier separation between noise and signal with sparse signal



[Donoho & Johnstone 94]

### Denoising as shrinkage in a basis Adaptive basis, adaptive shrinkage



Locally linear 
$$\hat{f}(y) = 
abla \hat{f}(y) y$$
  
function: Jacobian w.r.t. Inp  
Nearly symmetric

[Mohan\*, Kadkhodaie\*, Simoncelli, Fernandez-Granda, ICLR 2020]

w.r.t. Input y



#### Denoising as shrinkage in a basis Adaptive basis, adaptive shrinkage



[Mohan\*, Kadkhodaie\*, Simoncelli, Fernandez-Granda, ICLR 2020]

Eigen decomposition of Jacobian Locally linear  $\hat{f}(y) = \nabla \hat{f}(y) y = \sum \lambda_k(y) \langle y, e_k(y) \rangle e_k(y)$ function:  ${m k}$ Shrinkage factors Eigen basis



#### Denoising as shrinkage in an adaptive basis Adaptive basis, adaptive shrinkage











### Denoising as shrinkage in an adaptive basis **Geometry Adaptive Harmonic Basis (GAHBs)**







#### Some top Eigenvectors

1.Adaptive 2.oscillatory  $\lambda_5 = 1.244$ 

 $\lambda_{89} = 0.857$ 















 $\lambda_{53} = 0.973$ 

1.4

1.2

1.0

0.4

0.2

0.0







2000

3000

4000

1000

**Eigen Values** 







5000





#### Denoising as shrinkage in an adaptive basis Geometry Adaptive Harmonic Basis (GAHBs)

hypothesis:

#### DNN denoisers have inductive biases towards learning GAHBs

#### Denoising as shrinkage in an adaptive basis **Geometry Adaptive Harmonic Basis (GAHBs)**

hypothesis:

**DNN denoisers have inductive biases towards learning** GAHBs

> How to test this? Synthetic images





#### GAHBs are optimal for denoising these

[Korostelev & Tsybakov, 1993; Donoho, 1999; Peyré & Mallat, 2008]





#### geometry adaptive harmonic basis

## Optimal denoiser on $C^{\alpha}$ images has slope $\frac{\alpha}{\alpha+1}$ . [Korostelev & Tsybakov, 1993] [Peyré & Mallat, 2008]

#### **Denoising performance**



## Optimal denoiser on $C^{\alpha}$ images has slope $\frac{\alpha}{\alpha+1}$ . [Korostelev & Tsybakov, 1993] [Peyré & Mallat, 2008]

# Deep nets learn GAHB for denoising when it's optimal

#### **Denoising performance**





#### five-dimensional curved manifold

Vertical position
 Horizontal position
 Radius/size
 Foreground intensity
 Background intensity













## Interim summary

- Diffusion models can transition from memorization to generalization with large enough training set size
- Generalization is strong: two denoisers trained on nonoverlapping training sets converge to nearly the same function
- Generalization due to an **inductive bias** corresponding to shrinkage in a Geometry Adaptive Harmonic Basis (GAHB)

Kadkhodaie Z, Guth F, Simoncelli EP, Mallat S. "Generalization in diffusion models arises from geometry-adaptive harmonic representation". ICLR 2024.

- We are in good shape with learning densities
- Can we reduce the size of training set required for generalization?

- Image resolution
- Network size
- Complexity of image dataset

- Image resolution
- Network size
- Complexity of image dataset





Hundreds of millions or billions of parameters with global receptive fields





## Network receptive field



## Synthesis fails without global receptive fields!





Synthesized images are not faces

## Synthesis fails without global receptive fields!



# Do bigger images require bigger models?

 $x_0$ 







## Wavelet decomposition

 $x_0$ 



#### $x_1$





## Wavelet decomposition

 $x_0$ 







 $p(x_0) = p(x_1, \bar{x}_1)$ 

## Factorization of the prior

 $x_0$ 



![](_page_52_Picture_4.jpeg)

![](_page_52_Picture_5.jpeg)

 $p(x_0) = p(x_1) p(\bar{x}_1 | x_1)$ 

## **Conditional densities are local**

 $x_0$ 

![](_page_53_Picture_2.jpeg)

 $x_1$ 

![](_page_53_Picture_5.jpeg)

 $p(x_0) = p(x_1) p(\bar{x}_1 | x_1)$ Global Local

## Multi-scale wavelet representation

 $x_0$ 

![](_page_54_Picture_2.jpeg)

![](_page_54_Picture_3.jpeg)

![](_page_54_Picture_4.jpeg)

![](_page_54_Picture_5.jpeg)

![](_page_54_Picture_6.jpeg)

![](_page_54_Picture_7.jpeg)

![](_page_54_Picture_8.jpeg)

![](_page_54_Picture_9.jpeg)

## **Conditional denoisers**

#### Noisy detail channels

![](_page_55_Figure_3.jpeg)

Clean low-pass

![](_page_55_Picture_5.jpeg)

with local receptive field

## Low pass denoiser

#### Noisy Iow-pass

![](_page_56_Picture_2.jpeg)

#### Denoised low-pass

# CNN

Low-pass denoiser with global receptive field

## Multi-scale wavelet conditional denoiser

![](_page_57_Figure_1.jpeg)

## How local?

#### **Pixel-domain denoiser**

![](_page_58_Figure_2.jpeg)

## How local?

#### **Pixel-domain denoiser**

![](_page_59_Figure_2.jpeg)

#### Wavelet-domain denoiser

![](_page_60_Figure_0.jpeg)

![](_page_60_Picture_1.jpeg)

RF = 43x43

RF = 23x23

RF = 9x9

#### Wavelet-domain denoiser

![](_page_60_Picture_6.jpeg)

RF = 43x43

RF = 23x23

RF = 9x9

![](_page_60_Picture_10.jpeg)

## Synthesis example

![](_page_61_Picture_1.jpeg)

![](_page_62_Figure_0.jpeg)

## Synthesis example

![](_page_63_Figure_0.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_64_Picture_1.jpeg)

#### Total number of parameters ~ 1 million

## Synthesis example

![](_page_64_Picture_4.jpeg)

![](_page_65_Figure_0.jpeg)

![](_page_65_Picture_1.jpeg)

![](_page_65_Picture_2.jpeg)

![](_page_65_Picture_3.jpeg)

## To sum up:

- We can model probability of large images with small networks.
- The global structure is captured by a global prior over a small low-pass image.
- Details can be modeled using local (Markov) conditional probability distributions in the wavelet domain.

# Thank you!

Kadkhodaie, Guth, Simoncelli, Mallat, "Generalization in diffusion models arises from geometryadaptive harmonic representation". ICLR 2024

Kadkhodaie, Guth, Mallat, & Simoncelli, "Learning multi-scale local conditional probability models of images." ICLR 2023