Generalization in diffusion models arises from geometry-adaptive harmonic representations

Zahra Kadkhodaie September 2024

Florentin Guth

Eero Simoncelli

 Image: State stat

Stéphane Mallat

Diffusion models embed densities

- Sample from a **learned** density [Song & Ermon 2019; Ho et al 2020]
- How is this possible, given the "Curse of dimensionality" ?!

generated by a diffusion model

[Ho et al, 2022]

Memorization vs. generalization

A collection of delta functions

[Carlini et al, 2023]

Underlying distribution

[Somepalli et al, 2023]

Memorization vs. generalization

A point in training set

A collection of delta functions

A continuous model of the underlying distribution

Memorization vs. generalization

Underlying distribution A point in training set

A collection of delta functions

2. If so, how?

A continuous model of the underlying distribution

1. Can diffusion models generalize?

noisy image y = x + z $z \sim \mathcal{N}(0, \sigma^2 \mathrm{Id})$

Denoiser is applied iteratively and partially

[Kadkhodaie & Simoncelli arXiv2020, NeurIPS2021]

Deep Neural Network

denoised image (y)

noisy image y = x + z $z \sim \mathcal{N}(0, \sigma^2 \mathrm{Id})$ Minimize $\mathbb{E} \left\| \|x - f(y) \|^2 \right\|$ $f^{\star}(y) = \mathbb{E}[x|y] = \int x p^{\star}(x|y) dx = f^{\star}(y) = y + \sigma^2 \nabla \log p^{\star}_{\sigma}(y)$

mean of the posterior distribution

Deep Neural Network

denoised image (y)

[Tweedie, via Robbins, 1956; Miyasawa, 1961]

optimal denoiser

noisy image y = x + z $z \sim \mathcal{N}(0, \sigma^2 \mathrm{Id})$ **Deep Neural Network** Minimize $\mathbb{E} \left\| \|x - f(y) \|^2 \right\|$ $f^{\star}(y) = \mathbb{E}_{x}[x|y] = \int x p^{\star}(x|y) dx =$

mean of the posterior distribution

$$p^{\star}_{\sigma}(y) = \int p(y|x) \, p^{\star}(x) \, \mathrm{d}x = \int g_{\sigma}(y-x) \, p^{\star}(x) \, \mathrm{d}x$$

denoised image (y)

[Tweedie, via Robbins, 1956; Miyasawa, 1961]

$$f^{\star}(y) = y + \sigma^2 \nabla \log p_{\sigma}^{\star}(y) \frac{\operatorname{optin}}{\operatorname{den}}$$

 $p_{\sigma}(y)$ is a blurred (diffused) version of p(x)

noisy image y = x + z $z \sim \mathcal{N}(0, \sigma^2 \mathrm{Id})$

Coarse-to-fine gradient ascent

denoised image (y)

[Tweedie, via Robbins, 1956; Miyasawa, 1961]

optimal $f^{\star}(y) = y + \sigma^2 \nabla \log p^{\star}_{\sigma}(y)$ denoiser $\hat{f}(y) = y + \sigma^2 \nabla \log \hat{p}_{\sigma}(y)$ learned

 $\nabla_y \log \hat{p}_{\sigma}(y) \approx (\hat{f}(y) - y) / \sigma^2$

Samples from this

Training set size: 1 10

Samples, model trained on set A:

100 1,000 10,000 100,000

Training set size:

1 10

Closest training example from A:

Samples, model trained on set A:

100 1,000

10,000

Training set size:

1 10

Closest training example from A:

Samples, model trained on set A:

100

1,000

10,000

Training set size:

1 10

Closest training example from A:

Samples, model trained on set A:

Samples, model trained on set B (same seed):

100

1,000

10,000

Training set size:

1 10

Closest training example from A:

Samples, model trained on set A:

Samples, model trained on set B (same seed):

Closest training example from B:

100

1,000

10,000

Training set size:

10

Closest training example from A:

> Samples, model trained on set A:

> Samples, model trained on set B (same seed):

Closest training example from B:

100

1,000

Strong generalization in LSUN bedroom dataset

Closest image from S_1 :

Generated by models trained on S_1 :

Generated by models trained on S_2 :

Closest image from *S*₂:

N=1

Strong generalization in BF-CNN architecture

Closest image from S_1 :

Generated by models trained on S_1 :

Generated by models trained on S_2 :

Closest image from S_2 :

N=1

N=100

N = 1000

N = 10000

How do diffusion models generalize? What are inductive biases of the denoiser?

Denoising as shrinkage in a basis

- Classical framework for denoising:
- 2. Suppress the noise (shrinkage)
- 3. Transform back to pixel domain

1. Transform the noisy image to a basis where noise and signal are separable

Denoising as shrinkage in a basis Fixed basis, fixed shrinkage

 $\mathbb{E}_{z} < z, e_{k} >$ same power in all frequencies

Denoising as shrinkage in a basis Fixed basis, fixed shrinkage

frequencies

Denoising as shrinkage in a basis Fixed basis, adaptive shrinkage

 $f(y) = \sum_{k} \lambda_{k}(y) \langle y, e_{k} \rangle e_{k}$ Wavelet basis

Coefficients fall faster in wavelet basis. More compact representation of signal. Easier separation between noise and signal with sparse signal

[Donoho & Johnstone 94]

Denoising as shrinkage in a basis Fixed basis, adaptive shrinkage

Coefficients fall faster in wavelet basis. More compact representation of signal. Easier separation between noise and signal with sparse signal

[Donoho & Johnstone 94]

Denoising as shrinkage in a basis Adaptive basis, adaptive shrinkage

Locally linear
$$\hat{f}(y) =
abla \hat{f}(y) y$$

function: Jacobian w.r.t. Inp
Nearly symmetric

[Mohan*, Kadkhodaie*, Simoncelli, Fernandez-Granda, ICLR 2020]

w.r.t. Input y

Denoising as shrinkage in a basis Adaptive basis, adaptive shrinkage

[Mohan*, Kadkhodaie*, Simoncelli, Fernandez-Granda, ICLR 2020]

Eigen decomposition of Jacobian Locally linear $\hat{f}(y) = \nabla \hat{f}(y) y = \sum \lambda_k(y) \langle y, e_k(y) \rangle e_k(y)$ function: ${m k}$ Shrinkage factors Eigen basis

Denoising as shrinkage in an adaptive basis Adaptive basis, adaptive shrinkage

Denoising as shrinkage in an adaptive basis **Geometry Adaptive Harmonic Basis (GAHBs)**

Some top Eigenvectors

1.Adaptive 2.oscillatory $\lambda_5 = 1.244$

 $\lambda_{89} = 0.857$

 $\lambda_{53} = 0.973$

1.4

1.2

1.0

0.4

0.2

0.0

2000

3000

4000

1000

Eigen Values

5000

Denoising as shrinkage in an adaptive basis Geometry Adaptive Harmonic Basis (GAHBs)

hypothesis:

DNN denoisers have inductive biases towards learning GAHBs

Denoising as shrinkage in an adaptive basis **Geometry Adaptive Harmonic Basis (GAHBs)**

hypothesis:

DNN denoisers have inductive biases towards learning GAHBs

> How to test this? Synthetic images

GAHBs are optimal for denoising these

[Korostelev & Tsybakov, 1993; Donoho, 1999; Peyré & Mallat, 2008]

geometry adaptive harmonic basis

Optimal denoiser on C^{α} images has slope $\frac{\alpha}{\alpha+1}$. [Korostelev & Tsybakov, 1993] [Peyré & Mallat, 2008]

Denoising performance

Optimal denoiser on C^{α} images has slope $\frac{\alpha}{\alpha+1}$. [Korostelev & Tsybakov, 1993] [Peyré & Mallat, 2008]

Deep nets learn GAHB for denoising when it's optimal

Denoising performance

five-dimensional curved manifold

Vertical position
 Horizontal position
 Radius/size
 Foreground intensity
 Background intensity

Interim summary

- Diffusion models can transition from memorization to generalization with large enough training set size
- Generalization is strong: two denoisers trained on nonoverlapping training sets converge to nearly the same function
- Generalization due to an **inductive bias** corresponding to shrinkage in a Geometry Adaptive Harmonic Basis (GAHB)

Kadkhodaie Z, Guth F, Simoncelli EP, Mallat S. "Generalization in diffusion models arises from geometry-adaptive harmonic representation". ICLR 2024.

- We are in good shape with learning densities
- Can we reduce the size of training set required for generalization?

- Image resolution
- Network size
- Complexity of image dataset

- Image resolution
- Network size
- Complexity of image dataset

Hundreds of millions or billions of parameters with global receptive fields

Network receptive field

Synthesis fails without global receptive fields!

Synthesized images are not faces

Synthesis fails without global receptive fields!

Do bigger images require bigger models?

 x_0

Wavelet decomposition

 x_0

x_1

Wavelet decomposition

 x_0

 $p(x_0) = p(x_1, \bar{x}_1)$

Factorization of the prior

 x_0

 $p(x_0) = p(x_1) p(\bar{x}_1 | x_1)$

Conditional densities are local

 x_0

 x_1

 $p(x_0) = p(x_1) p(\bar{x}_1 | x_1)$ Global Local

Multi-scale wavelet representation

 x_0

Conditional denoisers

Noisy detail channels

Clean low-pass

with local receptive field

Low pass denoiser

Noisy Iow-pass

Denoised low-pass

CNN

Low-pass denoiser with global receptive field

Multi-scale wavelet conditional denoiser

How local?

Pixel-domain denoiser

How local?

Pixel-domain denoiser

Wavelet-domain denoiser

RF = 43x43

RF = 23x23

RF = 9x9

Wavelet-domain denoiser

RF = 43x43

RF = 23x23

RF = 9x9

Synthesis example

Synthesis example

Total number of parameters ~ 1 million

Synthesis example

To sum up:

- We can model probability of large images with small networks.
- The global structure is captured by a global prior over a small low-pass image.
- Details can be modeled using local (Markov) conditional probability distributions in the wavelet domain.

Thank you!

Kadkhodaie, Guth, Simoncelli, Mallat, "Generalization in diffusion models arises from geometryadaptive harmonic representation". ICLR 2024

Kadkhodaie, Guth, Mallat, & Simoncelli, "Learning multi-scale local conditional probability models of images." ICLR 2023