
Generalization in diffusion models arises from
geometry-adaptive harmonic representations

Zahra Kadkhodaie
September 2024

Stéphane Mallat Eero Simoncelli Florentin Guth

• Sample from a learned density
[Song & Ermon 2019; Ho et al 2020]

• How is this possible, given the
“Curse of dimensionality” ?!

Diffusion models embed densities

generated by a diffusion model

[Ho et al, 2022]

Memorization vs. generalization

A collection of delta functions

A point in

training set

Underlying

distribution

[Carlini et al, 2023]

From
training set

Generated
sample

[Somepalli et al, 2023]

Tr
ai

ni
ng

 s
et

G
en

er
at

ed

A collection of delta functions A continuous model of the
underlying distribution

A point in

training set

Underlying

distribution

Memorization vs. generalization

A collection of delta functions A continuous model of the
underlying distribution

A point in

training set

Underlying

distribution

1. Can diffusion models generalize?

2. If so, how?

Memorization vs. generalization

Diffusion models and denoising
noisy image

denoised image

Denoiser is applied iteratively and partially

̂
̂

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Deep Neural Network

[Kadkhodaie & Simoncelli arXiv2020, NeurIPS2021]

Diffusion models and denoising
noisy image

denoised image ̂
̂

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Deep Neural Network

Minimize

=

mean of the posterior distribution

optimal
denoiser

⋆

[Tweedie, via Robbins, 1956;

Miyasawa, 1961]

⋆

Diffusion models and denoising
noisy image

denoised image ̂
̂

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Deep Neural Network

Minimize

= optimal
denoiser

⋆

[Tweedie, via Robbins, 1956;

Miyasawa, 1961]

 is a blurred (diffused) version of pσ(y) p(x)

⋆ ⋆ ⋆

⋆

mean of the posterior distribution

Diffusion models and denoising
noisy image

denoised image ̂
̂

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Deep Neural Network

optimal
denoiser

⋆

[Tweedie, via Robbins, 1956;

Miyasawa, 1961]

learned
denoiser

Coarse-to-fine gradient ascent ̂̂ ̂
̂

̂
̂ ̂

Diffusion models and denoising

optimal
denoiser

⋆

learned
denoiser̂

̂ ̂

Samples from this

Diffusion models and denoising

optimal
denoiser

⋆

learned
denoiser̂

̂ ̂

Samples from this

⋆̂ ?

A novel sample

Samples,

model trained

on set A:

Training set size: 1 10 100 1,000 10,000 100,000

Transition from memorization to generalization

Samples,

model trained

on set A:

Closest training

example from A:

Training set size: 1 10 100 1,000 10,000 100,000

Transition from memorization to generalization

Samples,

model trained

on set A:

Closest training

example from A:

Training set size: 1 10 100 1,000 10,000 100,000

Transition from memorization to generalization

Samples,

model trained

on set A:

Samples,

model trained

on set B

(same seed):

Closest training

example from A:

Training set size: 1 10 100 1,000 10,000 100,000

Transition from memorization to generalization

Samples,

model trained

on set A:

Samples,

model trained

on set B

(same seed):

Closest training

example from B:

Closest training

example from A:

Training set size: 1 10 100 1,000 10,000 100,000

Transition from memorization to generalization

Samples,

model trained

on set A:

Samples,

model trained

on set B

(same seed):

Closest training

example from B:

Closest training

example from A:

Training set size: 1 10 100 1,000 10,000 100,000

Transition from memorization to generalization

Same
initiali
zation

Strong generalization in LSUN bedroom dataset

Strong generalization in BF-CNN architecture

How do diffusion models generalize?

What are inductive biases of the denoiser?

Denoising as shrinkage in a basis

1. Transform the noisy image to a basis where noise and signal are separable

2. Suppress the noise (shrinkage)

3. Transform back to pixel domain

Classical framework for denoising:

Basis set: Image:
Coefficient

density:

!

!

!

!

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Fourier basis

same power in all
frequencies

𝔼z < z, ek >

Signal falls

as on

average

1
k

Denoising as shrinkage in a basis
Fixed basis, fixed shrinkage

“Wiener filter” (1942)

Basis set: Image:
Coefficient

density:

!

!

!

!

Basis set: Image:
Coefficient

density:

!

!

!

!

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Fourier basis

same power in all
frequencies

𝔼z < z, ek >

Signal falls

as on

average

1
k

Denoising as shrinkage in a basis
Fixed basis, fixed shrinkage

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Basis set: Image:
Coefficient

density:

!

!

!

Basis set: Image:
Coefficient

density:

!

!

!

Basis set: Image:
Coefficient

density:

!

!

!

Basis set: Image:
Coefficient

density:

!

!

!

“wavelet thresholding”
[Donoho & Johnstone 94]

Wavelet basis

Coefficients fall faster in wavelet basis. More compact representation of signal.
Easier separation between noise and signal with sparse signal

Denoising as shrinkage in a basis
Fixed basis, adaptive shrinkage

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Basis set: Image:
Coefficient

density:

!

!

!

Basis set: Image:
Coefficient

density:

!

!

!

Basis set: Image:
Coefficient

density:

!

!

!

Basis set: Image:
Coefficient

density:

!

!

!

Wavelet basis

Adaptive thresholding

Coefficients fall faster in wavelet basis. More compact representation of signal.
Easier separation between noise and signal with sparse signal

λk(y) =
> ασ1

0 Otherwise

| |

Denoising as shrinkage in a basis
Fixed basis, adaptive shrinkage

[Donoho & Johnstone 94]
“wavelet thresholding”

Jacobian w.r.t. Input y

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Deep Neural Network

̂Locally linear

function: }

Denoising as shrinkage in a basis
Adaptive basis, adaptive shrinkage

̂

Nearly symmetric

[Mohan*, Kadkhodaie*, Simoncelli, Fernandez-Granda, ICLR 2020]

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Deep Neural Network

̂

Eigen decomposition of Jacobian
̂

Denoising as shrinkage in a basis
Adaptive basis, adaptive shrinkage

Eigen basisShrinkage factors

Locally linear

function:

[Mohan*, Kadkhodaie*, Simoncelli, Fernandez-Granda, ICLR 2020]

Denoising as shrinkage in an adaptive basis
Adaptive basis, adaptive shrinkage

Deep Neural Network

Eigen Values

Denoising as shrinkage in an adaptive basis
Geometry Adaptive Harmonic Basis (GAHBs)

1.Adaptive

2.oscillatory

Deep Neural Network

Some top Eigenvectors

Eigen Values

hypothesis:

DNN denoisers have inductive biases towards learning
GAHBs

Denoising as shrinkage in an adaptive basis
Geometry Adaptive Harmonic Basis (GAHBs)

hypothesis:

DNN denoisers have inductive biases towards learning
GAHBs

Denoising as shrinkage in an adaptive basis
Geometry Adaptive Harmonic Basis (GAHBs)

How to test this?

Synthetic images

Geometric imagesCα

[Korostelev & Tsybakov, 1993; Donoho, 1999; Peyré & Mallat, 2008]

α = 2 α = 4α = 1 α = 3 α = 5

GAHBs are optimal for denoising these

geometry adaptive harmonic basis

α = 4

Geometric imagesCα

Optimal denoiser on images
has slope .

Cα
α

α + 1
[Korostelev & Tsybakov, 1993]

[Peyré & Mallat, 2008]

Geometric imagesCα

Denoising performance
Empirical Optimal

Geometric imagesCα

Deep nets learn GAHB for
denoising when it’s optimal

Optimal denoiser on images
has slope .

Cα
α

α + 1
[Korostelev & Tsybakov, 1993]

[Peyré & Mallat, 2008]

Denoising performance
Empirical Optimal

Manifold of disks

five-dimensional curved manifold 1.Vertical position

2.Horizontal position

3.Radius/size

4.Foreground intensity

5.Background intensity

Manifold of disks
Vertical

Translation
Horizontal
Translation

Radius
Change

Background
Change

Foreground
Change

Optimal

Manifold of disks

Empirical

Vertical
Translation

Horizontal
Translation

Radius
Change

Background
Change

Foreground
Change

Optimal

Manifold of disks
Vertical

Translation
Horizontal
Translation

Radius
Change

Background
Change

Foreground
Change

Optimal

Empirical

Manifold of disks
Vertical

Translation
Horizontal
Translation

Radius
Change

Background
Change

Foreground
Change

Optimal

Empirical

Deep nets learn GAHB even when it’s sub-optimal

Interim summary

• Diffusion models can transition from memorization to
generalization with large enough training set size

• Generalization is strong: two denoisers trained on non-
overlapping training sets converge to nearly the same function

• Generalization due to an inductive bias corresponding to
shrinkage in a Geometry Adaptive Harmonic Basis (GAHB)

Kadkhodaie Z, Guth F, Simoncelli EP, Mallat S.

“Generalization in diffusion models arises from geometry-adaptive harmonic representation”.ICLR 2024.

• We are in good shape with learning densities

• Can we reduce the size of training set required for generalization?

• Image resolution

• Network size

• Complexity of image dataset

• Image resolution

• Network size

• Complexity of image dataset

Hundreds of millions or

billions of parameters

with global receptive fields

denoiser

p(x)

Network receptive field

Receptive
field

denoiser

p(x)

denoiser

p(x)

Iterative
algorithm

Iterative
algorithm

Iterative
algorithm

Synthesis fails without global receptive fields!

Receptive
field

Synthesized images are not faces

denoiser

p(x)

denoiser

p(x)

Iterative
algorithm

Iterative
algorithm

Iterative
algorithm

Synthesis fails without global receptive fields!

Receptive
field

Synthesized images are not faces

local and translation invariant RF learn density is an MRF⇒

Do bigger images require
bigger models?

<latexit sha1_base64="GnkbcEJ8F1Zy6JCOZYM5KS0kjbQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91iMqzWP5YMYJ+hEdSB5yRo2V7p96bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8ADtmNrg==</latexit>x0
<latexit sha1_base64="x2+USxmw+BeTBU9VNZk2kGvVZFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtMu3WzC7kQsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJWDzhOuB/RgRKhYBStdP/U83rlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AEF2Nrw==</latexit>x1

W

W
T

<latexit sha1_base64="GnkbcEJ8F1Zy6JCOZYM5KS0kjbQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91iMqzWP5YMYJ+hEdSB5yRo2V7p96bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8ADtmNrg==</latexit>x0
<latexit sha1_base64="x2+USxmw+BeTBU9VNZk2kGvVZFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtMu3WzC7kQsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJWDzhOuB/RgRKhYBStdP/U83rlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AEF2Nrw==</latexit>x1

<latexit sha1_base64="WFN6MHnHl2Zf6mEavcFKUuDACrM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07KpovZW8CJ4qWA/pF1KNk3b0Gx2SbJiWforvHhQxKs/x5v/xrRdUKsPBh7vzTAzL4gF18bzPp3c0vLK6lp+vbCxubW9U9zda+goUZTVaSQi1QqIZoJLVjfcCNaKFSNhIFgzGF1O/eY9U5pH8taMY+aHZCB5n1NirHTXCYhKHyZd3C2WPLeCT7xKGXmuN8M3wRkpQYZat/jR6UU0CZk0VBCt29iLjZ8SZTgVbFLoJJrFhI7IgLUtlSRk2k9nB0/QkVV6qB8pW9KgmfpzIiWh1uMwsJ0hMUO96E3F/7x2YvoXfsplnBgm6XxRPxHIRGj6PepxxagRY0sIVdzeiuiQKEKNzahgQ8CLL/8ljbKLz1x8c1qqXmdx5OEADuEYMJxDFa6gBnWgEMIjPMOLo5wn59V5m7fmnGxmH37Bef8C9tKQjA==</latexit>

x̄1

Wavelet decomposition

x̄1

<latexit sha1_base64="+yIlM9SxKyEyljXjD95r1Tx4y7Q=">AAACBHicbZDLSgMxFIYz9VbrbdRlN8EitCBlIqJuhIIbwU0Fe4F2GDJp2oZmMkOSkZahCze+ihsXirj1Idz5NmbaWWjrD4GP/5zDyfn9iDOlHefbyq2srq1v5DcLW9s7u3v2/kFThbEktEFCHsq2jxXlTNCGZprTdiQpDnxOW/7oOq23HqhULBT3ehJRN8ADwfqMYG0szy5G5bHnVOAVTAGdwK6PZTKeeqgCPbvkVJ2Z4DKgDEogU92zv7q9kMQBFZpwrFQHOZF2Eyw1I5xOC91Y0QiTER7QjkGBA6rcZHbEFB4bpwf7oTRPaDhzf08kOFBqEvimM8B6qBZrqflfrRPr/qWbMBHFmgoyX9SPOdQhTBOBPSYp0XxiABPJzF8hGWKJiTa5FUwIaPHkZWieVtF5Fd2dlWq3WRx5UARHoAwQuAA1cAPqoAEIeATP4BW8WU/Wi/Vufcxbc1Y2cwj+yPr8AQd+ldM=</latexit>

p(x0) = p(x1, x̄1)

<latexit sha1_base64="GnkbcEJ8F1Zy6JCOZYM5KS0kjbQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91iMqzWP5YMYJ+hEdSB5yRo2V7p96bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8ADtmNrg==</latexit>x0
<latexit sha1_base64="x2+USxmw+BeTBU9VNZk2kGvVZFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtMu3WzC7kQsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJWDzhOuB/RgRKhYBStdP/U83rlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AEF2Nrw==</latexit>x1

<latexit sha1_base64="WFN6MHnHl2Zf6mEavcFKUuDACrM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07KpovZW8CJ4qWA/pF1KNk3b0Gx2SbJiWforvHhQxKs/x5v/xrRdUKsPBh7vzTAzL4gF18bzPp3c0vLK6lp+vbCxubW9U9zda+goUZTVaSQi1QqIZoJLVjfcCNaKFSNhIFgzGF1O/eY9U5pH8taMY+aHZCB5n1NirHTXCYhKHyZd3C2WPLeCT7xKGXmuN8M3wRkpQYZat/jR6UU0CZk0VBCt29iLjZ8SZTgVbFLoJJrFhI7IgLUtlSRk2k9nB0/QkVV6qB8pW9KgmfpzIiWh1uMwsJ0hMUO96E3F/7x2YvoXfsplnBgm6XxRPxHIRGj6PepxxagRY0sIVdzeiuiQKEKNzahgQ8CLL/8ljbKLz1x8c1qqXmdx5OEADuEYMJxDFa6gBnWgEMIjPMOLo5wn59V5m7fmnGxmH37Bef8C9tKQjA==</latexit>

x̄1

W

W
T

Wavelet decomposition

W

W
T

<latexit sha1_base64="GnkbcEJ8F1Zy6JCOZYM5KS0kjbQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91iMqzWP5YMYJ+hEdSB5yRo2V7p96bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8ADtmNrg==</latexit>x0
<latexit sha1_base64="x2+USxmw+BeTBU9VNZk2kGvVZFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtMu3WzC7kQsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJWDzhOuB/RgRKhYBStdP/U83rlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AEF2Nrw==</latexit>x1

<latexit sha1_base64="WFN6MHnHl2Zf6mEavcFKUuDACrM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07KpovZW8CJ4qWA/pF1KNk3b0Gx2SbJiWforvHhQxKs/x5v/xrRdUKsPBh7vzTAzL4gF18bzPp3c0vLK6lp+vbCxubW9U9zda+goUZTVaSQi1QqIZoJLVjfcCNaKFSNhIFgzGF1O/eY9U5pH8taMY+aHZCB5n1NirHTXCYhKHyZd3C2WPLeCT7xKGXmuN8M3wRkpQYZat/jR6UU0CZk0VBCt29iLjZ8SZTgVbFLoJJrFhI7IgLUtlSRk2k9nB0/QkVV6qB8pW9KgmfpzIiWh1uMwsJ0hMUO96E3F/7x2YvoXfsplnBgm6XxRPxHIRGj6PepxxagRY0sIVdzeiuiQKEKNzahgQ8CLL/8ljbKLz1x8c1qqXmdx5OEADuEYMJxDFa6gBnWgEMIjPMOLo5wn59V5m7fmnGxmH37Bef8C9tKQjA==</latexit>

x̄1

<latexit sha1_base64="6SboXeUEer9ILcPts0RSaLiB9fQ=">AAACDnicbZDLSsNAFIYnXmu9RV26GSyFFqQkIupGKLhxJRXsBZoQJtNJO3QyCTMTaYl9Aje+ihsXirh17c63cdJmoa0/DHz85xzOnN+PGZXKsr6NpeWV1bX1wkZxc2t7Z9fc22/JKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x9eZfX2PRGSRvxOjWPihqjPaUAxUtryzHJcGXlWFV5CmJFdhc6xJsdHIh1NPPsBZqZnlqyaNRVcBDuHEsjV8MwvpxfhJCRcYYak7NpWrNwUCUUxI5Oik0gSIzxEfdLVyFFIpJtOz5nAsnZ6MIiEflzBqft7IkWhlOPQ150hUgM5X8vM/2rdRAUXbkp5nCjC8WxRkDCoIphlA3tUEKzYWAPCguq/QjxAAmGlEyzqEOz5kxehdVKzz2r27WmpfpPHUQCH4AhUgA3OQR1cgwZoAgwewTN4BW/Gk/FivBsfs9YlI585AH9kfP4ALiSZGw==</latexit>

p(x0) = p(x1) p(x̄1|x1)

Factorization of the prior

W

W
T

LocalGlobal

<latexit sha1_base64="6SboXeUEer9ILcPts0RSaLiB9fQ=">AAACDnicbZDLSsNAFIYnXmu9RV26GSyFFqQkIupGKLhxJRXsBZoQJtNJO3QyCTMTaYl9Aje+ihsXirh17c63cdJmoa0/DHz85xzOnN+PGZXKsr6NpeWV1bX1wkZxc2t7Z9fc22/JKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x9eZfX2PRGSRvxOjWPihqjPaUAxUtryzHJcGXlWFV5CmJFdhc6xJsdHIh1NPPsBZqZnlqyaNRVcBDuHEsjV8MwvpxfhJCRcYYak7NpWrNwUCUUxI5Oik0gSIzxEfdLVyFFIpJtOz5nAsnZ6MIiEflzBqft7IkWhlOPQ150hUgM5X8vM/2rdRAUXbkp5nCjC8WxRkDCoIphlA3tUEKzYWAPCguq/QjxAAmGlEyzqEOz5kxehdVKzz2r27WmpfpPHUQCH4AhUgA3OQR1cgwZoAgwewTN4BW/Gk/FivBsfs9YlI585AH9kfP4ALiSZGw==</latexit>

p(x0) = p(x1) p(x̄1|x1)

<latexit sha1_base64="GnkbcEJ8F1Zy6JCOZYM5KS0kjbQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91iMqzWP5YMYJ+hEdSB5yRo2V7p96bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8ADtmNrg==</latexit>x0
<latexit sha1_base64="x2+USxmw+BeTBU9VNZk2kGvVZFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtMu3WzC7kQsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJWDzhOuB/RgRKhYBStdP/U83rlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AEF2Nrw==</latexit>x1

Conditional densities are local

W

W
T

W

W
TW

W
T

<latexit sha1_base64="zfuGpBMbGEY+o2O3nnkhJ3HJ+AA=">AAACG3icbZDLSsNAFIYn9VbrLerSzWAR2k1JiqibQtGNdFXBXqCNYTKZttNOLsxMpCXmPdz4Km5cKOJKcOHbOG2z0NYfBj7+cw5nzu+EjAppGN9aZmV1bX0ju5nb2t7Z3dP3D5oiiDgmDRywgLcdJAijPmlIKhlph5wgz2Gk5YyupvXWPeGCBv6tnITE8lDfpz2KkVSWrZfDwtg2irACp1Arwm7IA9eOhxUzuYtribK7DuLxOLGH8AGO7WHR1vNGyZgJLoOZQh6kqtv6Z9cNcOQRX2KGhOiYRiitGHFJMSNJrhsJEiI8Qn3SUegjjwgrnt2WwBPluLAXcPV8CWfu74kYeUJMPEd1ekgOxGJtav5X60Syd2HF1A8jSXw8X9SLGJQBnAYFXcoJlmyiAGFO1V8hHiCOsFRx5lQI5uLJy9Asl8yzknlzmq9epnFkwRE4BgVggnNQBdegDhoAg0fwDF7Bm/akvWjv2se8NaOlM4fgj7SvH8sPn3Q=</latexit>

p(x0) = p(xJ)
JY

j=1

p(x̄j |xj)

LocalGlobal

<latexit sha1_base64="GnkbcEJ8F1Zy6JCOZYM5KS0kjbQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91iMqzWP5YMYJ+hEdSB5yRo2V7p96bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8ADtmNrg==</latexit>x0

Multi-scale wavelet representation
xJ

cCNN

CNN

Conditional denoiser

with local receptive field

Noisy

detail channels

Denoised

detail channels

Clean low-pass

Conditional denoisers

Low pass denoiser

Low-pass denoiser

with global receptive field

cCNN

CNN

Noisy

low-pass

Denoised

low-pass

cCNN

cCNN

CNN

WT

WTW

W

Multi-scale wavelet conditional denoiser

How local?
Pixel-domain denoiser

Pixel-domain denoiser Wavelet-domain denoiser

How local?

psnr in = 7

RF = 9x9RF = 23x23RF = 43x43 RF = 9x9RF = 23x23RF = 43x43

Pixel-domain denoiser Wavelet-domain denoiser

Image size: 320x320

Synthesis example
CCN

Iterative algorithm

cCCN WT

Iterative algorithm

Synthesis example
CCN

Iterative algorithm

cCCN WT

cCCN WT

Iterative algorithm

Iterative algorithm

Synthesis example
CCN

Iterative algorithm

cCCN WT

cCCN WT

cCCN WT

Iterative algorithm

Iterative algorithm

Iterative algorithm

Synthesis example

Total number of parameters ~ 1 million

CCN
Iterative algorithm

cCCN WT

cCCN WT

cCCN WT

Iterative algorithm

Iterative algorithm

Iterative algorithm

Synthesis example
CCN

Iterative algorithm

To sum up:

• We can model probability of large images with small networks.

• The global structure is captured by a global prior over a small low-pass
image.

• Details can be modeled using local (Markov) conditional probability
distributions in the wavelet domain.

Thank you!

Kadkhodaie, Guth, Simoncelli, Mallat, “Generalization in diffusion models arises from geometry-
adaptive harmonic representation”. ICLR 2024

Kadkhodaie, Guth, Mallat, & Simoncelli, “Learning multi-scale local conditional probability
models of images.” ICLR 2023

