
Generalization in diffusion models arises from 
geometry-adaptive harmonic representations 

Zahra Kadkhodaie  
September 2024 

Stéphane Mallat Eero Simoncelli Florentin Guth



• Sample from a learned density 
[Song & Ermon 2019; Ho et al 2020]  


• How is this possible, given the 
“Curse of dimensionality” ?!

Diffusion models embed densities

generated by a diffusion model

[Ho et al, 2022]
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1. Can diffusion models generalize?


2. If so, how?

Memorization vs. generalization 
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Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance
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Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance

3

Deep Neural Network 

Minimize

=

mean of the posterior distribution

optimal  
denoiser

⋆

[Tweedie, via Robbins, 1956;

Miyasawa, 1961]

⋆



Diffusion models and denoising 
noisy image 

denoised image ̂
̂

Published as a conference paper at ICLR 2020

Noisy training image,
� = 10 (max level)

Noisy test image,
� = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).
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x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
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denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.
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activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written
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where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
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Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance
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How do diffusion models generalize? 

What are inductive biases of the denoiser? 



Denoising as shrinkage in a basis 

1. Transform the noisy image to a basis where noise and signal are separable 


2. Suppress the noise (shrinkage) 


3. Transform back to pixel domain 

Classical framework for denoising:
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Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance
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Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).
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We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance
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Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance
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Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance
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Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance
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Figure 2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range � 2 [0, 10] (image intensities are in the range [0, 255]).
The CNN performs poorly at high noise levels (� = 90, far beyond the training range), whereas
BF-CNN performs at state-of-the-art levels. The CNN used for this example is DnCNN (Zhang et al.,
2017); using alternative architectures yields similar results (see Section 5).

In the past decade, purely data-driven models based on convolutional neural networks (LeCun et al.,
2015) have come to dominate all previous methods in terms of performance. These models consist of
cascades of convolutional filters, and rectifying nonlinearities, which are capable of representing a
diverse and powerful set of functions. Training such architectures to minimize mean square error
over large databases of noisy natural-image patches achieves current state-of-the-art results (Zhang
et al., 2017; Huang et al., 2017; Ronneberger et al., 2015; Zhang et al., 2018a).

3 NETWORK BIAS IMPAIRS GENERALIZATION

We assume a measurement model in which images are corrupted by additive noise: y = x+n, where
x 2 RN is the original image, containing N pixels, n is an image of i.i.d. samples of Gaussian noise
with variance �2, and y is the noisy observation. The denoising problem consists of finding a function
f : RN ! RN , that provides a good estimate of the original image, x. Commonly, one minimizes
the mean squared error : f = argming E||x � g(y)||2, where the expectation is taken over some
distribution over images, x, as well as over the distribution of noise realizations. In deep learning, the
denoising function g is parameterized by the weights of the network, so the optimization is over these
parameters. If the noise standard deviation, �, is unknown, the expectation must also be taken over a
distribution of �. This problem is often called blind denoising in the literature. In this work, we study
the generalization performance of CNNs across noise levels �, i.e. when they are tested on noise
levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a given
activation pattern of the ReLUs, the effect of the network on the input is a cascade of linear trans-
formations (convolutional or fully connected layers, Wk), additive constants (bk), and pointwise
multiplications by a binary mask corresponding to the fixed activation pattern (R). Since each of
these is affine, the entire cascade implements a single affine transformation. For a fixed noisy input
image y 2 RN with N pixels, the function f : RN ! RN computed by a denoising neural network
may be written

f(y) = WLR(WL�1...R(W1y + b1) + ...bL�1) + bL = Ayy + by, (1)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias.
The subscripts on Ay and by serve as a reminder that both depend on the ReLU activation patterns,
which in turn depend on the input vector y.

Based on equation 1 we can perform a first-order decomposition of the error or residual of the neural
network for a specific input: y�f(y) = (I�Ay)y�by . Figure 1 shows the magnitude of the residual
and the constant, which is equal to the net bias by, for a range of noise levels. Over the training
range, the net bias is small, implying that the linear term is responsible for most of the denoising (see
Figures 9 and 10 for a visualization of both components). However, when the network is evaluated at
noise levels outside of the training range, the norm of the bias increases dramatically, and the residual
is significantly smaller than the noise, suggesting a form of overfitting. Indeed, network performance
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Synthetic images 



Geometric  imagesCα

[Korostelev & Tsybakov, 1993; Donoho, 1999; Peyré & Mallat, 2008]
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GAHBs are optimal for denoising these
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[Korostelev & Tsybakov, 1993]

[Peyré & Mallat, 2008]
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Interim summary 

• Diffusion models can transition from memorization to 
generalization with large enough training set size 


• Generalization is strong: two denoisers trained on non-
overlapping training sets converge to nearly the same function 


• Generalization due to an inductive bias corresponding to 
shrinkage in a Geometry Adaptive Harmonic Basis (GAHB)

Kadkhodaie Z, Guth F, Simoncelli EP, Mallat S. 

“Generalization in diffusion models arises from geometry-adaptive harmonic representation”.ICLR 2024.



• We are in good shape with learning densities


• Can we reduce the size of training set required for generalization? 
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Do bigger images require 
bigger models? 
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<latexit sha1_base64="WFN6MHnHl2Zf6mEavcFKUuDACrM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07KpovZW8CJ4qWA/pF1KNk3b0Gx2SbJiWforvHhQxKs/x5v/xrRdUKsPBh7vzTAzL4gF18bzPp3c0vLK6lp+vbCxubW9U9zda+goUZTVaSQi1QqIZoJLVjfcCNaKFSNhIFgzGF1O/eY9U5pH8taMY+aHZCB5n1NirHTXCYhKHyZd3C2WPLeCT7xKGXmuN8M3wRkpQYZat/jR6UU0CZk0VBCt29iLjZ8SZTgVbFLoJJrFhI7IgLUtlSRk2k9nB0/QkVV6qB8pW9KgmfpzIiWh1uMwsJ0hMUO96E3F/7x2YvoXfsplnBgm6XxRPxHIRGj6PepxxagRY0sIVdzeiuiQKEKNzahgQ8CLL/8ljbKLz1x8c1qqXmdx5OEADuEYMJxDFa6gBnWgEMIjPMOLo5wn59V5m7fmnGxmH37Bef8C9tKQjA==</latexit>
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Wavelet decomposition  
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<latexit sha1_base64="GnkbcEJ8F1Zy6JCOZYM5KS0kjbQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91iMqzWP5YMYJ+hEdSB5yRo2V7p96bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8ADtmNrg==</latexit>x0
<latexit sha1_base64="x2+USxmw+BeTBU9VNZk2kGvVZFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtMu3WzC7kQsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJWDzhOuB/RgRKhYBStdP/U83rlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AEF2Nrw==</latexit>x1

<latexit sha1_base64="WFN6MHnHl2Zf6mEavcFKUuDACrM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07KpovZW8CJ4qWA/pF1KNk3b0Gx2SbJiWforvHhQxKs/x5v/xrRdUKsPBh7vzTAzL4gF18bzPp3c0vLK6lp+vbCxubW9U9zda+goUZTVaSQi1QqIZoJLVjfcCNaKFSNhIFgzGF1O/eY9U5pH8taMY+aHZCB5n1NirHTXCYhKHyZd3C2WPLeCT7xKGXmuN8M3wRkpQYZat/jR6UU0CZk0VBCt29iLjZ8SZTgVbFLoJJrFhI7IgLUtlSRk2k9nB0/QkVV6qB8pW9KgmfpzIiWh1uMwsJ0hMUO96E3F/7x2YvoXfsplnBgm6XxRPxHIRGj6PepxxagRY0sIVdzeiuiQKEKNzahgQ8CLL/8ljbKLz1x8c1qqXmdx5OEADuEYMJxDFa6gBnWgEMIjPMOLo5wn59V5m7fmnGxmH37Bef8C9tKQjA==</latexit>

x̄1

<latexit sha1_base64="6SboXeUEer9ILcPts0RSaLiB9fQ=">AAACDnicbZDLSsNAFIYnXmu9RV26GSyFFqQkIupGKLhxJRXsBZoQJtNJO3QyCTMTaYl9Aje+ihsXirh17c63cdJmoa0/DHz85xzOnN+PGZXKsr6NpeWV1bX1wkZxc2t7Z9fc22/JKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x9eZfX2PRGSRvxOjWPihqjPaUAxUtryzHJcGXlWFV5CmJFdhc6xJsdHIh1NPPsBZqZnlqyaNRVcBDuHEsjV8MwvpxfhJCRcYYak7NpWrNwUCUUxI5Oik0gSIzxEfdLVyFFIpJtOz5nAsnZ6MIiEflzBqft7IkWhlOPQ150hUgM5X8vM/2rdRAUXbkp5nCjC8WxRkDCoIphlA3tUEKzYWAPCguq/QjxAAmGlEyzqEOz5kxehdVKzz2r27WmpfpPHUQCH4AhUgA3OQR1cgwZoAgwewTN4BW/Gk/FivBsfs9YlI585AH9kfP4ALiSZGw==</latexit>

p(x0) = p(x1) p(x̄1|x1)

Factorization of the prior
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<latexit sha1_base64="6SboXeUEer9ILcPts0RSaLiB9fQ=">AAACDnicbZDLSsNAFIYnXmu9RV26GSyFFqQkIupGKLhxJRXsBZoQJtNJO3QyCTMTaYl9Aje+ihsXirh17c63cdJmoa0/DHz85xzOnN+PGZXKsr6NpeWV1bX1wkZxc2t7Z9fc22/JKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x9eZfX2PRGSRvxOjWPihqjPaUAxUtryzHJcGXlWFV5CmJFdhc6xJsdHIh1NPPsBZqZnlqyaNRVcBDuHEsjV8MwvpxfhJCRcYYak7NpWrNwUCUUxI5Oik0gSIzxEfdLVyFFIpJtOz5nAsnZ6MIiEflzBqft7IkWhlOPQ150hUgM5X8vM/2rdRAUXbkp5nCjC8WxRkDCoIphlA3tUEKzYWAPCguq/QjxAAmGlEyzqEOz5kxehdVKzz2r27WmpfpPHUQCH4AhUgA3OQR1cgwZoAgwewTN4BW/Gk/FivBsfs9YlI585AH9kfP4ALiSZGw==</latexit>

p(x0) = p(x1) p(x̄1|x1)

<latexit sha1_base64="GnkbcEJ8F1Zy6JCOZYM5KS0kjbQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91iMqzWP5YMYJ+hEdSB5yRo2V7p96bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8ADtmNrg==</latexit>x0
<latexit sha1_base64="x2+USxmw+BeTBU9VNZk2kGvVZFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtMu3WzC7kQsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJWDzhOuB/RgRKhYBStdP/U83rlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AEF2Nrw==</latexit>x1

Conditional densities are local
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<latexit sha1_base64="zfuGpBMbGEY+o2O3nnkhJ3HJ+AA="></latexit>

p(x0) = p(xJ)
JY

j=1

p(x̄j |xj)

LocalGlobal

<latexit sha1_base64="GnkbcEJ8F1Zy6JCOZYM5KS0kjbQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi+Clov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91iMqzWP5YMYJ+hEdSB5yRo2V7p96bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHp355XabR5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8ADtmNrg==</latexit>x0

Multi-scale wavelet representation   
xJ



cCNN

CNN

Conditional denoiser

with local receptive field

Noisy 

detail channels

Denoised 

detail channels

Clean low-pass

Conditional denoisers



Low pass denoiser

Low-pass denoiser

with global receptive field

cCNN

CNN

Noisy 

low-pass

Denoised 

low-pass



cCNN

cCNN

CNN

WT

WTW

W

Multi-scale wavelet conditional denoiser



How local?
Pixel-domain denoiser



Pixel-domain denoiser Wavelet-domain denoiser

How local?



psnr in = 7

RF = 9x9RF = 23x23RF = 43x43 RF = 9x9RF = 23x23RF = 43x43

Pixel-domain denoiser Wavelet-domain denoiser

Image size: 320x320



Synthesis example
CCN

Iterative algorithm 



cCCN WT

Iterative algorithm 

Synthesis example
CCN

Iterative algorithm 



cCCN WT

cCCN WT

Iterative algorithm 

Iterative algorithm 

Synthesis example
CCN

Iterative algorithm 



cCCN WT

cCCN WT

cCCN WT

Iterative algorithm 

Iterative algorithm 

Iterative algorithm 

Synthesis example

Total number of parameters ~ 1 million 

CCN
Iterative algorithm 



cCCN WT

cCCN WT

cCCN WT

Iterative algorithm 

Iterative algorithm 

Iterative algorithm 

Synthesis example
CCN

Iterative algorithm 



To sum up:

• We can model probability of large images with small networks. 


• The global structure is captured by a global prior over a small low-pass 
image. 


• Details can be modeled using local (Markov) conditional probability 
distributions in the wavelet domain.



Thank you! 

Kadkhodaie, Guth, Simoncelli, Mallat, “Generalization in diffusion models arises from geometry-
adaptive harmonic representation”. ICLR 2024

Kadkhodaie, Guth, Mallat, & Simoncelli, “Learning multi-scale local conditional probability 
models of images.” ICLR 2023


