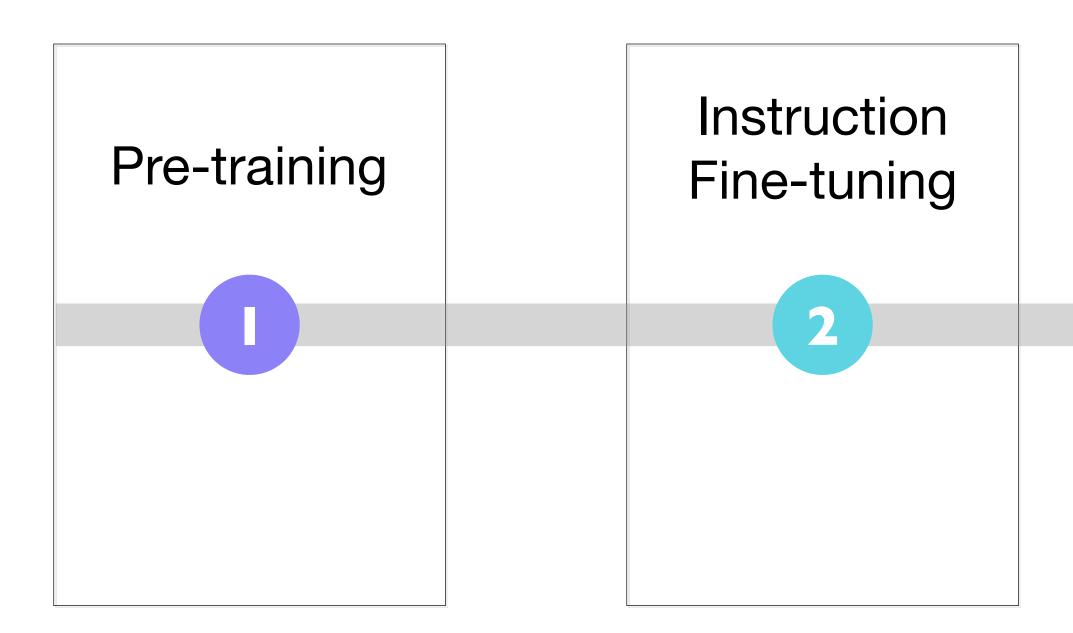


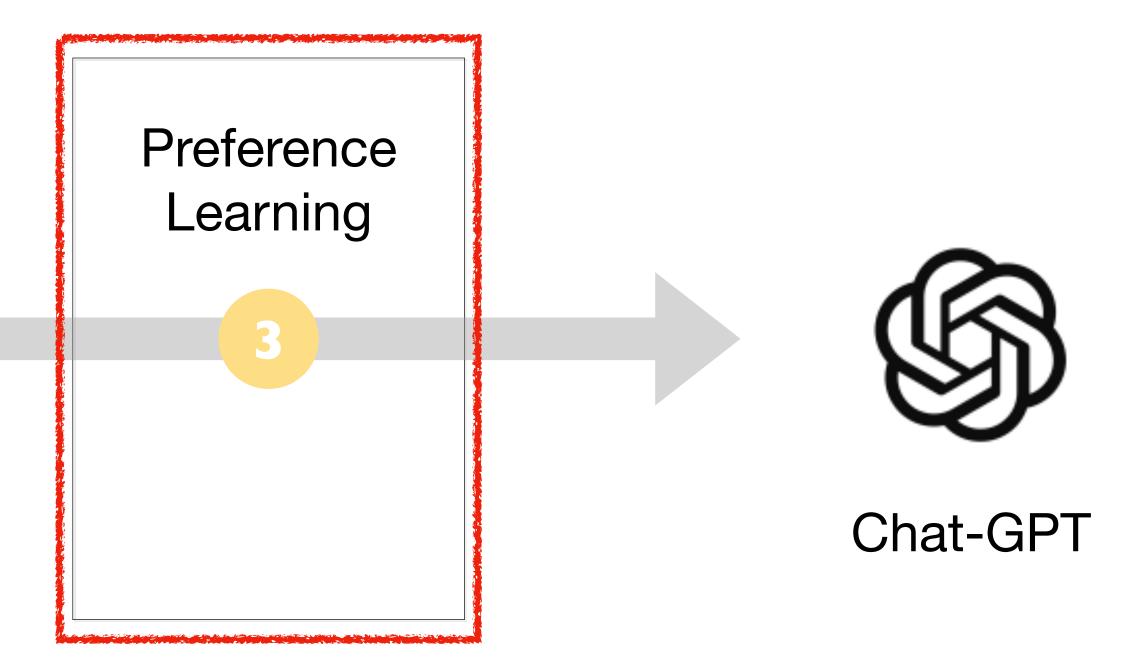
Iterative Preference Learning for Large Language Model Post Training

Wei Xiong

University of Illinois Urbana-Champaign

LLM training pipeline





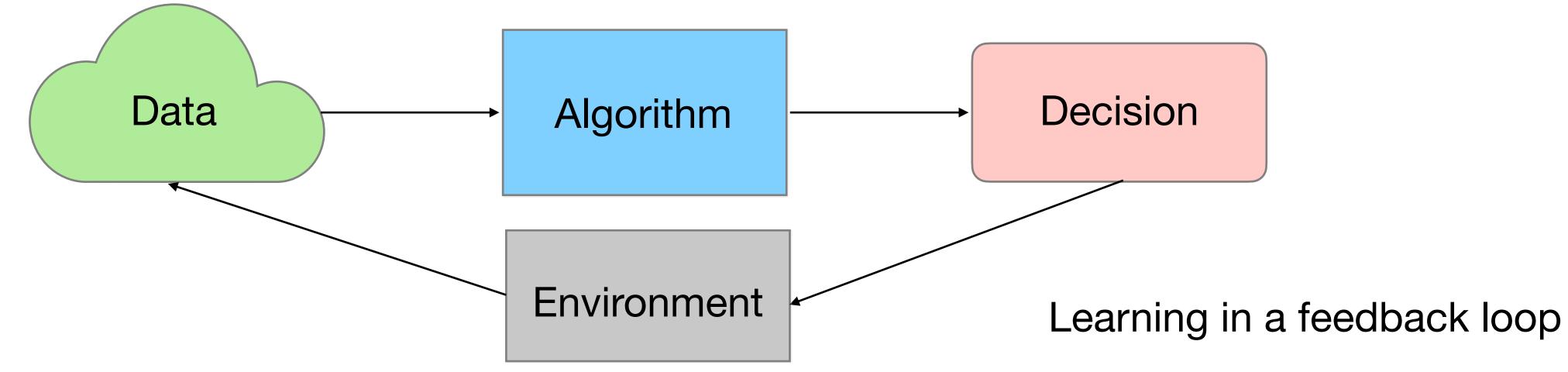
Outline

- Motivation: Preference Learning as Sequential Decision Making \bullet
- Introduction to Reinforcement Learning from Human Feedback (RLHF) \bullet
- Main Results: Online Iterative RLHF Framework \bullet
- Practical and Open-source Codebook: RLHFlow \bullet

Supervised learning vs decision making

- Supervised learning predicts patterns from passively observed data
 - Image classification and speech recognition \bullet

Supervised learning vs decision making

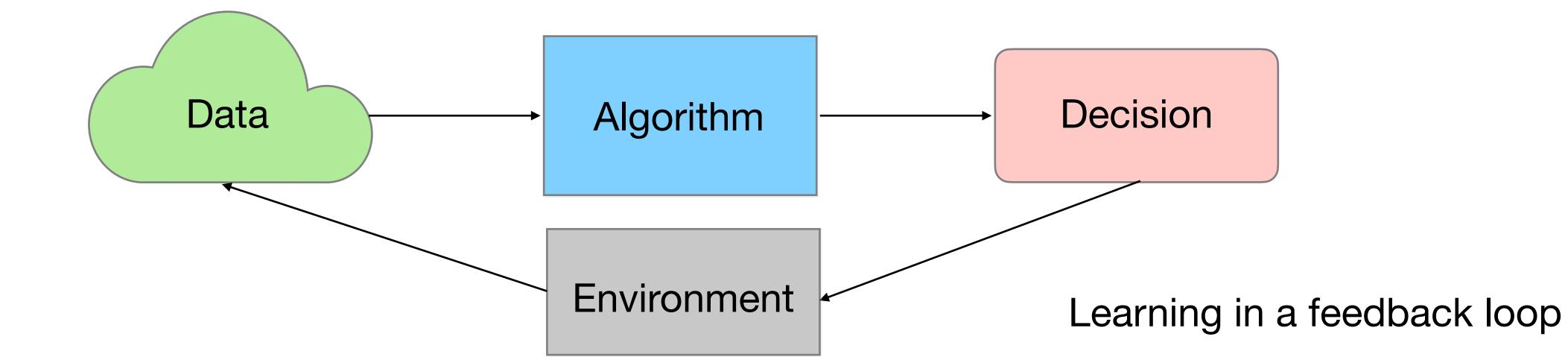


- **Supervised learning** predicts patterns from **passively** observed data
 - Image classification and speech recognition
- - Recommendation system, robotics and game playing

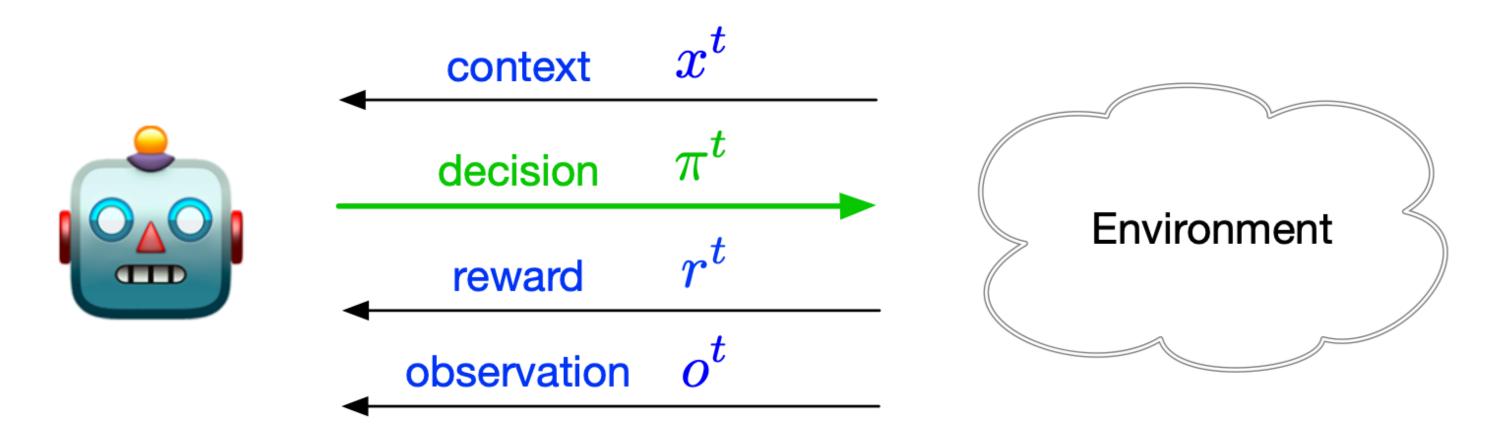
Adapted from tutorial <u>https://dylanfoster.net/slides/bldm.pdf</u>

Decision making actively gathers information by sequential interactions with the environment

Preference learning as decision making



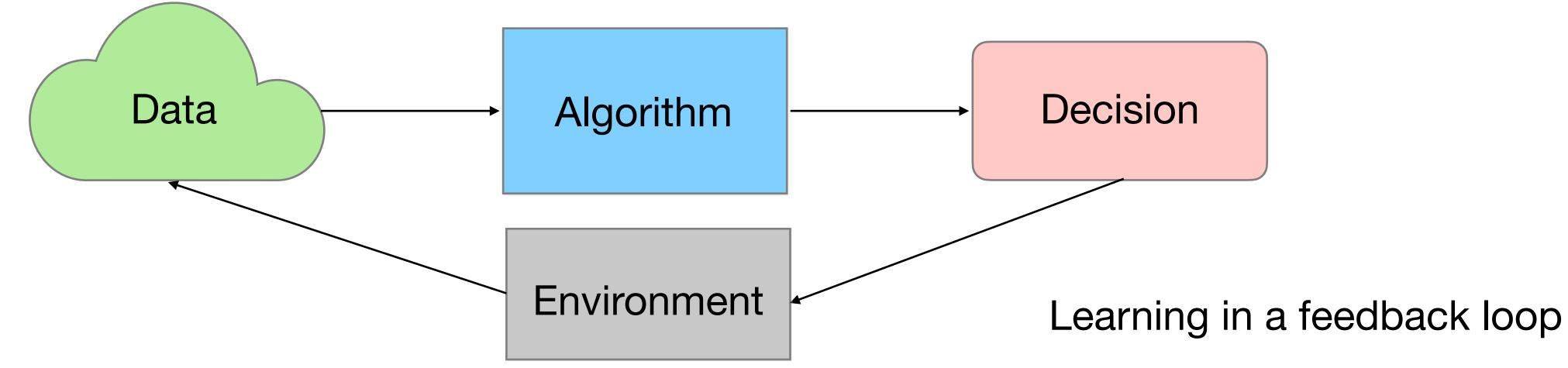
Decision making for T steps



Adapted from tutorial <u>https://dylanfoster.net/slides/bldm.pdf</u>

- **Context**: prompt
- **Decision**: (distribution) of response
- **Reward**: human preference (defined later)
- **Observation**: potential external message

Exploration-exploitation trade-off



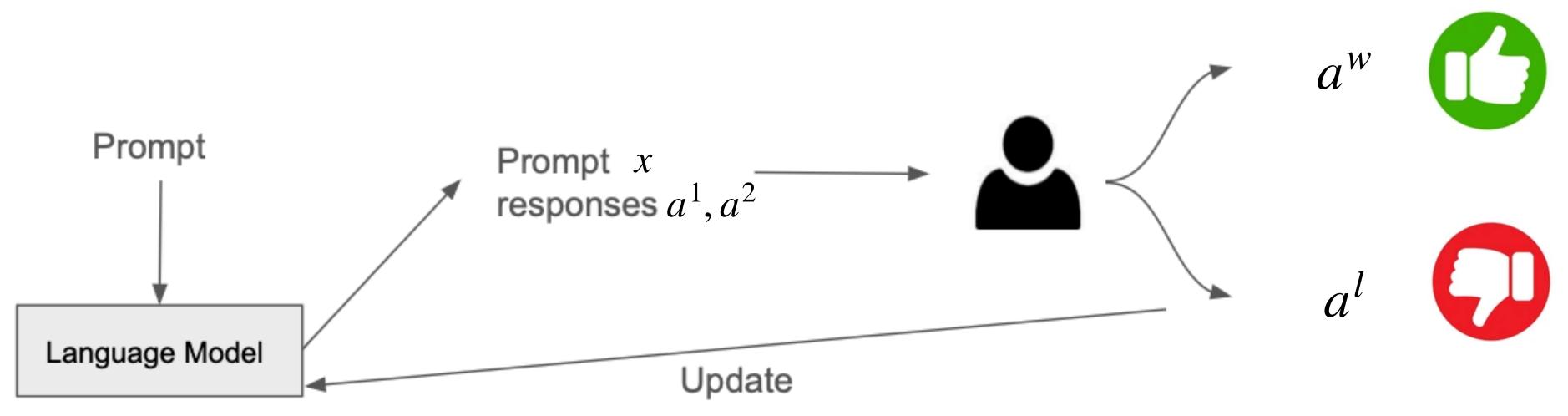
- Trade-off between exploration and exploitation in online sequential decision making:
 - \bullet rewards
 - need to try new decisions to learn the environment

Main research problem: can we design principled preference learning algorithms under this online sequential decision making framework?

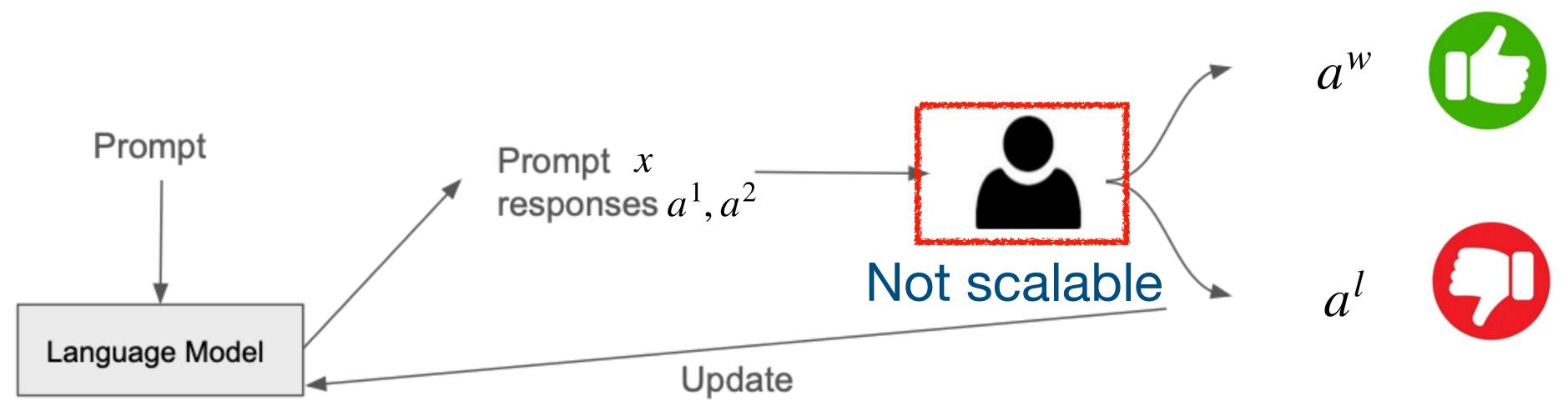
want to focus on good decisions based on the history and avoid bad decisions to maximize

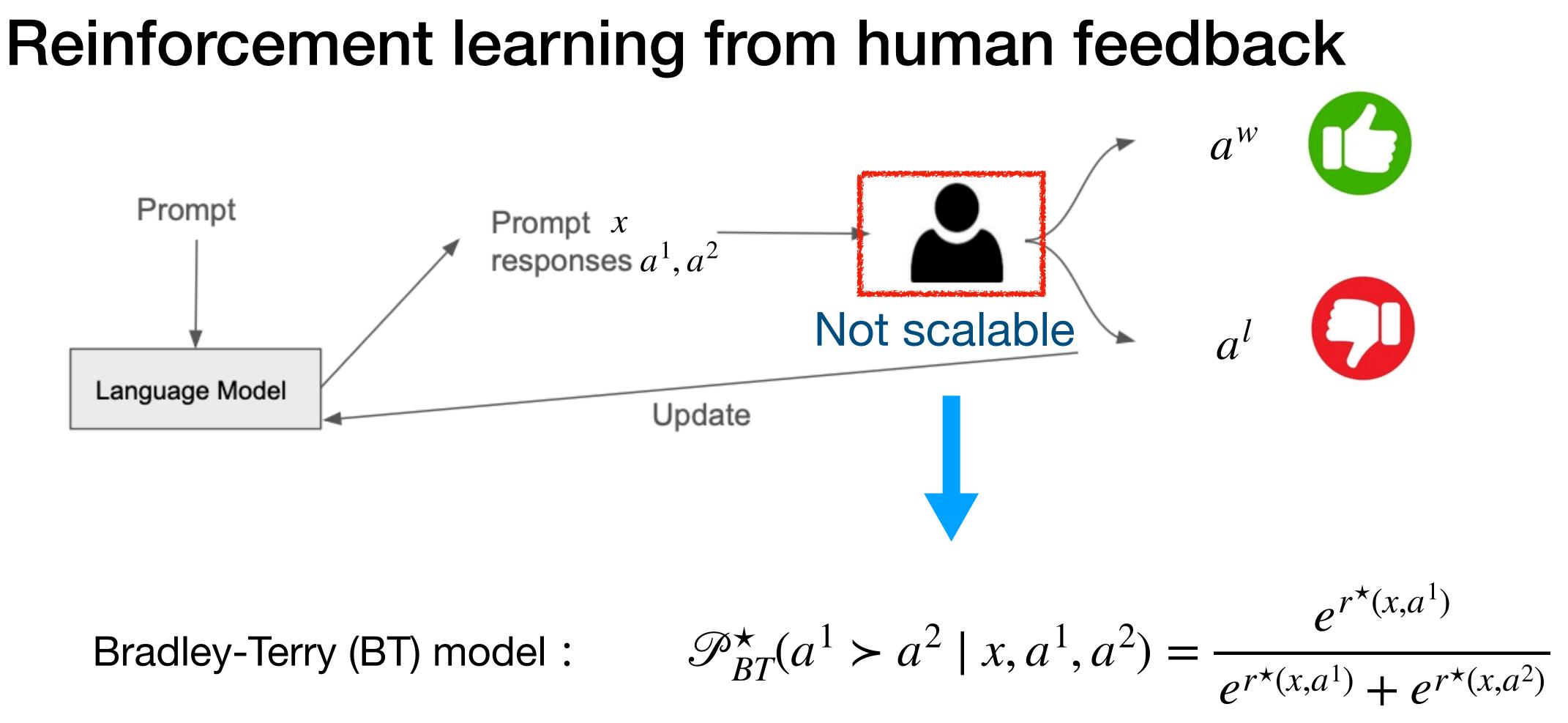
Reinforcement Learning from Human Feedback

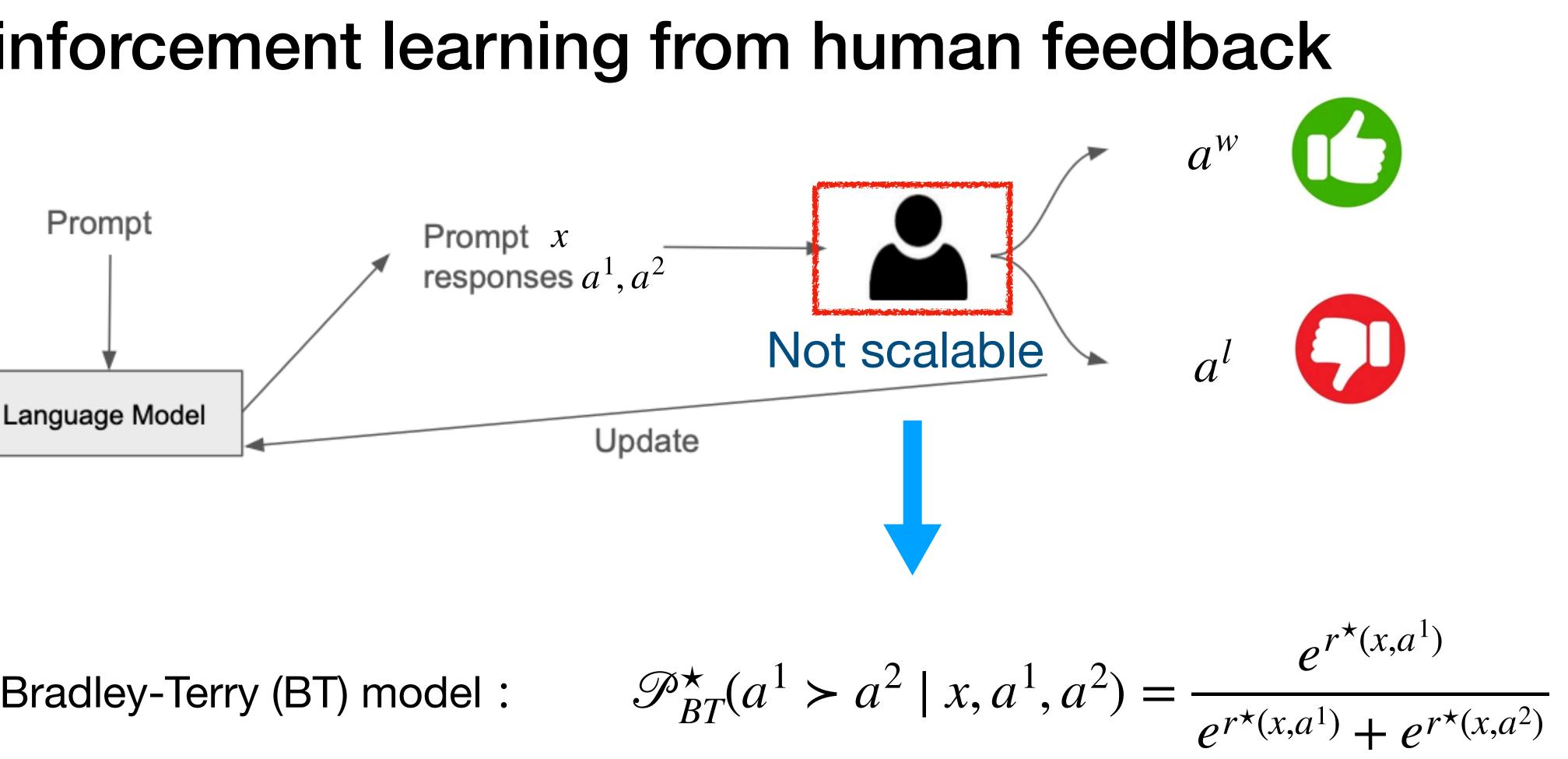
Reinforcement learning from human feedback



Reinforcement learning from human feedback





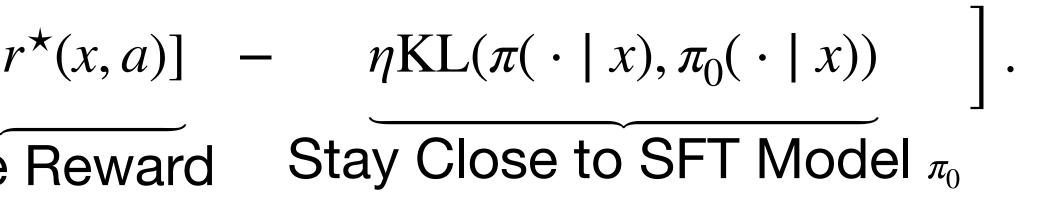


Scalable: we can query the reward as many times as we want

Reinforcement learning from human feedback

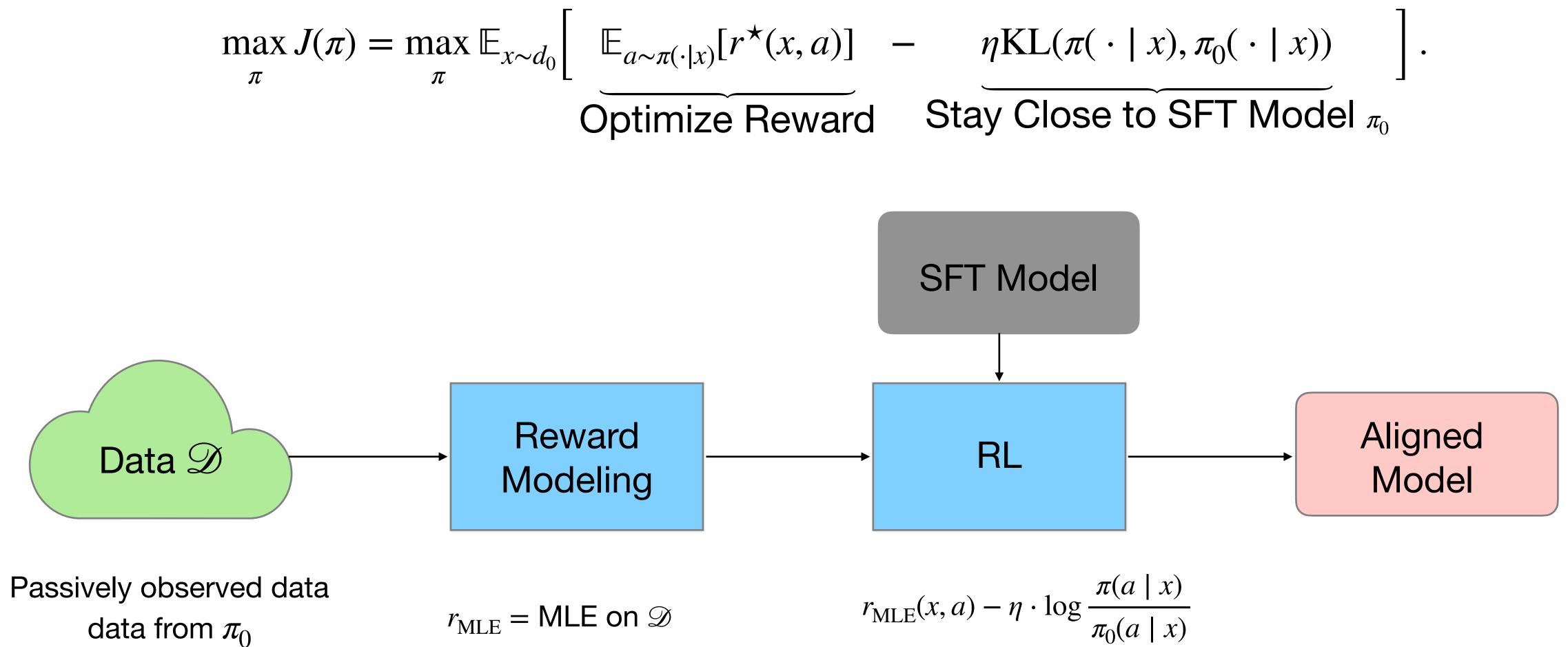
• Learning objective

$$\max_{\pi} J(\pi) = \max_{\pi} \mathbb{E}_{x \sim d_0} \left[\begin{array}{c} \mathbb{E}_{a \sim \pi(\cdot | x)}[r] \\ \widetilde{Optimize} \end{array} \right]$$



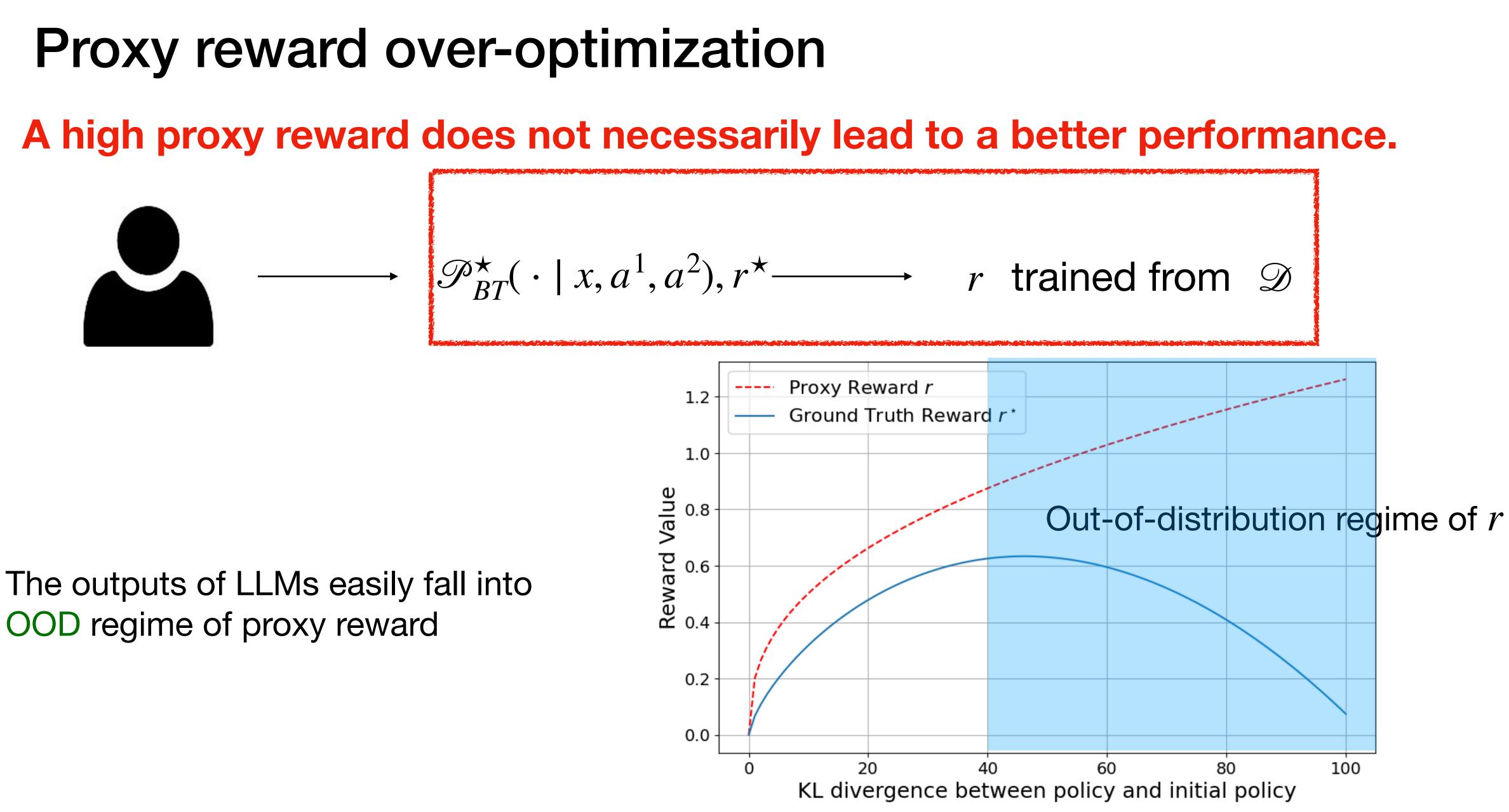
Reinforcement learning from human feedback

Learning objective



Long, Ouyang, et al. Training language models to follow instructions with human feedback. arxiv, 2022.

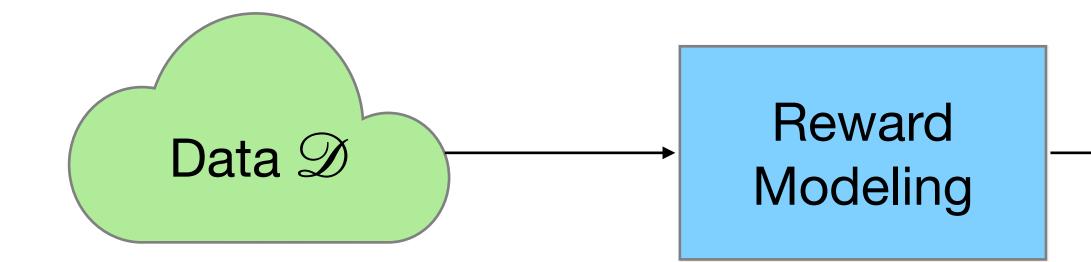
$$r_{\text{MLE}}(x, a) - \eta \cdot \log \frac{\pi(a \mid x)}{\pi_0(a \mid x)}$$



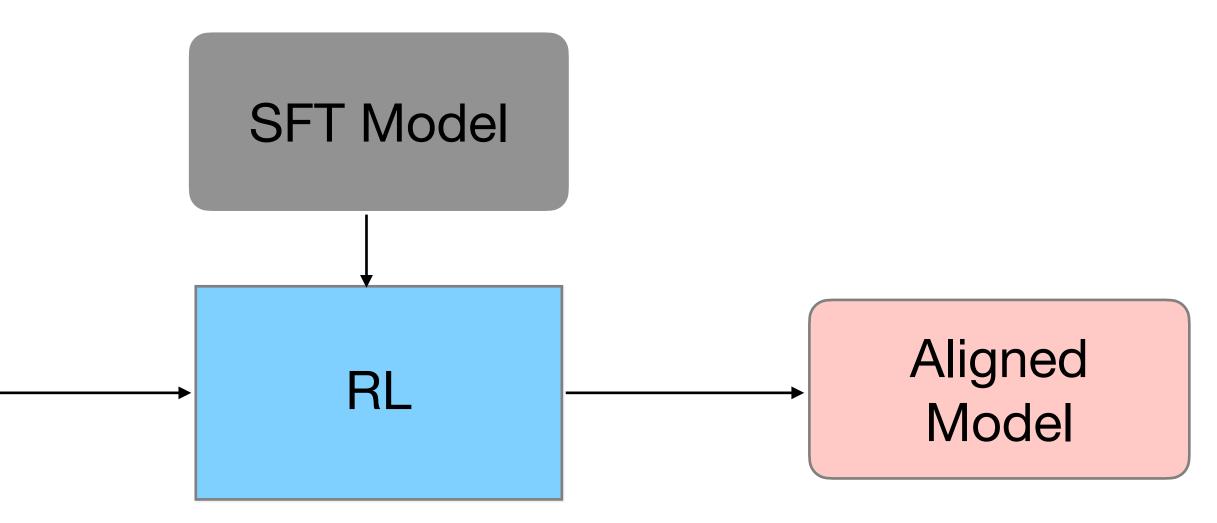
Simplified Figure from Gao, Leo, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. ICML, 2023.

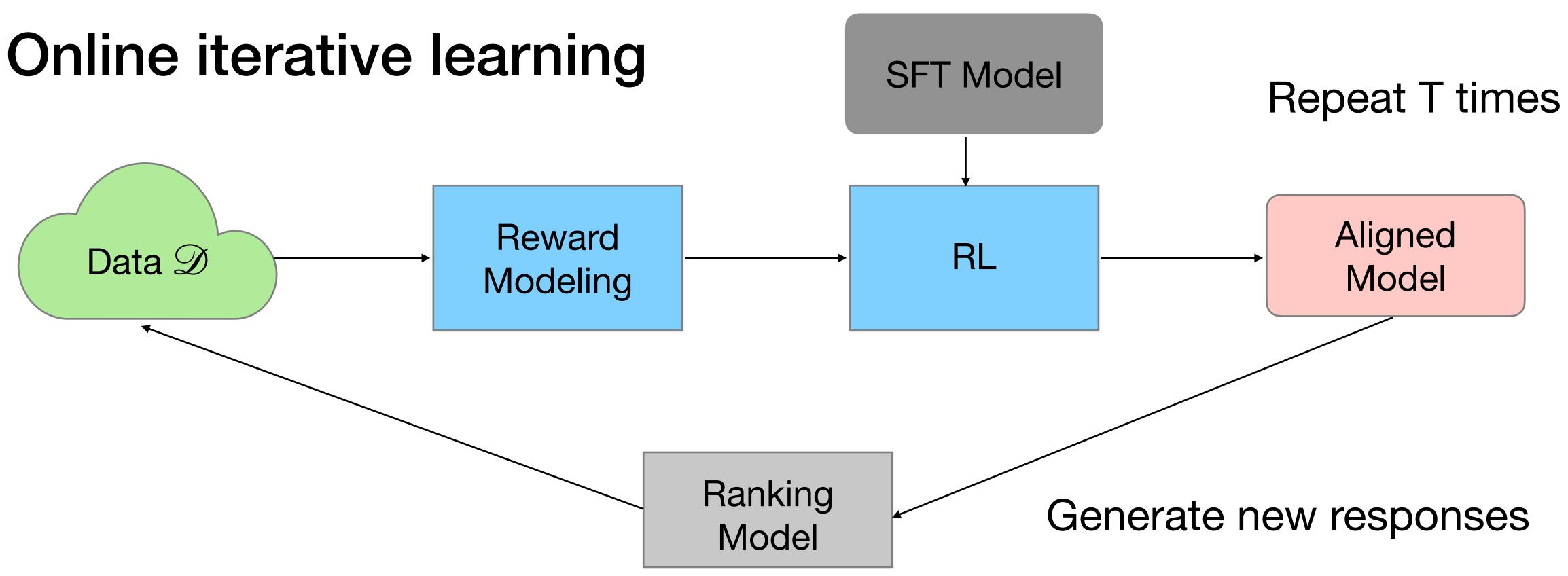
Online Iterative RLHF

Offline learning



Passively observed data data from π_0





Intuition: the new responses and their labels mitigate the OOD issue of proxy reward

Online iterative RLHF with exploration

- For t = 1,2,3... Divide the learning into T batches

$$\pi_t^1 = \max_{\pi} \mathbb{E}_{x \sim d_0} \Big[\mathbb{E}_{a \sim \pi(\cdot|x)} [r_{t,\text{MLE}}(x)] \Big]$$

• The main agent **exploits** the historical information: $\pi_t^1 = \pi_{r_{t,MLE}}$ based on $\mathcal{D}_{1:t-1}$ $[x,a] - \eta \mathrm{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x)) \Big].$

Online iterative RLHF with exploration

- For t = 1,2,3... Divide the learning into T batches
 - The main agent exploits the historical information: $\pi_t^1 = \pi_{r_{t,MLE}}$ based on $\mathscr{D}_{1:t-1}$ $[x,a] - \eta \mathrm{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x)) \Big].$

$$\pi_t^1 = \max_{\pi} \mathbb{E}_{x \sim d_0} \Big[\mathbb{E}_{a \sim \pi(\cdot|x)} [r_{t,\text{MLE}}(x)] \Big]$$

The enhancer explores the environment by maximizing the uncertainty relative to π_t^1

•
$$\pi_t^2 = \arg \max_{\pi' \in \Pi} \Gamma_t(\pi_t^1, \pi')$$

• Collect *m* new samples $x_{t,j}, a_{t,j}^1, a_{t,j}^2, y_{t,j} \sim$

Uncertainty estimator

$$(d_0, \pi_t^1, \pi_t^2, \mathscr{P}_{BT}^{\star})$$
 as \mathscr{D}_t

Uncertainty estimator

Definition: uncertainty estimator in linear case

Suppose that $r = \langle \theta, \phi(x, a) \rangle : \theta, \phi(x, a) \in \mathbb{R}^d$. For any two policies π_t^1, π_t^2 , we define the information gain as

 $\Gamma_t(\pi_t^1, \pi_t^2) = C_{\dagger} \| \mathbb{E}_{\pi_t^1} \phi(x, a_t^1)$

which is the projection of the new feature difference to historical feature covariance matrix.

$$(x, a_t^2) - \mathbb{E}_{\pi_t^2} \phi(x, a_t^2) \|_{\Sigma_t^{-1}}$$

feature differnece

$$\sum_{t} = \lambda C_{\dagger}^{2} I + \sum_{s=1}^{t-1} \mathbb{E}_{x \sim d_{0}, a^{1} \sim \pi_{s}^{1}, a^{2} \sim \pi_{s}^{2}} (\phi(x, a^{1}) - \phi(x, a^{2}))^{\top} (\phi(x, a^{2}) - \phi(x, a^{2}))^{\top} (\phi(x, a^{2}))^{\top}$$

Theoretical result

Theorem: Guarantee for the online iterative preference learning

If we run the online iterative RLHF with batch size $m = O(d/\epsilon^2)$ for $T = \tilde{\Omega}(d)$ times, with probability at least $1 - \delta$, we can find a $t_0 \in [T]$ such that

$$J(\pi^{\star}) - J(\pi_{t_0}^1) + \eta \operatorname{KL}(\pi^{\star}, \pi_{t_0}^1) \leq \epsilon$$

where $J(\pi) = \mathbb{E}_{d_0,\pi}[r^{\star}(x,a) - \eta \text{KL}(\pi,\pi_0)]$.

Theoretical result

Theorem: Guarantee for the online iterative preference learning

If we run the online iterative RLHF with batch size $m = O(d/\epsilon^2)$ for $T = \tilde{\Omega}(d)$ times, with probability at least $1 - \delta$, we can find a $t_0 \in [T]$ such that $J(\pi^{\star}) - J(\pi_{t_0}^1) + \eta \mathrm{KL}(\pi^{\star}, \pi)$

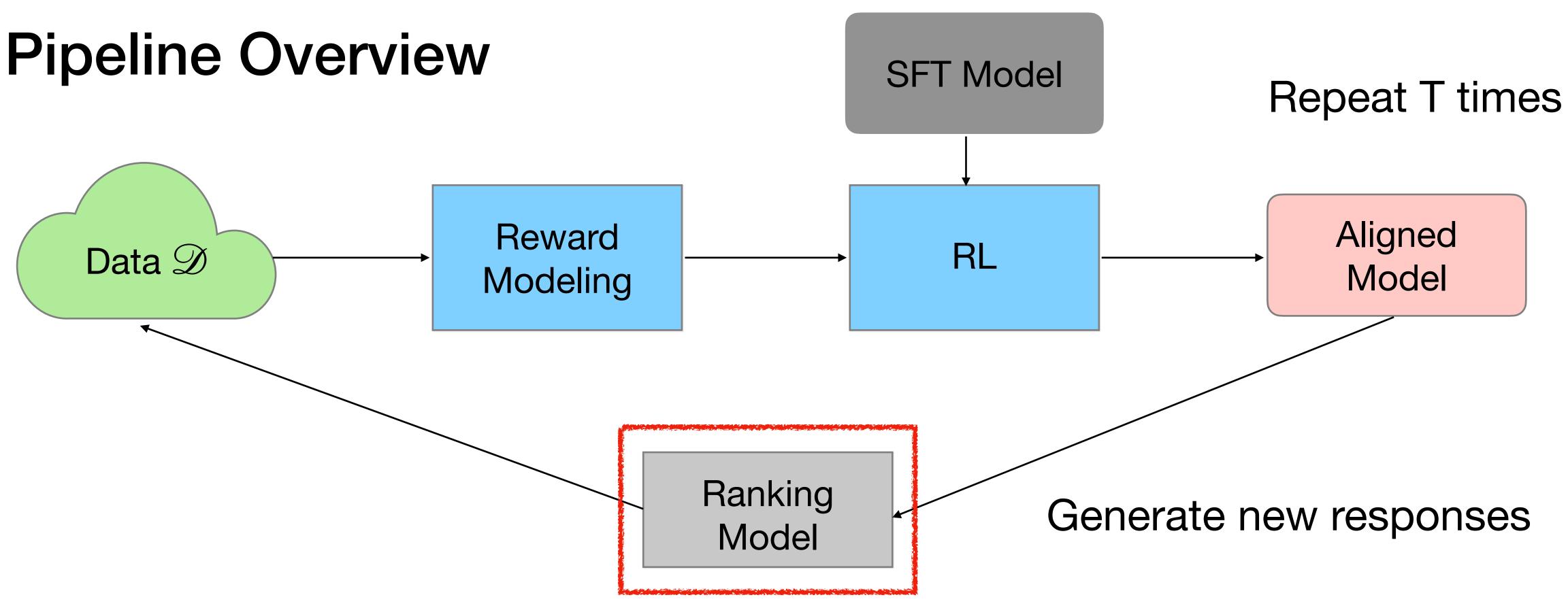
where
$$J(\pi) = \mathbb{E}_{d_0,\pi}[r^{\star}(x,a) - \eta \text{KL}(\pi,\pi_0)]$$
.

- + The algorithm is provably efficient
- Iterative human feedback is expensive to collect for open-source project
- It is not clear how to construct the uncertainty estimator for general neural network

Xiong W, Dong H, Ye C, et al. Iterative preference learning from human feedback: Bridging theory and practice for RLHF under KL-constraint, ICML 2024

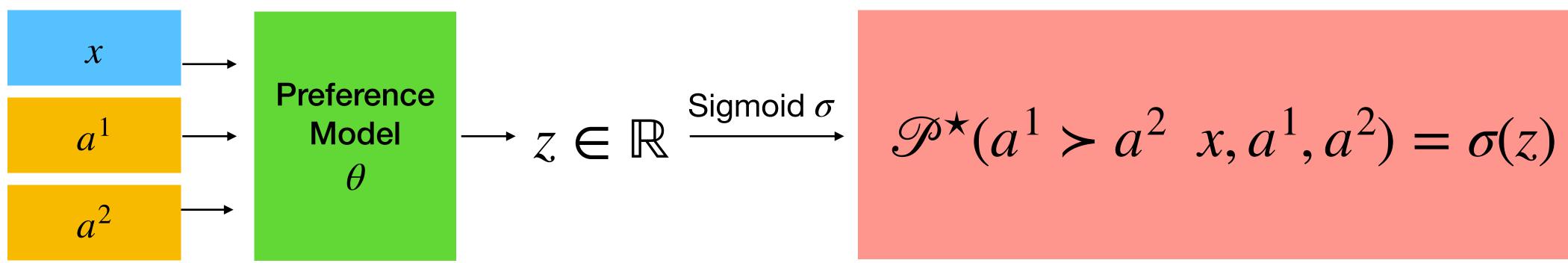
$$\pi^1_{t_0} \le \epsilon$$

RLHFlow: Open-source Online Iterative RLHF



- A mixture of different types of ranking models on open-source data
- Heuristic rule: length penalty, final result checking for MATH/Coding...

Next-token prediction as pairwise preference model



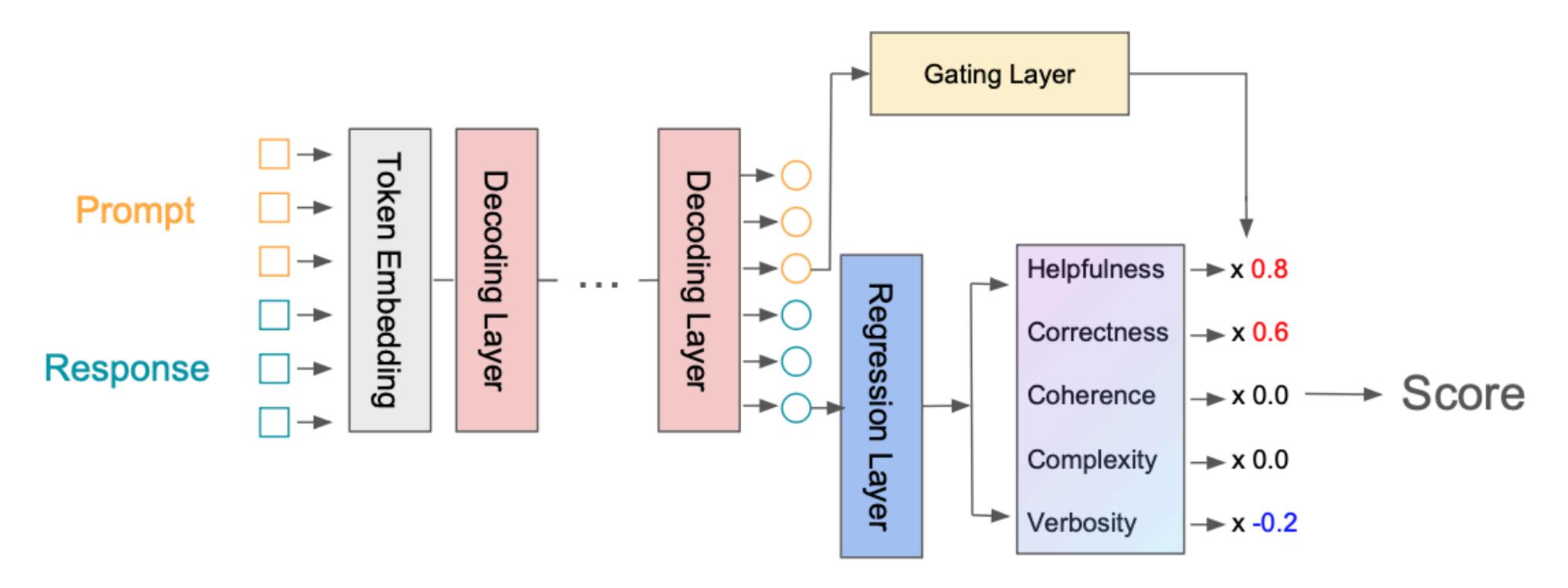
instruction = [CONTEXT] {x} [RESPONSE A] { a^1 } [RESPONSE B] { a^2 }

$$\mathbb{P}(a^1 \succ a^2 \mid x, a^1, a$$

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., & Liu, P. J. (2023). Slic-hf: Sequence likelihood calibration with human feedback. arXiv preprint.

 a^2) = $\mathbb{P}(A \mid \text{instruction})$

Multi-head reward model with MoE aggregation



- Multi-head reward modeling from different criteria \bullet
- MoE aggregation with the coefficient determined by the embedding of the prompt

Wang H*, Xiong W*, et al. Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts. arXiv preprint arXiv:2406.12845, 2024.

Reward modeling: reward benchmark results

	Model	Model Type	Score 🔺	Chat 🔺	Chat Hard 🔺	Safety 🔺	Reasoning
1	nvidia/Nemotron-4-340B-Reward *	Custom Classifier	92.2	95.8	87.1	92.2	93.6
2	RLHFlow/ArmoRM-Llama3-8B-v0.1	Custom Classifier	90.8	96.9	76.8	92.2	97.3
3	Cohere May 2024 *	Custom Classifier	89.5	96.4	71.3	92.7	97.7
4	nvidia/Llama3-70B-SteerLM-RM *	Custom Classifier	89.0	91.3	80.3	93.7	90.6
5	<pre>facebook/Self-taught-Llama-3-70B *</pre>	Generative	88.7	96.9	84.0	91.5	82.5
6	<pre>google/gemini-1.5-pro-0514 *</pre>	Generative	88.1	92.3	80.6	87.5	92.0
7	<pre>google/flame-1.0-24B-july-2024 *</pre>	Generative	88.1	92.2	75.7	90.7	93.8
8	RLHFlow/pair-preference-model-LLaMA3-8B	Custom Classifier	87.1	98.3	65.8	89.7	94.7
9	Cohere March 2024 *	Custom Classifier	87.1	94.7	65.1	90.3	98.2
10	openai/gpt-4o-2024-08-06	Generative	86.7	96.1	76.1	88.1	86.6
11	<u>openai/gpt-4-0125-preview</u>	Generative	85.9	95.3	74.3	87.2	86.9
12	openai/gpt-4-turbo-2024-04-09	Generative	85.1	95.3	75.4	87.1	82.7
13	openai/gpt-4o-2024-05-13	Generative	84.7	96.6	70.4	86.7	84.9

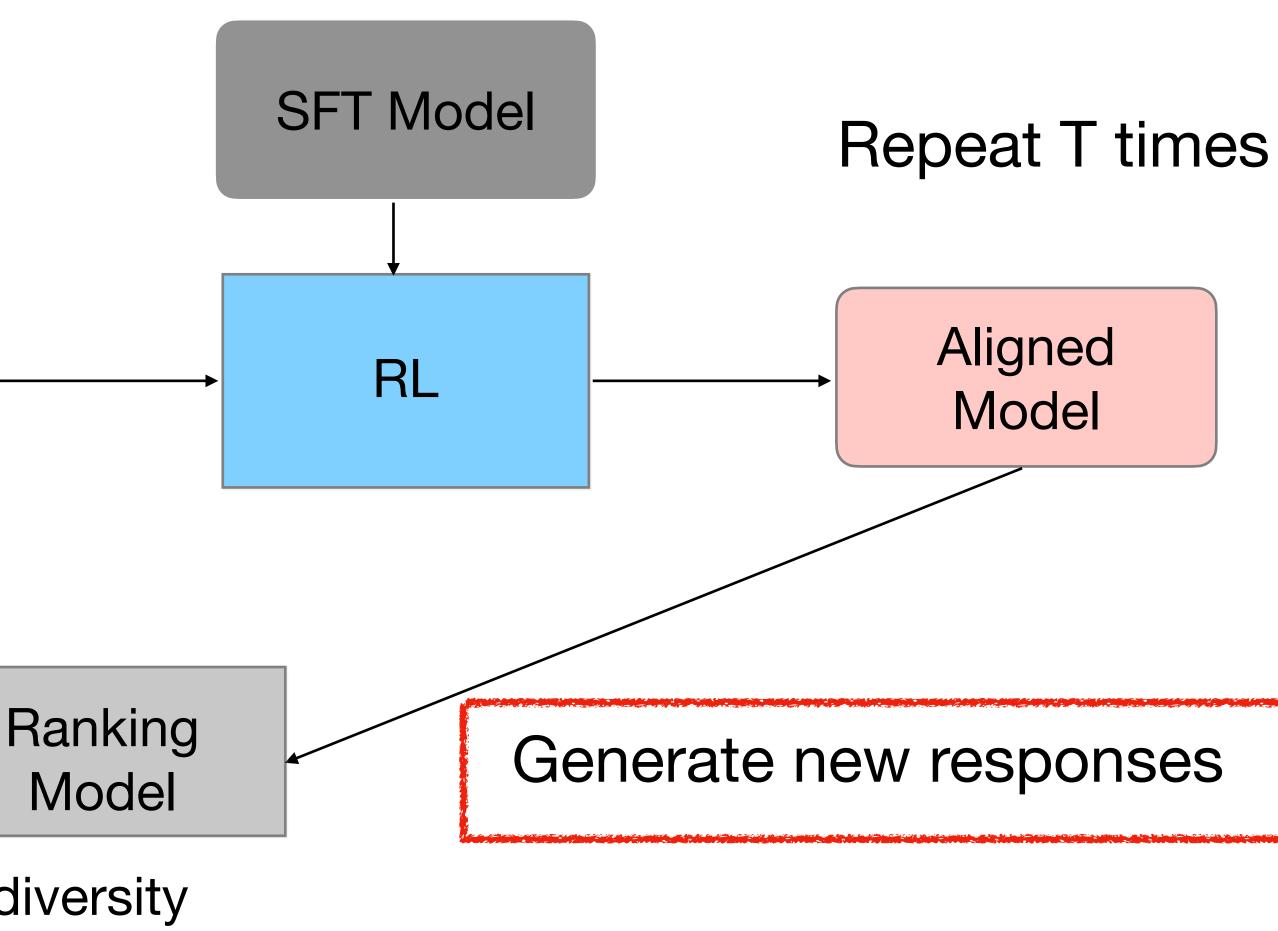
The models serve as the ranking models for 30+ follow-up preference learning research projects.

Lambert, Nathan, et al. "Rewardbench: Evaluating reward models for language modeling." arXiv preprint 2024.

Screenshot from 8.30, 2024.

Response generation Reward Data D Modeling

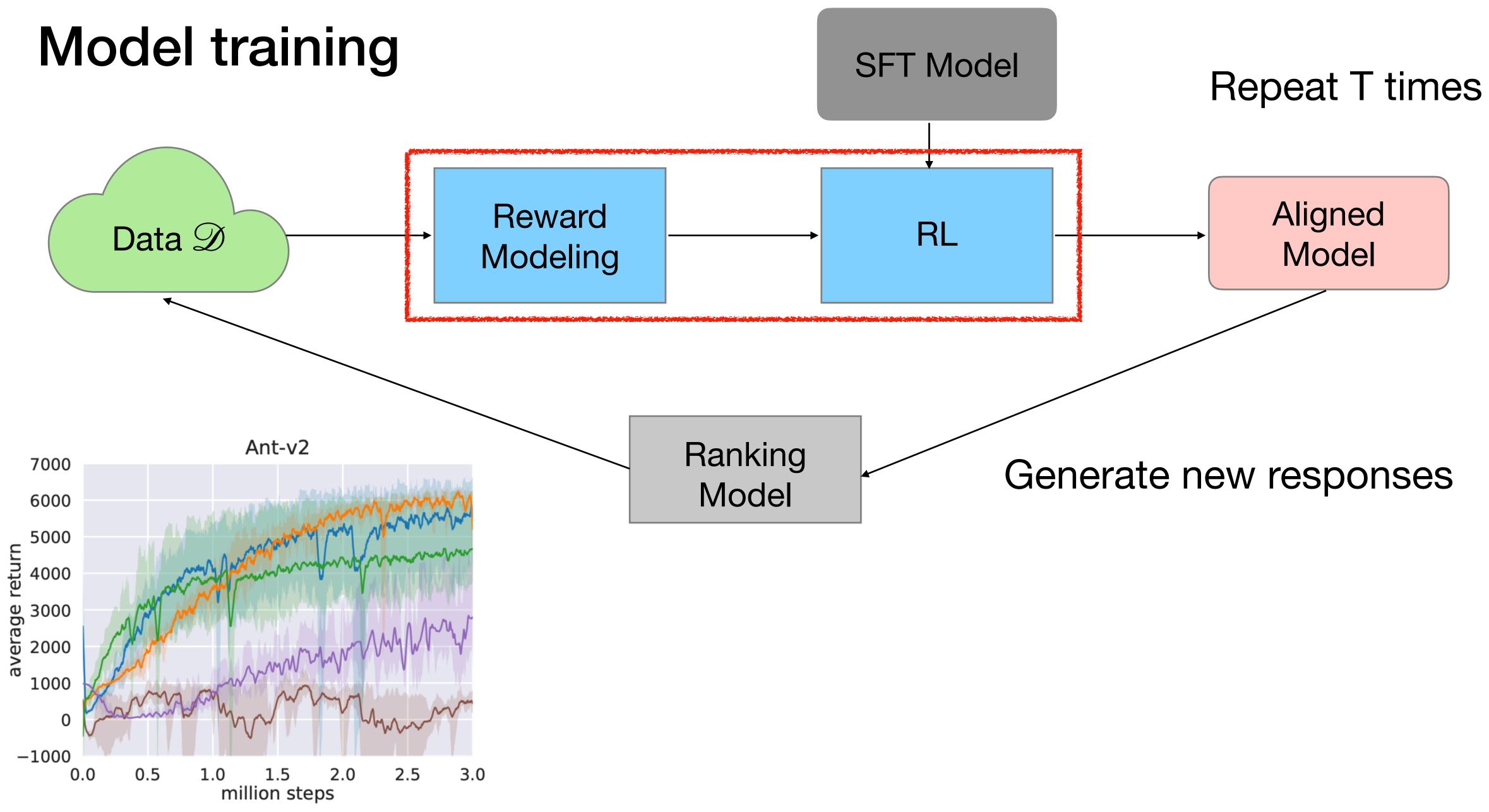
- Heuristic strategies to maximize sample diversity
 - ullet
 - Tuning sampling parameter like the temperature
 - Collect data by different checkpoints ullet



Sample n responses and use the best one and the worst one to construct a pair

$$\Gamma_t(\pi_t^1, \pi_t^2) = C_{\dagger} \| \mathbb{E}_{\pi_t^1} \phi(x, a_t^1) - \mathbb{E}_{\pi_t^2} \phi(x, a_t^2) \|_{\Sigma_t^{-1}}$$

feature differnece



Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., ... & Levine, S. (2018). Soft actor-critic algorithms and applications. arXiv.

Direct preference optimization (DPO)

Gibbs distribution \bullet

$$\pi_{r}(\cdot \mid x) = \max_{\pi} \left[\mathbb{E}_{a \sim \pi(\cdot \mid x)}[r(x, a)] - \eta \operatorname{KL}(\pi(\cdot \mid x), \pi_{0}(\cdot \mid x))] \right] = \frac{1}{Z(x)} \cdot \pi_{0}(\cdot \mid x) \cdot \exp\left(\frac{1}{\eta}r(x, \cdot)\right)$$

arameterize reward by policy:

$$r(x, a) = \eta \log \frac{\pi_{r}(a \mid x)}{\pi_{r}(a \mid x)} + \eta \log Z(x)$$

$$Z(x) = \sum_{a \in \mathcal{A}} \pi_{0}(a \mid x) \cdot \exp\left(\frac{1}{\eta}r(x, \cdot)\right)$$

Re-pa

$$\sum_{x} [r(x,a)] - \eta \operatorname{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x))] = \frac{1}{Z(x)} \cdot \pi_0(\cdot \mid x) \cdot \exp\left(\frac{1}{\eta}r(x, \cdot)\right)$$

y policy:

$$r(x,a) = \eta \log \frac{\pi_r(a \mid x)}{\pi_0(a \mid x)} + \eta \log Z(x)$$

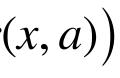
$$Z(x) = \sum_{a \in \mathscr{A}} \pi_0(a \mid x) \cdot \exp\left(\frac{1}{\eta}r(x, \cdot)\right)$$

Implicit reward

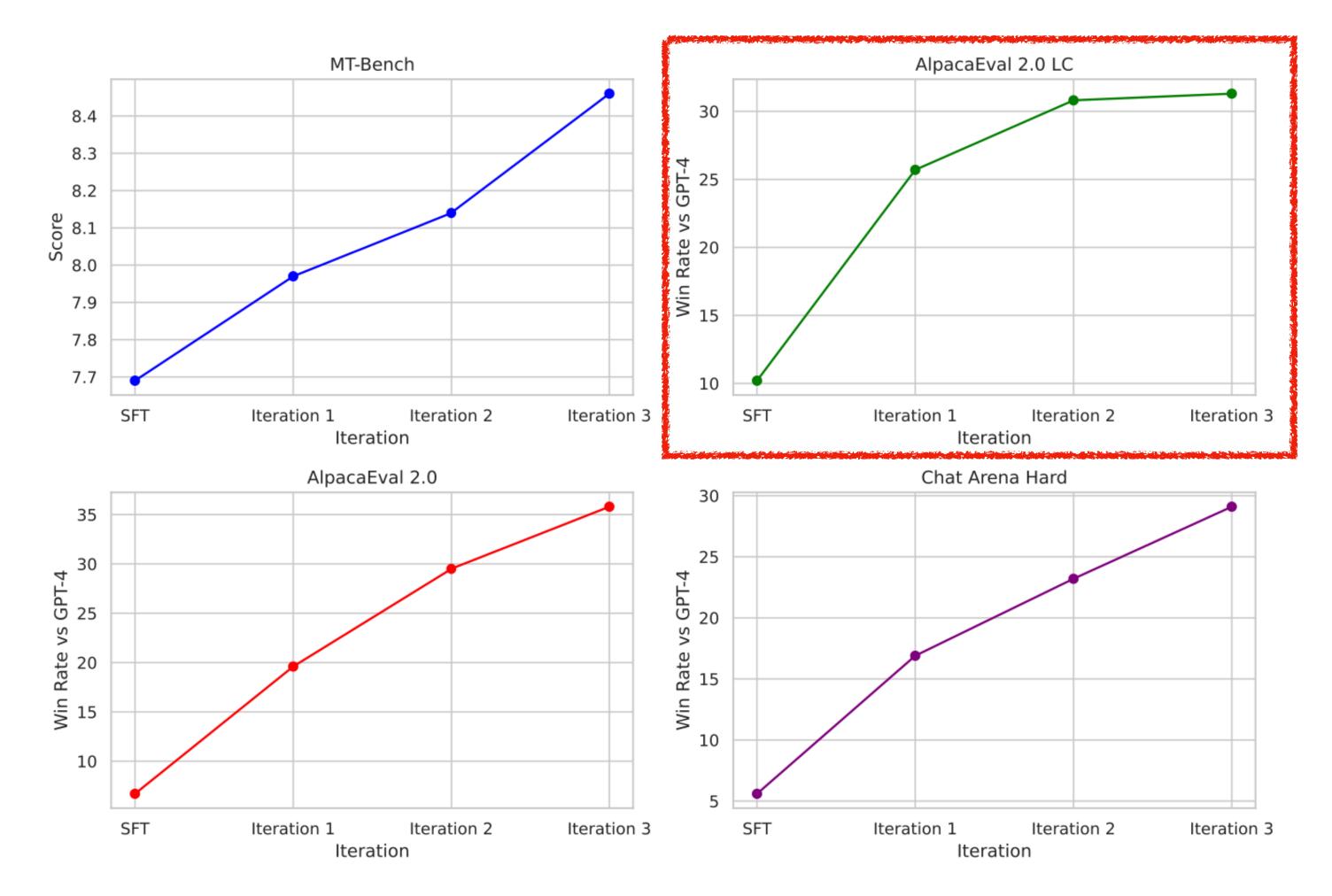
MLE in reward space -> policy optimization: \bullet

$$\mathscr{E}_{\text{reward}}(r_{\theta}) = \sum_{(x,a^{w},a^{l})\in\mathscr{D}} \log\left(\sigma\left(r_{\theta}(x,a^{w}) - r_{\theta}(x,a^{l})\right)\right)$$
$$\mathscr{L}_{\text{DPO}}(\pi_{\theta}) = -\sum_{(x,a^{w},a^{l})\in\mathscr{D}} \log\sigma\left(\eta\left[\log\frac{\pi_{\theta}(a^{w} \mid x)}{\pi_{0}(a^{w} \mid x)} - \log\frac{\pi_{\theta}(a^{l} \mid x)}{\pi_{0}(a^{l} \mid x)}\right]\right).$$

Rafailov, Rafael, et al. Direct preference optimization: Your language model is secretly a reward model. NeurIPS, 2023.



Main result: state-of-the-art chat model

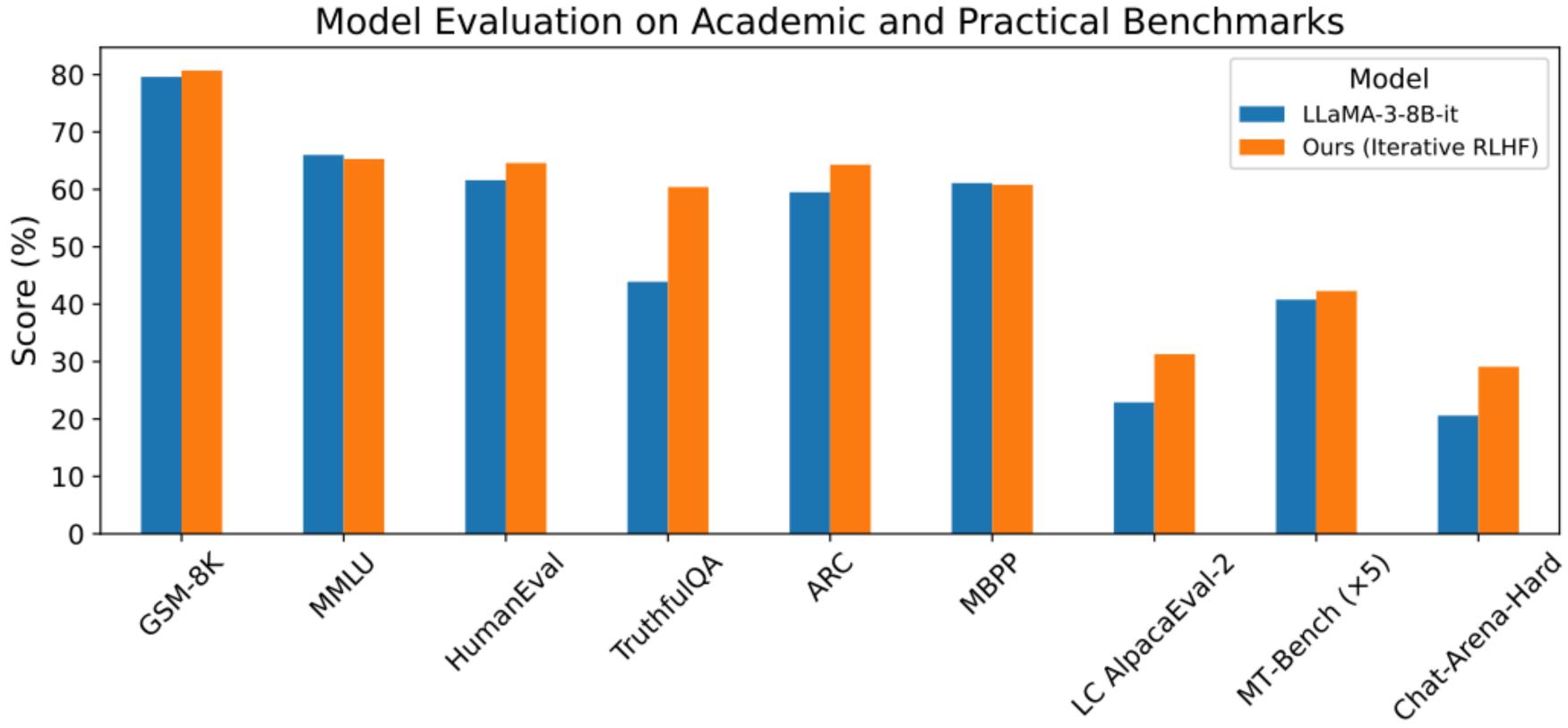


Evaluation results of models at different iterations on instruction-following benchmarks.

 $(\alpha - \beta)$ Dong H, **Xiong W**, Pang B, Wang H, et al. RLHF workflow: From reward modeling to online RLHF, TMLR, 2024.

Base model: LLaMA3-8B-SFT

Main result: state-of-the-art chat model



Evaluation results on standard academic and instruction-following benchmarks.

 $(\alpha - \beta)$ Dong H, **Xiong W**, Pang B, Wang H, et al. RLHF workflow: From reward modeling to online RLHF, TMLR, 2024.

Multi-turn tool-integrated reasoning

Prompt: **User:** Let

$$f(x) = \begin{cases} ax + 3, & \text{if } x > \\ x - 5 & \text{if } -2 \\ 2x - b & \text{if } x < \end{cases}$$

Find a + b if the piecewise function is continuous (which means that its graph can be drawn without lifting your pencil from the paper) $(s_1 = x)$

Assistant: The function must be continuous at 2 and -2. That means x - 5 = ax + 3 at x = 2and x - 5 = 2x - b at x = -2. Let's now solve for x in each case.

- > 2, $2 \leq x \leq 2$, < -2.

Multi-turn tool-integrated reasoning

Prompt: **User:** Let

$$f(x) = \begin{cases} ax + 3, & \text{if } x > \\ x - 5 & \text{if } - 2 \\ 2x - b & \text{if } x < \end{cases}$$

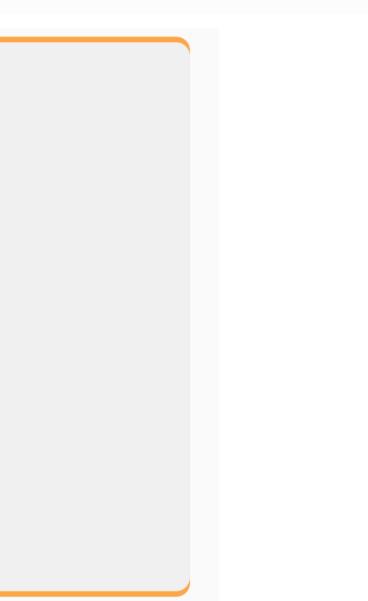
Find a + b if the piecewise function is continuous (which means that its graph can be drawn without lifting your pencil from the paper) $(s_1 = x)$

Assistant: The function must be continuous at 2 and -2. That means x - 5 = ax + 3 at x = 2and x - 5 = 2x - b at x = -2. Let's now solve for x in each case.

```
1 from sympy import symbols, Eq, solve
2 ## define the variables
3 x, a, b = symbols('x a b')
6 ## the function must be continuous at 2
_{7} eq1 = Eq(x-5, a*x + 3)
8 eq1_sol = solve(eq1, x)
10 ## the function must be continuous at -2
11 eq2 = Eq(x-5, 2*x - b)
12 eq2_sol = solve(eq2, x)
13
14 ## print the solutions
15 print(eq1_sol)
16 print(eq2_sol)
```

(*a*₁)

- > 2, $2\leq x\leq 2,$ < -2.



Multi-turn tool-integrated reasoning

Prompt: **User:** Let

$$f(x) = \begin{cases} ax + 3, & \text{if } x > 2, \\ x - 5 & \text{if } -2 \le x \le 2, \\ 2x - b & \text{if } x < -2. \end{cases}$$

Find a + b if the piecewise function is continuous (which means that its graph can be drawn without lifting your pencil from the paper) $(s_1 = x)$

Assistant: The function must be continuous at 2 and -2. That means x - 5 = ax + 3 at x = 2and x - 5 = 2x - b at x = -2. Let's now solve for x in each case.

```
1 from sympy import symbols, Eq, solve
2 ## define the variables
3 x, a, b = symbols('x a b')
6 ## the function must be continuous at 2
_{7} eq1 = Eq(x-5, a*x + 3)
8 eq1_sol = solve(eq1, x)
10 ## the function must be continuous at -2
11 eq2 = Eq(x-5, 2*x - b)
12 eq2_sol = solve(eq2, x)
13
14 ## print the solutions
15 print(eq1_sol)
16 print(eq2_sol)
```

 (a_1)

$$s_h = (x, a_1, o_1, a_2, o_2, \cdots, a_{h-1}, o_{h-1})$$

User: "output [-8/(a - 1)] [b - 5]" (o_1)

Preference learning for multi-turn reasoning task

Trajectory preference

$$\mathcal{P}_{BT}^{\star}(y^1 \succ y^2 \mid x, y^1,$$

Learning objective

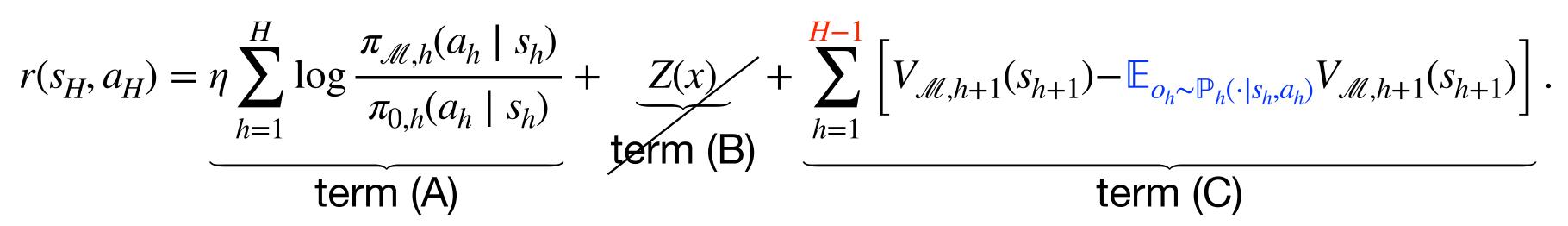
 $\arg\max_{\pi} J(\pi; \mathscr{M}^{\star}, \pi_0) = \mathbb{E}_{x \sim d_0} \mathbb{E}_{a_h \sim \pi_h(\cdot|s_h), o_h \sim \mathbb{P}_h(\cdot|s_h)}$

Trajectory: x-prompt, a-action, o-external observation, s_h : history at the beginning of step h $\tau = (x, a_1, o_1, \cdots, o_{H-1}, a_H).$ y y $, y^{2}) = \frac{e^{r^{\star}(x, y^{1})}}{\rho^{r^{\star}(x, y^{1})} \perp \rho^{r^{\star}(x, y^{2})}}$

$$_{,a_h}\left[r^{\star}(x,y)-\eta\sum_{h=1}^{H}\mathrm{KL}\left(\pi_h(\cdot\mid s_h),\pi_{0,h}(\cdot\mid s_h)\right)\right].$$

Multi-turn direct preference learning

Re-parameterization trick to connect the **model** with the **policy**



- Term (C) is not zero except for
 - H = 1: original DPO
 - o_h is deterministic given the history

Implementation: run DPO but mask out the external messages.

Xiong W, Shi C, Shen J, et al. Building Math Agents with Multi–Turn Iterative Preference Learning, arXiv, 2024.

term (C)

 $V_{\mathcal{M},h}$: optimal V value function under $\mathcal{M} = (r, \mathbb{P})$

Main result: improving reasoning ability

Base Model	Method	with Tool	GSM8K	MATH	AVG
Gemma-1.1-it-7B	\mathbf{SFT}^{\dagger}	 Image: A set of the set of the	77.5	46.1	61.8
Gemma-1.1-it-7B	RAFT	 Image: A second s	79.2	47.3	63.3
Gemma-1.1-it-7B	Iterative Single-turn DPO	 Image: A set of the set of the	81.7	48.9	65.3
Gemma-1.1-it-7B	Iterative M-DPO + fixed reference	 Image: A second s	79.9	48.0	64.0
Gemma-1.1-it-7B	M-DPO Iteration 1	 Image: A set of the set of the	81.5	49.1	65.3
Gemma-1.1-it-7B	M-DPO Iteration 2	 Image: A set of the set of the	82.5	49.7	66.1
Gemma-1.1-it-7B	M-DPO Iteration 3	 Image: A second s	$83.9 \uparrow 6.4$	51.2 $\uparrow 5.1$	67.6
CodeGemma-1.1-it-7B	\mathbf{SFT}^{\dagger}	 Image: A set of the set of the	77.3	46.4	61.9
CodeGemma-1.1-it-7B	RAFT	 Image: A set of the set of the	78.8	48.4	63.6
CodeGemma-1.1-it-7B	Iterative Single-turn DPO	 Image: A set of the set of the	79.1	48.9	64.0
CodeGemma-1.1-it-7B	Iterative M-DPO	 Image: A set of the set of the	$81.5 \uparrow 4.2$	$50.1 \uparrow 3.7$	65.8
Mistral-7B-v0.3	\mathbf{SFT}^{\dagger}	 Image: A set of the set of the	77.8	42.7	60.3
Mistral-7B-v0.3	RAFT	 Image: A second s	79.8	43.7	61.8
Mistral-7B-v0.3	Iterative Single-turn DPO	 Image: A second s	79.8	45.1	62.5
Mistral-7B-v0.3	Iterative M-DPO	 Image: A second s	82.3 $\uparrow 4.5$	$47.5 \uparrow 4.8$	64.9
Gemma-2-it-9B	\mathbf{SFT}^{\dagger}	 Image: A second s	84.1	51.0	67.6
Gemma-2-it-9B	RAFT	 Image: A second s	84.2	52.6	68.4
Gemma-2-it-9B	Iterative Single-turn DPO	 Image: A second s	85.2	53.1	69.2
Gemma-2-it-9B	Iterative Single-turn KTO	 Image: A second s	85.4	52.9	69.2
Gemma-2-it-9B	Iterative M-DPO	 Image: A second s	86.3 ↑2.2	54.5 ↑3.5	70.4

Xiong W, Shi C, Shen J, et al. Building Math Agents with Multi-Turn Iterative Preference Learning, arXiv, 2024.

Prompt: training set MATH and GSM8K Reward: binary reward by checking the answer

A practical and open-source codebook

RM-Bradley-Terry We train the reward model as the maximum likelihood estimat...

sfairXC/FsfairX-LLaMA3-RM-v0.1 📲 Text Classification • Updated Apr 24 • 🕁 17k • 🎔 42

hendrydong/preference_700K \blacksquare Viewer • Updated Apr 17 • \blacksquare 700k • \pm 3.34k • \heartsuit 2

weqweasdas/RM-Mistral-7B 📲 Text Classification • Updated Mar 31 • 🕁 4.74k • 🎔 20

weqweasdas/preference_dataset_mixture2_an...

Online RLHF > Datasets, code, and models for online RLHF (i.e., iterative DPO)

RLHFlow/prompt-collection-v0.1 \blacksquare Viewer • Updated May 7 • \blacksquare 179k • \pm 26 • \heartsuit 6

 RLHFlow/pair-preference-model-LLaMA3-8B ☞ Text Generation • Updated May 24 • ± 8.19k • ♥ 32

sfairXC/FsfairX-LLaMA3-RM-v0.1 📲 Text Classification 🔹 Updated Apr 24 🔹 🕁 17k 🔹 🎔 42

RLHFlow/llama-sft private

>

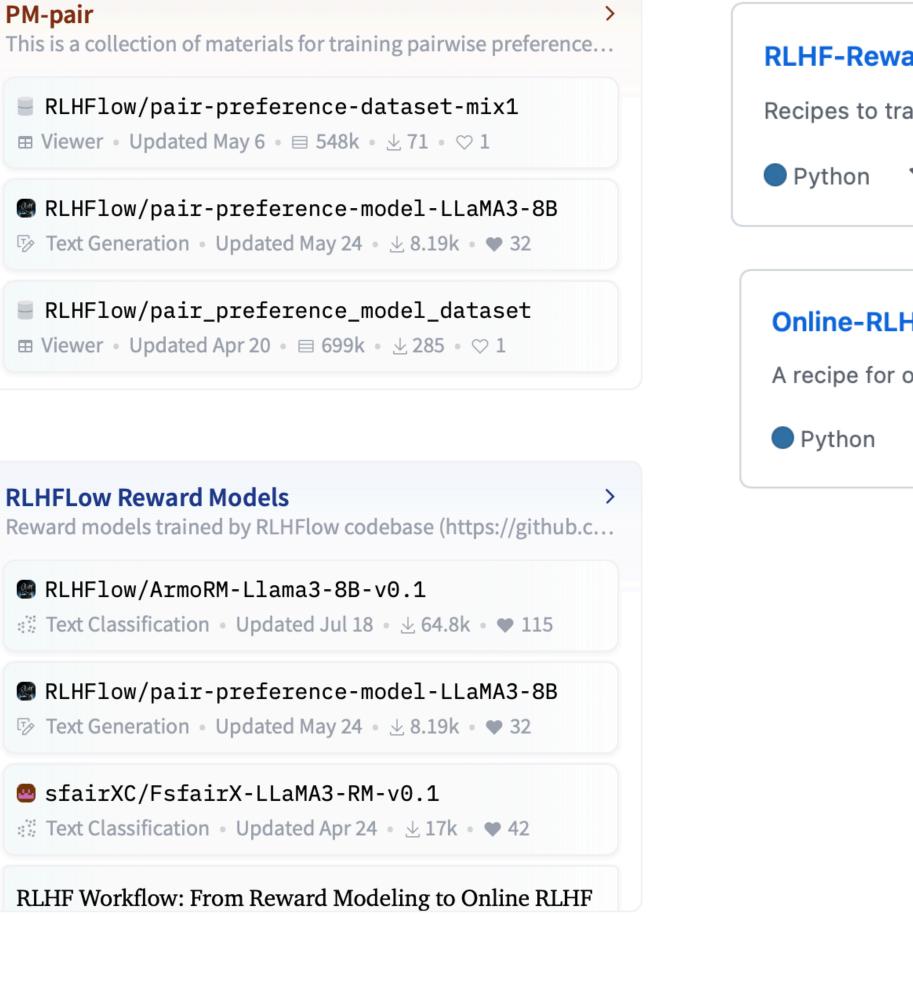
RLHFlow/pair-preferent Wiewer • Updated May 6 • Image: State
RLHFlow/pair-preferent Text Generation • Updated Ma
<pre>RLHFlow/pair_preferen I Viewer • Updated Apr 20 • I</pre>

RLHFLow Reward Models @ RLHFlow/ArmoRM-Llama3-8B-v0.1 📲 Text Classification 🔹 Updated Jul 18 🔹 🕁 64.8k 🔹 🎔 115

☞ Text Generation • Updated May 24 • ± 8.19k • ♥ 32

sfairXC/FsfairX-LLaMA3-RM-v0.1 🚓 Text Classification • Updated Apr 24 • 🕁 17k • 🎔 42

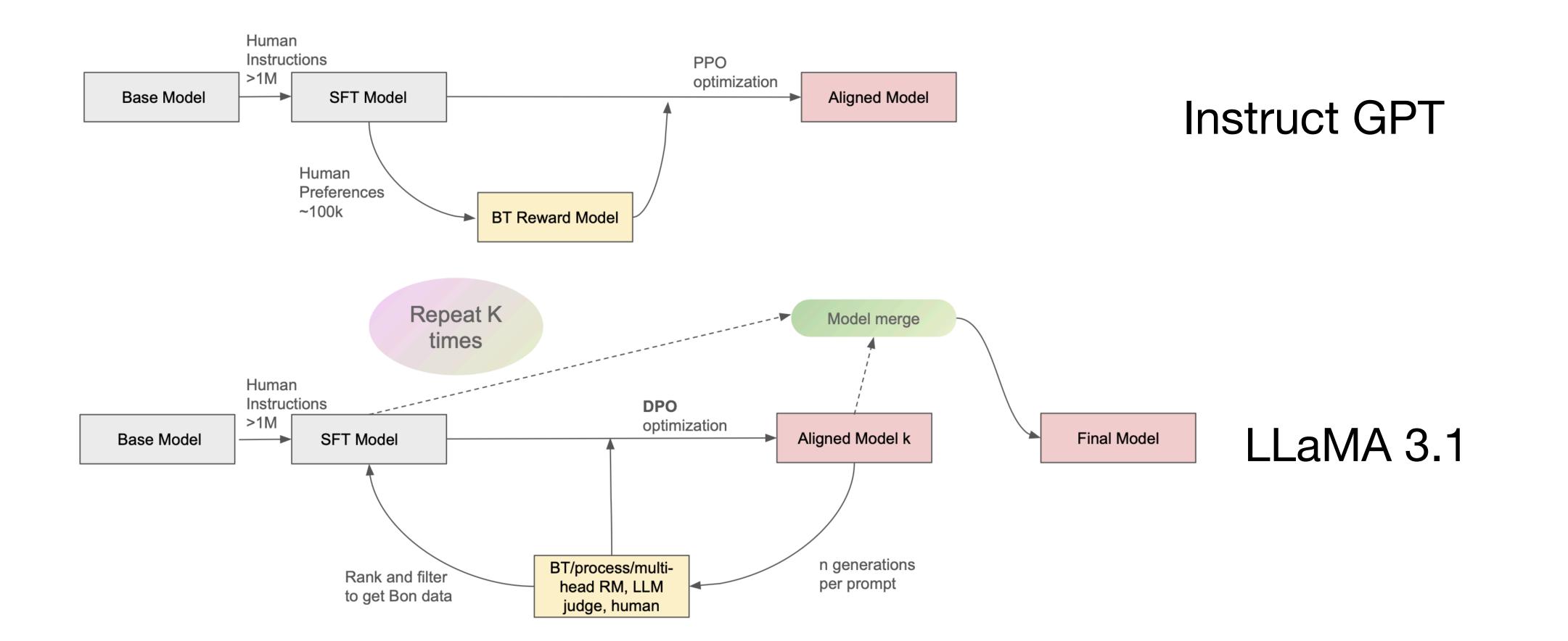
RLHFlow, Github.



eward-Modeling							
train reward model for RLHF.							
n 🏠 629 😵 54							
RLHF	Public						
for online RLHF.							
n 🟠 374 😵 42							
Dataset							
Training code							
Hyper-parame	ters						
Final models							

Takeaway

- RLHF benefits from continuous online exploration through interactions with the rater \bullet
- Online iterative direct preference learning is a robust recipe to make good chatbot \bullet



Thanks for listening!