Wei Xiong

University of Illinois Urbana-Champaign

Iterative Preference Learning for Large Language Model Post Training

LLM training pipeline

Outline

- Motivation: Preference Learning as **Sequential Decision Making**
- Introduction to Reinforcement Learning from Human Feedback (RLHF)
- Main Results: Online Iterative RLHF Framework
- Practical and Open-source Codebook: RLHFlow

Supervised learning vs decision making

- **Supervised learning** predicts patterns from **passively** observed data
	- Image classification and speech recognition

Supervised learning vs decision making

- **Supervised learning** predicts patterns from **passively** observed data
	- Image classification and speech recognition
- - Recommendation system, robotics and game playing

• **Decision making** actively gathers information by **sequential interactions** with the environment

Adapted from tutorial<https://dylanfoster.net/slides/bldm.pdf>

Preference learning as decision making

Adapted from tutorial<https://dylanfoster.net/slides/bldm.pdf>

- **• Context**: prompt
- **• Decision**: (distribution) of response
- **• Reward**: human preference (defined later)
- **• Observation**: potential external message

Decision making for T steps

Exploration-exploitation trade-off

- Trade-off between exploration and exploitation in online sequential decision making:
	- rewards
	- need to try new decisions to learn the environment

Main research problem: can we design principled preference learning algorithms under this online sequential decision making framework?

• want to focus on good decisions based on the history and avoid bad decisions to maximize

Reinforcement Learning from Human Feedback

Reinforcement learning from human feedback

Reinforcement learning from human feedback

Scalable: we can query the reward as many times as we want

Reinforcement learning from human feedback

• Learning objective

$$
\max_{\pi} J(\pi) = \max_{\pi} \mathbb{E}_{x \sim d_0} \left[\begin{array}{c} \mathbb{E}_{a \sim \pi(\cdot|x)} [r^{\star}(x, a)] \\ \hline \text{Optimize } \text{Reward} \end{array} \right]
$$

Reinforcement learning from human feedback

• Learning objective

Long, Ouyang, et al. Training language models to follow instructions with human feedback. arxiv, 2022.

$$
r_{\text{MLE}}(x, a) - \eta \cdot \log \frac{1}{\pi_0(a \mid x)}
$$

Simplified Figure from Gao, Leo, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. ICML, 2023.

Online Iterative RLHF

Offline learning $Data 2$ Modeling

Passively observed data data from π ₀

Intuition: the new responses and their labels mitigate the OOD issue of proxy reward

Online iterative RLHF with exploration

- For $t = 1,2,3...$ Divide the learning into T batches
	- The main agent exploits the historical information: $\pi^1_t = \pi_{r_{t,\mathrm{MLE}}}$ based on

$$
\pi_t^1 = \max_{\pi} \mathbb{E}_{x \sim d_0} \Big[\mathbb{E}_{a \sim \pi(\cdot|x)} [r_{t,\text{MLE}}(x)]
$$

 $\tau_t^{-1} = \pi_{r_{t,\text{MLE}}}$ based on $\mathscr{D}_{1:t-1}$ $[r_{t,\text{MLE}}(x,a)] - \eta \text{KL}(\pi(\cdot | x), \pi_0(\cdot | x))].$

Online iterative RLHF with exploration

- For $t = 1,2,3...$ Divide the learning into T batches
	- The main agent exploits the historical information: $\pi^1_t = \pi_{r_{t,\mathrm{MLE}}}$ based on $\tau_t^{-1} = \pi_{r_{t,\text{MLE}}}$ based on $\mathscr{D}_{1:t-1}$ π^1_t $t¹$ = max $x \sim d_0$ ^[$\Box a \sim \pi(\cdot|x)$] $[r_{t,\text{MLE}}(x,a)] - \eta \text{KL}(\pi(\cdot | x), \pi_0(\cdot | x))].$

$$
\bullet \quad \pi_t^2 = \arg \max_{\pi' \in \Pi} \Gamma_t(\pi_t^1, \pi')
$$

• Collect *m* new samples $x_{t,j}$, $a_{t,j}^1$, $a_{t,j}^2$, $y_{t,j} \sim (d_0, \pi_t^1, \pi_t^2, \mathscr{P}_{BT}^{\star})$ as *t*,*j* $, a_t^2$ $\frac{2}{t,j}$, $y_{t,j} \sim (d_0, \pi_t^1)$

$$
(d_0, \pi_t^1, \pi_t^2, \mathscr{P}_{BT}^{\star})
$$
 as \mathscr{D}_t

$$
\pi_t^1 = \max_{\pi} \mathbb{E}_{x \sim d_0} \bigg[\mathbb{E}_{a \sim \pi(\cdot|x)} [r_{t,\text{MLE}}(x)]
$$

• The enhancer **explores** the environment by maximizing the uncertainty relative to π_t^1

Uncertainty estimator

Uncertainty estimator

Definition: uncertainty estimator in linear case

 $\textbf{Suppose that } r = \langle \theta, \phi(x, a) \rangle : \theta, \phi(x, a) \in \mathbb{R}^d.$ For any two policies $\pi^1_t, \pi^2_t, \pi^3_t$ we define the information gain as

$$
\Gamma_t(\pi_t^1, \pi_t^2) = C_{\dagger} \| \mathbb{E}_{\pi_t^1} \phi(x, a_t^1) - \mathbb{E}_{\pi_t^2} \phi(x, a_t^2) \|_{\Sigma_t^{-1}}
$$

which is the projection of the new feature difference to historical feature covariance matrix.

feature differnece

$$
\Sigma_{t} = \lambda C_{\dagger}^{2} I + \sum_{s=1}^{t-1} \mathbb{E}_{x \sim d_{0}, a^{1} \sim \pi_{s}^{1}, a^{2} \sim \pi_{s}^{2}} (\phi(x, a^{1}) - \phi(x, a^{2}))^{\top} (\phi(x, a^{1}) - \phi(x, a^{2}))
$$

Theoretical result

Theorem: Guarantee for the online iterative preference learning

If we run the online iterative RLHF with batch size $m = O(d/\epsilon^2)$ for times, with probability at least $1-\delta$, we can find a $t_0\in[T]$ such that $m = O\bigl(d/\epsilon^2\bigr)$ for $T = \tilde{\Omega}$ $\sum_{n=1}^{\infty}$ (*d*)

$$
J(\pi^{\star}) - J(\pi^1_{t_0}) + \eta \text{KL}(\pi^{\star}, \pi^1_{t_0}) \leq \epsilon
$$

where $J(\pi) = \mathbb{E}_{d_0,\pi}[r^*(x,a) - \eta \text{KL}(\pi,\pi_0)].$

Theoretical result

Theorem: Guarantee for the online iterative preference learning

If we run the online iterative RLHF with batch size $m = O(d/\epsilon^2)$ for times, with probability at least $1-\delta$, we can find a $t_0\in[T]$ such that

 $m = O\bigl(d/\epsilon^2\bigr)$ for $T = \tilde{\Omega}$ $\sum_{n=1}^{\infty}$ (*d*)

$$
J(\pi^{\star}) - J(\pi_{t_0}^1) + \eta \mathrm{KL}(\pi^{\star}, \pi_{t_0}^1) \leq \epsilon
$$

Xiong W, Dong H, Ye C, et al. Iterative preference learning from human feedback: Bridging theory and practice for RLHF under KL-constraint, ICML 2024

where
$$
J(\pi) = \mathbb{E}_{d_0, \pi}[r^*(x, a) - \eta KL(\pi, \pi_0)].
$$

- **+** The algorithm is provably efficient
- **-** Iterative human feedback is expensive to collect for open-source project
- **-** It is not clear how to construct the uncertainty estimator for general neural network

RLHFlow: Open-source Online Iterative RLHF

- A mixture of different types of ranking models on open-source data
- Heuristic rule: length penalty, final result checking for MATH/Coding...

Next-token prediction as pairwise preference model

$$
\mathbb{P}(a^1 > a^2 \mid x, a^1, a)
$$

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., & Liu, P. J. (2023). Slic-hf: Sequence likelihood calibration with human feedback. arXiv preprint.

 $(a^{2}) = \mathbb{P}(A \mid \text{instruction})$

instruction = [CONTEXT] $\{x\}$ [RESPONSE A] $\{a^1\}$ [RESPONSE B] $\{a^2\}$

Multi-head reward model with MoE aggregation

Wang H*, **Xiong W***, et al. Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts. arXiv preprint arXiv:2406.12845, 2024.

- Multi-head reward modeling from different criteria
- MoE aggregation with the coefficient determined by the embedding of the prompt

Reward modeling: reward benchmark results

Lambert, Nathan, et al. "Rewardbench: Evaluating reward models for language modeling." arXiv preprint 2024.

Screenshot from 8.30, 2024.

The models serve as the ranking models for 30+ follow-up preference learning research projects.

- - Sample n responses and use the best one and the worst one to construct a pair
	- Tuning sampling parameter like the temperature
	- Collect data by different checkpoints

$$
\Gamma_t(\pi_t^1, \pi_t^2) = C_{\dagger} \| \mathbb{E}_{\pi_t^1} \phi(x, a_t^1) - \mathbb{E}_{\pi_t^2} \phi(x, a_t^2) \|_{\Sigma_t^{-1}}
$$

feature differnece

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., ... & Levine, S. (2018). Soft actor-critic algorithms and applications. arXiv.

Direct preference optimization (DPO)

• Gibbs distribution

Rafailov, Rafael, et al. Direct preference optimization: Your language model is secretly a reward model. NeurIPS, 2023.

$$
\begin{aligned}\n\chi_{\mathcal{X}}[r(x,a)] - \eta \text{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x))\n\end{aligned}\n\bigg] = \frac{1}{Z(x)} \cdot \pi_0(\cdot \mid x) \cdot \exp\left(\frac{1}{\eta}r(x,\cdot)\right)
$$
\n
$$
\text{y policy:} \qquad\nZ(x) = \sum_{a \in \mathcal{A}} \pi_0(a \mid x) \cdot \exp\left(\frac{1}{\eta}r(x,\cdot)\right)
$$
\n
$$
r(x,a) = \eta \log \frac{\pi_r(a \mid x)}{\pi_0(a \mid x)} + \eta \log \mathcal{Z}(\overline{x})
$$

Implicit reward

• MLE in reward space -> policy optimization:

$$
\pi_r(\cdot \mid x) = \max_{\pi} \left[\mathbb{E}_{a \sim \pi(\cdot | x)}[r(x, a)] - \eta \text{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x)) \right] = \frac{1}{Z(x)} \cdot \pi_0(\cdot \mid x) \cdot \exp\left(\frac{1}{\eta}r(x, \cdot)\right)
$$
\nparameterize reward by policy:

\n
$$
Z(x) = \sum_{a \in \mathcal{A}} \pi_0(a \mid x) \cdot \exp\left(\frac{1}{\eta}r(x, a)\right)
$$
\n
$$
r(x, a) = \eta \log \frac{\pi_r(a \mid x)}{\pi_r(a \mid x)} + \eta \log Z(x)
$$

• Re-pa

$$
\mathcal{E}_{\text{reward}}(r_{\theta}) = \sum_{(x, a^w, a^l) \in \mathcal{D}} \log \left(\sigma \left(r_{\theta}(x, a^w) - r_{\theta}(x, a^l) \right) \right)
$$

$$
\mathcal{L}_{\text{DPO}}(\pi_{\theta}) = - \sum_{(x, a^w, a^l) \in \mathcal{D}} \log \sigma \left(\eta \left[\log \frac{\pi_{\theta}(a^w \mid x)}{\pi_0(a^w \mid x)} - \log \frac{\pi_{\theta}(a^l \mid x)}{\pi_0(a^l \mid x)} \right] \right).
$$

Main result: state-of-the-art chat model

Evaluation results of models at different iterations on instruction-following benchmarks.

(*α*-*β*) Dong H, **Xiong W**, Pang B, Wang H, et al. RLHF workflow: From reward modeling to online RLHF, TMLR, 2024.

Base model: LLaMA3-8B-SFT

Main result: state-of-the-art chat model

Evaluation results on standard academic and instruction-following benchmarks.

(*α*-*β*) Dong H, **Xiong W**, Pang B, Wang H, et al. RLHF workflow: From reward modeling to online RLHF, TMLR, 2024.

Multi-turn tool-integrated reasoning

Prompt: **User:** Let

$$
f(x) = \begin{cases} ax + 3, & \text{if } x > \\ x - 5 & \text{if } -2 \\ 2x - b & \text{if } x < 0 \end{cases}
$$

Find $a + b$ if the piecewise function is continuous (which means that its graph can be drawn without lifting your pencil from the paper) $(s_1 = x)$

Assistant: The function must be continuous at 2 and -2 . That means $x - 5 = ax + 3$ at $x = 2$ and $x - 5 = 2x - b$ at $x = -2$. Let's now solve for x in each case.

- $> 2,$ $2 \leq x \leq 2$, $<-2.$
-

Multi-turn tool-integrated reasoning

Prompt: **User:** Let

$$
f(x) = \begin{cases} ax + 3, & \text{if } x > \\ x - 5 & \text{if } -2 \\ 2x - b & \text{if } x < 0 \end{cases}
$$

Find $a + b$ if the piecewise function is continuous (which means that its graph can be drawn without lifting your pencil from the paper) $(s_1 = x)$

Assistant: The function must be continuous at 2 and -2 . That means $x - 5 = ax + 3$ at $x = 2$ and $x - 5 = 2x - b$ at $x = -2$. Let's now solve for x in each case.

```
1 from sympy import symbols, Eq, solve
2 ## define the variables
x, a, b = symbols('x a b')6 ## the function must be continuous at 2
7 \text{ eq1} = \text{Eq}(x-5, a*x + 3)s eq1_sol = solve(eq1, x)
10 ## the function must be continuous at -2
_{11} eq2 = Eq(x-5, 2*x - b)
_{12} eq2_sol = solve(eq2, x)
13
14 ## print the solutions
15 print(eq1_sol)
16 print (eq2_sol)
```
 (a_1)

- > 2 , $2 \leq x \leq 2$, $<-2.$
-

Multi-turn tool-integrated reasoning

Prompt: **User:** Let

$$
f(x) = \begin{cases} ax + 3, & \text{if } x > 2, \\ x - 5 & \text{if } -2 \le x \le 2, \\ 2x - b & \text{if } x < -2. \end{cases}
$$

Find $a + b$ if the piecewise function is continuous (which means that its graph can be drawn without lifting your pencil from the paper) $(s_1 = x)$

Assistant: The function must be continuous at 2 and -2 . That means $x - 5 = ax + 3$ at $x = 2$ and $x - 5 = 2x - b$ at $x = -2$. Let's now solve for x in each case.

```
1 from sympy import symbols, Eq, solve
2 ## define the variables
x, a, b = symbols('x a b')6 ## the function must be continuous at 2
7 \text{ eq1} = \text{Eq}(x-5, a*x + 3)s eq1_sol = solve(eq1, x)
10 ## the function must be continuous at -2_{11} eq2 = Eq(x-5, 2*x - b)
_{12} eq2_sol = solve(eq2, x)
13
14 ## print the solutions
15 print (eq1_sol)
16 print (eq2_sol)
```
 (a_1)

$$
s_h = (x, a_1, o_1, a_2, o_2, \cdots, a_{h-1}, o_{h-1})
$$

User: "output $[-8/(a-1)]$ [b - 5]" (o_1)

Preference learning for multi-turn reasoning task

arg max *π* $J(\pi; \mathcal{M}^{\star}, \pi_{0}) = \mathbb{E}_{x \sim d_{0}} \mathbb{E}_{a_{h} \sim \pi_{h}(\cdot | s_{h}), o_{h} \sim \mathbb{P}_{h}(\cdot | s_{h}, a_{h})}$

Trajectory: *x*-prompt, *a*-action, *o*-external observation, s_h : history at the beginning of step *h* $, y^2) =$ $e^{r^{\star}(x,y^1)}$ $e^{r*(x,y^1)} + e^{r*(x,y^2)}$ $\tau = (x, a_1, o_1, \cdots, o_{H-1}, a_H)$. *y*

Trajectory preference

$$
{a,n)}\left[r^{\star}(x,y)-\eta\sum{h=1}^{H}\mathrm{KL}\big(\pi_{h}(\,\cdot\mid s_{h}),\pi_{0,h}(\,\cdot\mid s_{h})\big)\right].
$$

$$
\mathcal{P}_{BT}^{\star}(y^1 > y^2 \mid x, y^1,
$$

Learning objective

Multi-turn direct preference learning

Xiong W, Shi C, Shen J, et al. Building Math Agents with Multi-Turn Iterative Preference Learning, arXiv, 2024.

 $\left| V_{M,h+1}(s_{h+1}) - \mathbb{E}_{o_h \sim \mathbb{P}_h(\cdot | s_h, a_h)} V_{M,h+1}(s_{h+1}) \right|$.

- Term (C) is not zero except for
	- \bullet $H = 1$: original DPO
	- o_h is deterministic given the history

term (C)

 $V_{\mathscr{M},h}$: optimal V value function under $\mathscr{M} = (r, \mathbb{P})$

• Re-parameterization trick to connect the **model** with the **policy**

Implementation: run DPO but mask out the external messages.

Main result: improving reasoning ability

Xiong W, Shi C, Shen J, et al. Building Math Agents with Multi-Turn Iterative Preference Learning, arXiv, 2024.

Prompt: training set MATH and GSM8K Reward: binary reward by checking the answer

A practical and open-source codebook

 \rightarrow

RM-Bradley-Terry We train the reward model as the maximum likelihood estimat...

StairXC/FsfairX-LLaMA3-RM-v0.1 \therefore Text Classification • Updated Apr 24 • \pm 17k • \blacktriangleright 42

hendrydong/preference_700K \equiv Viewer • Updated Apr 17 • \equiv 700k • \pm 3.34k • \heartsuit 2

● weqweasdas/RM-Mistral-7B \therefore Text Classification • Updated Mar 31 • $\&$ 4.74k • \blacktriangleright 20

■ weqweasdas/preference_dataset_mixture2_an...

Online RLHF Datasets, code, and models for online RLHF (i.e., iterative DPO)

RLHFlow/prompt-collection-v0.1 \boxplus Viewer • Updated May 7 • \boxplus 179k • $\&$ 26 • \heartsuit 6

RLHFlow/pair-preference-model-LLaMA3-8B $\overline{\nu}$ Text Generation • Updated May 24 • \angle 8.19k • • 32

SfairXC/FsfairX-LLaMA3-RM-v0.1 \therefore Text Classification • Updated Apr 24 • \pm 17k • \blacktriangleright 42

RLHFlow/llama-sft private

[RLHFlow, Github.](https://github.com/RLHFlow)

Takeaway

- RLHF benefits from continuous online exploration through interactions with the rater
- Online iterative direct preference learning is a robust recipe to make good chatbot

Thanks for listening!