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Language models are great at cross-task generalization

Language models generalize to an enormous range of tasks

[Raffel et al 2020]

[Zheng et al 2024]



… but not everything is in-domain for pretraining

Niche entities Cutting-edge knowledge

Culture



Is pretraining really similar to our downstream tasks?

A naïve mental model..

Evaluation data (HumanEval)Pretraining (StackExchange)



Part 1: Fixing the pretraining vs downstream task gap

The reality: pretraining data

First page in a common crawl dump - http://000-084.smartcode.com/

Pretraining isn’t generalization magic – it’s built on careful, hand-engineered data
Can we avoid hand-crafted data selection?



Fixing the knowledge gap for data-constrained, tail domains

LLMs performance depends on plentiful data in the ‘head’ of the distribution
performance is limited in the tails

[Mallen+ 2023]



Part 2: Data efficient (continued) pretraining

Can we build more data-efficient ways of pretraining?
Enabling ‘tail’ knowledge and going past the looming data barrier



Our approach: building on what works 

We know that the modern, pretraining paradigm is effective – how can we work with it?

Can we use the modern pretraining paradigm to 
address domain and task mismatch issues?



Part 1: Data Selection

Can we close the pretraining-task distribution gap
(without extensive human effort)

Part 1: Data selection for pretraining Part 2: Data synthesis for domain adaptation

Tristan Thrush, Chris Potts, Tatsunori Hashimoto – Improving Pretraining Data Using Perplexity Correlations



Pretraining data (at scale) is key to good, pretrained LMs

What makes pretrained LMs work? Data, scaling (and attention to detail) 



But what works is incredibly ad-hoc (and often secret)

From LLaMA 3.1 

From Datacomp-LM



Can we get simple, principled pretraining data selection?

Current (open) SoTA: Bigram classifier based on ELI5 + OH. What is that?

This is very unsatisfying – is there a simple, principled alternative?

• Inputs: target benchmark(s), token count, pretraining corpus

• Output: a data filtering policy 



Of course, we are not the first to think this

Datamodels (+scaling)
Perturb data, train models, build a 
map from data mix to performance

Datamodel / Shapley [Illyas+ 22, Ghorbani+ 19]
+ Scaling [Hashimoto 21, Woleridge+ 21, Ye 24]

Influence functions (and other local approx)
Build approximations using Taylor 

approximations of the loss

Influence fns [Koh+ 20, Xia+ 24]
First order approx [Yu+ 24]

And many others..

Robust opt [Xie+ 23], Similarity [Xie+23, Abbas+23, Everaert+ 23]



Challenges in the way

But these algorithms have not changed data selection processes..

Why is algorithmic data selection so hard?

Sophisticated data selector (DoReMi) is worse than uniform.
N-gram based (DSIR) leads to slight improvement

Best selector found by authors – hand-
crafted pipeline w/ fasttext classifier

Cost: It’s very expensive to get data for this task Validity: Learned policies may not be robust

Data efficiency: most methods handle ~ 10-50 domains



Starting point – datamodels

Let’s walk through a concrete example. 

We want to train a new, 7B param LLM  to do well on MMLU

We will use a datamodels style approach

1. Train 1000 models (slightly smaller than 7B?), each with a different data mix 𝑝

2. Measure benchmark performance 𝑦 for each model

3. Build a regression 𝑝 → 𝑦

Cost: 1000 models (7B sized!) Validity: regression model needs to generalize 

Data efficiency: at most 1000 domains (?) or sparse domains
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The idea: don’t train models

• No cost – the models are high-perf, trained, and free.

• Heterogenous – covers many points on the design space (code, multimodal, etc)

• Data efficiency – ~100 models, can fit reasonably complex models

Don’t train models, extract info from publicly available models

(Only issue – we don’t know what data they trained on)



The gameplan – build a loss-to-performance predictor

The challenge: we don’t know these models’ data! 
This turns out to be fine

Step 1: Hypothesize a single index model relating log-loss (x) to downstream perf (y)

Step 2: find (or project) nonnegative weights.

If we can find good, nonnegative single-index models relating loss to perf. , 
sampling according to these weights is a good data selection policy



The two steps as an algorithm

Step 1 : fitting the regression – we use a high dimensional regression estimator

(we will show that this is actually a consistent estimate of the single index model)

Step 2: selecting the data (projection) – select tokens from largest to smallest 𝛾



Why should this work? A high-dim stats perspective

This is (just) a variant of high-dim geometric estimation problem. 

From Plan, Vershinyn, and Yudovina 2016, 

And, in a follow-up Chen and Banerjee 2017 showed

Which is, course quite similar to

Assuming



Our robust, moment-based estimator

It turns out that this similarity goes deeper – our ‘correlation estimate’ is consistent

And we can get a constrained estimate via a linear projection (following Chen and Banerjee)

This has a simple closed form solution (sort and take tokens til budget)



Validation strategy

Recall our goal: select pretraining data so our LMs do well on target benchmarks

Our validation: 

• Estimate perplexity correlations (on ~90 public models)

• Do selection on 8 benchmarks (ARC,SciQ,LAMBADA,PIQA,LAMBADA (FR/DE/IT/ES)) 

• Train and evaluate corresponding models (at small, 160M scale)

What do we compare to? 

• Selection methods validated at scale (DCLM fasttext classifier, DSIR)

• Reasonable baselines (language filtering)

• No filtering



Selecting pretraining data

So, how good is this correlation-based filtering technique?

Some observations
• Most filters (language, DSIR) worse than nothing.
• fastText w/o manual language filter is slightly better
• Our approach is significantly better (1.75)
• Slightly worse than best filter w/ manual lang. filter



Per-benchmark

Let’s look at more 
fine-grained performance.

• Perplexity correlations 
automatically select by language 

• But language filtering is quite bad 
– only slightly better than random

• When perplexity correlation is not 
1st, it’s a close 2nd



For many benchmarks, perplexity predicts performance

A weighted sum of pretraining document losses accurately predicts rankings



Looking inside the log-loss matrix

T-SNE and PCA (not shown) show meaningful structures about data in the loss matrix



Preregistration-based validation

Can we trust any of these results?

• Many past results have not held up

• Small scale of the experiments

• n=1 in choice of pretraining data pool, etc.

What we’re trying: preregistration-based scaling

• Scale up by ~ 100x in compute

• Pick a standard, held-out setting with strong baselines (DCLM) we haven’t tried

• Use same / preregistered hyperparams 

• Report results regardless of outcome

(side note – I’m excited about doing better, rigorous empirical scaling work via preregistration)



Preregistration can help better empirical studies

Prior example – observational studies into benchmark-model correlations [Ruan+ 2024]

1. Just a few principal components cover the space of many LM benchmarks

2. These few PCs then robustly explain complex, phenomena



Takeaways – data selection

Data selection is important but hard.. 

Can we reduce it to a standard high-dim. regression problem?

Maybe. Important ingredients - 

• Single index model + loss optimization

• Robust, high-dimensional single index model estimate

• Small-scale validation + preregistered scaling



Part 2: Data synthesis

Can we teach a language model 
new, niche knowledge?

Part 1: Data selection for pretraining Part 2: Data synthesis for domain adaptation

Zitong Yang*, Neil Band*, Shuangping Li, Emmanuel Candes, Tatsunori Hashimoto, Synthetic continued pretraining



LLMs struggle beyond the ‘head’ of the distribution

LLMs performance depends on plentiful data in the ‘head’ of the distribution
performance is limited in the tails

[Mallen+ 2023]



‘Adapting’ to the tails – difficult for data-poor domains

The standard approach – domain adaptation via continued pretraining

Teaching models new facts in a way that can be internalized and generalized
requires ~ 15+ Billion tokens with current methods



Our challenge: learning from 10,000x less data

Can we adapt to knowledge that might be truly in the tail? 
Few hundred books with 10,000x less data



Problems with standard continued pretraining

Standard continued pretraining: train directly on our documents

using the small domain-specific corpus to synthesize a large corpus

We propose to bridge this gap with synthetic continued pretraining: 

Autoregressive LM

Autoregressive learning is data-inefficient (reversal curse)
In the autoregressive direction: “What does synthetic CPT do?” 
In the reverse direction: “What method synthesizes a large corpus?” 



Differences from pretraining

Why doesn’t continued pretraining work?

{ …

{
{ …

{

CPT: limited diversity (format, content) Pretraining: diverse formats



Synthetic continued pretraining – augment the data

Synthetic continued pretraining: Train on LLM-transformed data 

Goal – replicate the diversity of pretraining
• Vary content (topics)
• Vary style (how it’s presented)
• Data diversity for generalization

This is different from synthetic data or..
• compute / size efficiency (WRAP/Phi)
• fine-tuning (task-specific LMs) 

LMaug

{ …

{

Autoregressive LM

{ …

{



The setting – QuALITY books

A good benchmark for this should have

• Obscure books / knowledge

• Knowledge appears once or twice

• High-quality QA (and other) evals

A good dataset: QuALITY [Pang+ ‘21]

• Niche fiction / magazine articles

• 1.3M tokens (too small for CPT)

• High-quality QA / summary evals

• Even GPT4 is ~51% Acc, Llama ~39%



Attempt 1 – Just do continued pretraining



Attempt 2 – Just paraphrase the data



Idea: external sources of diversity

Core problem: LLMs are not terribly diverse – asking for random samples is a bad idea

[Si+ 2024]

Increasingly common method: External source of randomness / information

• Alpaca – random human seed data / conditioning on past data

• Skill-Mix-Instruct – conditioning on a combinatorial set (pairs of skills)

• (Our approach) – randomize over content choices using a knowledge graph



What we get: Entity-centric augmentation (EntiGraph)

How do we get diversity? Use a knowledge graph to force diversity in content

1. Prompt LMaug for entities 
in a knowledge graph.

2. Sample k-subgraphs of 
the knowledge graph

3. LMaug synthesizes 
descriptions of the 
entities in the subgraph

New implicit fact as data (The Louvre contains many works by DaVinci..)



(Closed-book) QA performance with EntiGraph

Predictable, scaling gains for QA performance without the text



Exceeding your teacher (GPT4)

We improve significantly (17%) via EntiGraph, exceeding even the teacher (GPT4) by ~5%



But does it generalize like an LLM?

Fine-tuning for QA alone
isn’t that surprising

We instruction-tuned the 
EntiGraph  model

(ultrachat SFT) and ..

• It can summarize 
• Do writing tasks 
• Relate multiple articles



Qualitative summary evaluations



Quantitative summarization evaluation

Entigraph shows few false claims (0.5-2x) compared to baselines with 
more salient (true) claims



Does parametric knowledge complement retrieval?

Ok, but why not use retrieval augmentation? 

Entigraph augmentation helps across the board (2-3%) on top of RAG

Our closed book perf (56%) is almost the LLaMA RAG perf, and 80% of the gains (40-60)

RAG baselines with a very strong retriever (99+% recall)



A theory perspective to entity-centric augmentation

Why do we get gains from ‘diverse rewritings’ of the original data? 

Let’s build a toy mathematical model

• We have a set of entities 𝑉 in a single document 𝐷source

• Claims that appear directly (‘x is y’) are represented as 𝐷source ∈ 𝑥, 𝑦 ∈ 𝑉2

As a generative model, we assume an Erdos-Renyi graph where edge appear with 
probability 𝑝 and define the rate 𝜆 = 𝑝|𝑉|



The toy model – random graph process

We now model EntiGraph’s augmentation process - ‘filling in the graph’

Learning as memorization – we  fill all vertices on the ‘path’ to the target



Asymptotic accuracy of EntiGraph follows the ER limits

With high probability, 

(The implied asymptotics here are 𝑝 + 1 − 𝜌 2 - c.f. Erdos Renyi phase transition)



Implied scaling process – a mixture of exponentials

A less precise, but intuition building result – scaling should be mix-of-exps

A mixture of 3 exponentials matches observed scaling well



Takeaways: synthetic continued pretraining

Tail knowledge and data efficiency will become increasingly important

Can LM pretraining-style learning be made data-efficient?

With synthetic data augmentation (and tricks), yes!

• Effective CPT – not at the 50B token level, but at 1M tokens.

• 80% of the gains from retrieval can be obtained via CPT 

• Exciting testbed for data-efficient language modeling



Takeaway – engineering data interventions for generalization

• Algorithmic control of pretraining data is possible
• Public models contain valuable perplexity-correlation info
• Preregistration-based scaling experiments

• Continued pretraining at the 1M token level is possible
• Entity-based methods of making diverse, synthetic data
• Predictable, multi-task gains via CPT.

Data selection via perplexity correlations

Synthetic continued pretraining
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