
Improving LLM generalization by
selecting and synthesizing data

Tatsunori Hashimoto

Language models are great at cross-task generalization

Language models generalize to an enormous range of tasks

[Raffel et al 2020]

[Zheng et al 2024]

… but not everything is in-domain for pretraining

Niche entities Cutting-edge knowledge

Culture

Is pretraining really similar to our downstream tasks?

A naïve mental model..

Evaluation data (HumanEval)Pretraining (StackExchange)

Part 1: Fixing the pretraining vs downstream task gap

The reality: pretraining data

First page in a common crawl dump - http://000-084.smartcode.com/

Pretraining isn’t generalization magic – it’s built on careful, hand-engineered data
Can we avoid hand-crafted data selection?

Fixing the knowledge gap for data-constrained, tail domains

LLMs performance depends on plentiful data in the ‘head’ of the distribution
performance is limited in the tails

[Mallen+ 2023]

Part 2: Data efficient (continued) pretraining

Can we build more data-efficient ways of pretraining?
Enabling ‘tail’ knowledge and going past the looming data barrier

Our approach: building on what works

We know that the modern, pretraining paradigm is effective – how can we work with it?

Can we use the modern pretraining paradigm to
address domain and task mismatch issues?

Part 1: Data Selection

Can we close the pretraining-task distribution gap
(without extensive human effort)

Part 1: Data selection for pretraining Part 2: Data synthesis for domain adaptation

Tristan Thrush, Chris Potts, Tatsunori Hashimoto – Improving Pretraining Data Using Perplexity Correlations

Pretraining data (at scale) is key to good, pretrained LMs

What makes pretrained LMs work? Data, scaling (and attention to detail)

But what works is incredibly ad-hoc (and often secret)

From LLaMA 3.1

From Datacomp-LM

Can we get simple, principled pretraining data selection?

Current (open) SoTA: Bigram classifier based on ELI5 + OH. What is that?

This is very unsatisfying – is there a simple, principled alternative?

• Inputs: target benchmark(s), token count, pretraining corpus

• Output: a data filtering policy

Of course, we are not the first to think this

Datamodels (+scaling)
Perturb data, train models, build a
map from data mix to performance

Datamodel / Shapley [Illyas+ 22, Ghorbani+ 19]
+ Scaling [Hashimoto 21, Woleridge+ 21, Ye 24]

Influence functions (and other local approx)
Build approximations using Taylor

approximations of the loss

Influence fns [Koh+ 20, Xia+ 24]
First order approx [Yu+ 24]

And many others..

Robust opt [Xie+ 23], Similarity [Xie+23, Abbas+23, Everaert+ 23]

Challenges in the way

But these algorithms have not changed data selection processes..

Why is algorithmic data selection so hard?

Sophisticated data selector (DoReMi) is worse than uniform.
N-gram based (DSIR) leads to slight improvement

Best selector found by authors – hand-
crafted pipeline w/ fasttext classifier

Cost: It’s very expensive to get data for this task Validity: Learned policies may not be robust

Data efficiency: most methods handle ~ 10-50 domains

Starting point – datamodels

Let’s walk through a concrete example.

We want to train a new, 7B param LLM to do well on MMLU

We will use a datamodels style approach

1. Train 1000 models (slightly smaller than 7B?), each with a different data mix 𝑝

2. Measure benchmark performance 𝑦 for each model

3. Build a regression 𝑝 → 𝑦

Cost: 1000 models (7B sized!) Validity: regression model needs to generalize

Data efficiency: at most 1000 domains (?) or sparse domains

Starting point – datamodels

Let’s walk through a concrete example.

We want to train a new, 7B param LLM to do well on MMLU

We will use a datamodels style approach

1. Train 1000 models (slightly smaller than 7B?), each with a different data mix 𝑝

2. Measure benchmark performance 𝑦 for each model

3. Build a regression 𝑝 → 𝑦

Cost: 1000 models (7B sized!) Validity: regression model needs to generalize

Data efficiency: at most 1000 domains (?) or sparse domains

The idea: don’t train models

• No cost – the models are high-perf, trained, and free.

• Heterogenous – covers many points on the design space (code, multimodal, etc)

• Data efficiency – ~100 models, can fit reasonably complex models

Don’t train models, extract info from publicly available models

(Only issue – we don’t know what data they trained on)

The gameplan – build a loss-to-performance predictor

The challenge: we don’t know these models’ data!
This turns out to be fine

Step 1: Hypothesize a single index model relating log-loss (x) to downstream perf (y)

Step 2: find (or project) nonnegative weights.

If we can find good, nonnegative single-index models relating loss to perf. ,
sampling according to these weights is a good data selection policy

The two steps as an algorithm

Step 1 : fitting the regression – we use a high dimensional regression estimator

(we will show that this is actually a consistent estimate of the single index model)

Step 2: selecting the data (projection) – select tokens from largest to smallest 𝛾

Why should this work? A high-dim stats perspective

This is (just) a variant of high-dim geometric estimation problem.

From Plan, Vershinyn, and Yudovina 2016,

And, in a follow-up Chen and Banerjee 2017 showed

Which is, course quite similar to

Assuming

Our robust, moment-based estimator

It turns out that this similarity goes deeper – our ‘correlation estimate’ is consistent

And we can get a constrained estimate via a linear projection (following Chen and Banerjee)

This has a simple closed form solution (sort and take tokens til budget)

Validation strategy

Recall our goal: select pretraining data so our LMs do well on target benchmarks

Our validation:

• Estimate perplexity correlations (on ~90 public models)

• Do selection on 8 benchmarks (ARC,SciQ,LAMBADA,PIQA,LAMBADA (FR/DE/IT/ES))

• Train and evaluate corresponding models (at small, 160M scale)

What do we compare to?

• Selection methods validated at scale (DCLM fasttext classifier, DSIR)

• Reasonable baselines (language filtering)

• No filtering

Selecting pretraining data

So, how good is this correlation-based filtering technique?

Some observations
• Most filters (language, DSIR) worse than nothing.
• fastText w/o manual language filter is slightly better
• Our approach is significantly better (1.75)
• Slightly worse than best filter w/ manual lang. filter

Per-benchmark

Let’s look at more
fine-grained performance.

• Perplexity correlations
automatically select by language

• But language filtering is quite bad
– only slightly better than random

• When perplexity correlation is not
1st, it’s a close 2nd

For many benchmarks, perplexity predicts performance

A weighted sum of pretraining document losses accurately predicts rankings

Looking inside the log-loss matrix

T-SNE and PCA (not shown) show meaningful structures about data in the loss matrix

Preregistration-based validation

Can we trust any of these results?

• Many past results have not held up

• Small scale of the experiments

• n=1 in choice of pretraining data pool, etc.

What we’re trying: preregistration-based scaling

• Scale up by ~ 100x in compute

• Pick a standard, held-out setting with strong baselines (DCLM) we haven’t tried

• Use same / preregistered hyperparams

• Report results regardless of outcome

(side note – I’m excited about doing better, rigorous empirical scaling work via preregistration)

Preregistration can help better empirical studies

Prior example – observational studies into benchmark-model correlations [Ruan+ 2024]

1. Just a few principal components cover the space of many LM benchmarks

2. These few PCs then robustly explain complex, phenomena

Takeaways – data selection

Data selection is important but hard..

Can we reduce it to a standard high-dim. regression problem?

Maybe. Important ingredients -

• Single index model + loss optimization

• Robust, high-dimensional single index model estimate

• Small-scale validation + preregistered scaling

Part 2: Data synthesis

Can we teach a language model
new, niche knowledge?

Part 1: Data selection for pretraining Part 2: Data synthesis for domain adaptation

Zitong Yang*, Neil Band*, Shuangping Li, Emmanuel Candes, Tatsunori Hashimoto, Synthetic continued pretraining

LLMs struggle beyond the ‘head’ of the distribution

LLMs performance depends on plentiful data in the ‘head’ of the distribution
performance is limited in the tails

[Mallen+ 2023]

‘Adapting’ to the tails – difficult for data-poor domains

The standard approach – domain adaptation via continued pretraining

Teaching models new facts in a way that can be internalized and generalized
requires ~ 15+ Billion tokens with current methods

Our challenge: learning from 10,000x less data

Can we adapt to knowledge that might be truly in the tail?
Few hundred books with 10,000x less data

Problems with standard continued pretraining

Standard continued pretraining: train directly on our documents

using the small domain-specific corpus to synthesize a large corpus

We propose to bridge this gap with synthetic continued pretraining:

Autoregressive LM

Autoregressive learning is data-inefficient (reversal curse)
In the autoregressive direction: “What does synthetic CPT do?”
In the reverse direction: “What method synthesizes a large corpus?”

Differences from pretraining

Why doesn’t continued pretraining work?

{ …

{
{ …

{

CPT: limited diversity (format, content) Pretraining: diverse formats

Synthetic continued pretraining – augment the data

Synthetic continued pretraining: Train on LLM-transformed data

Goal – replicate the diversity of pretraining
• Vary content (topics)
• Vary style (how it’s presented)
• Data diversity for generalization

This is different from synthetic data or..
• compute / size efficiency (WRAP/Phi)
• fine-tuning (task-specific LMs)

LMaug

{ …

{

Autoregressive LM

{ …

{

The setting – QuALITY books

A good benchmark for this should have

• Obscure books / knowledge

• Knowledge appears once or twice

• High-quality QA (and other) evals

A good dataset: QuALITY [Pang+ ‘21]

• Niche fiction / magazine articles

• 1.3M tokens (too small for CPT)

• High-quality QA / summary evals

• Even GPT4 is ~51% Acc, Llama ~39%

Attempt 1 – Just do continued pretraining

Attempt 2 – Just paraphrase the data

Idea: external sources of diversity

Core problem: LLMs are not terribly diverse – asking for random samples is a bad idea

[Si+ 2024]

Increasingly common method: External source of randomness / information

• Alpaca – random human seed data / conditioning on past data

• Skill-Mix-Instruct – conditioning on a combinatorial set (pairs of skills)

• (Our approach) – randomize over content choices using a knowledge graph

What we get: Entity-centric augmentation (EntiGraph)

How do we get diversity? Use a knowledge graph to force diversity in content

1. Prompt LMaug for entities
in a knowledge graph.

2. Sample k-subgraphs of
the knowledge graph

3. LMaug synthesizes
descriptions of the
entities in the subgraph

New implicit fact as data (The Louvre contains many works by DaVinci..)

(Closed-book) QA performance with EntiGraph

Predictable, scaling gains for QA performance without the text

Exceeding your teacher (GPT4)

We improve significantly (17%) via EntiGraph, exceeding even the teacher (GPT4) by ~5%

But does it generalize like an LLM?

Fine-tuning for QA alone
isn’t that surprising

We instruction-tuned the
EntiGraph model

(ultrachat SFT) and ..

• It can summarize
• Do writing tasks
• Relate multiple articles

Qualitative summary evaluations

Quantitative summarization evaluation

Entigraph shows few false claims (0.5-2x) compared to baselines with
more salient (true) claims

Does parametric knowledge complement retrieval?

Ok, but why not use retrieval augmentation?

Entigraph augmentation helps across the board (2-3%) on top of RAG

Our closed book perf (56%) is almost the LLaMA RAG perf, and 80% of the gains (40-60)

RAG baselines with a very strong retriever (99+% recall)

A theory perspective to entity-centric augmentation

Why do we get gains from ‘diverse rewritings’ of the original data?

Let’s build a toy mathematical model

• We have a set of entities 𝑉 in a single document 𝐷source

• Claims that appear directly (‘x is y’) are represented as 𝐷source ∈ 𝑥, 𝑦 ∈ 𝑉2

As a generative model, we assume an Erdos-Renyi graph where edge appear with
probability 𝑝 and define the rate 𝜆 = 𝑝|𝑉|

The toy model – random graph process

We now model EntiGraph’s augmentation process - ‘filling in the graph’

Learning as memorization – we fill all vertices on the ‘path’ to the target

Asymptotic accuracy of EntiGraph follows the ER limits

With high probability,

(The implied asymptotics here are 𝑝 + 1 − 𝜌 2 - c.f. Erdos Renyi phase transition)

Implied scaling process – a mixture of exponentials

A less precise, but intuition building result – scaling should be mix-of-exps

A mixture of 3 exponentials matches observed scaling well

Takeaways: synthetic continued pretraining

Tail knowledge and data efficiency will become increasingly important

Can LM pretraining-style learning be made data-efficient?

With synthetic data augmentation (and tricks), yes!

• Effective CPT – not at the 50B token level, but at 1M tokens.

• 80% of the gains from retrieval can be obtained via CPT

• Exciting testbed for data-efficient language modeling

Takeaway – engineering data interventions for generalization

• Algorithmic control of pretraining data is possible
• Public models contain valuable perplexity-correlation info
• Preregistration-based scaling experiments

• Continued pretraining at the 1M token level is possible
• Entity-based methods of making diverse, synthetic data
• Predictable, multi-task gains via CPT.

Data selection via perplexity correlations

Synthetic continued pretraining

	Slide 1: Improving LLM generalization by selecting and synthesizing data
	Slide 2: Language models are great at cross-task generalization
	Slide 3: … but not everything is in-domain for pretraining
	Slide 4: Is pretraining really similar to our downstream tasks?
	Slide 5: Part 1: Fixing the pretraining vs downstream task gap
	Slide 6: Fixing the knowledge gap for data-constrained, tail domains
	Slide 7: Part 2: Data efficient (continued) pretraining
	Slide 8: Our approach: building on what works
	Slide 9: Part 1: Data Selection
	Slide 10: Pretraining data (at scale) is key to good, pretrained LMs
	Slide 11: But what works is incredibly ad-hoc (and often secret)
	Slide 12: Can we get simple, principled pretraining data selection?
	Slide 13: Of course, we are not the first to think this
	Slide 14: Challenges in the way
	Slide 15: Starting point – datamodels
	Slide 16: Starting point – datamodels
	Slide 17: The idea: don’t train models
	Slide 18: The gameplan – build a loss-to-performance predictor
	Slide 19: The two steps as an algorithm
	Slide 20: Why should this work? A high-dim stats perspective
	Slide 21: Our robust, moment-based estimator
	Slide 22: Validation strategy
	Slide 23: Selecting pretraining data
	Slide 24: Per-benchmark
	Slide 25: For many benchmarks, perplexity predicts performance
	Slide 26: Looking inside the log-loss matrix
	Slide 27: Preregistration-based validation
	Slide 28: Preregistration can help better empirical studies
	Slide 29: Takeaways – data selection
	Slide 30: Part 2: Data synthesis
	Slide 31: LLMs struggle beyond the ‘head’ of the distribution
	Slide 32: ‘Adapting’ to the tails – difficult for data-poor domains
	Slide 33: Our challenge: learning from 10,000x less data
	Slide 34: Problems with standard continued pretraining
	Slide 35: Differences from pretraining
	Slide 36: Synthetic continued pretraining – augment the data
	Slide 37: The setting – QuALITY books
	Slide 38: Attempt 1 – Just do continued pretraining
	Slide 39: Attempt 2 – Just paraphrase the data
	Slide 40: Idea: external sources of diversity
	Slide 41: What we get: Entity-centric augmentation (EntiGraph)
	Slide 42: (Closed-book) QA performance with EntiGraph
	Slide 43: Exceeding your teacher (GPT4)
	Slide 44: But does it generalize like an LLM?
	Slide 45: Qualitative summary evaluations
	Slide 46: Quantitative summarization evaluation
	Slide 47: Does parametric knowledge complement retrieval?
	Slide 48: A theory perspective to entity-centric augmentation
	Slide 49: The toy model – random graph process
	Slide 50: Asymptotic accuracy of EntiGraph follows the ER limits
	Slide 51: Implied scaling process – a mixture of exponentials
	Slide 52: Takeaways: synthetic continued pretraining
	Slide 53: Takeaway – engineering data interventions for generalization

