

How well does diffusion model generate?

- a training and sampling combined quantification

arXiv:2406.12839

疆 2 Simons Institute, UC Berkeley

Sep 10, 2024 Emerging Generalization Settings Workshop @ Simons

≤10% generalization

why am I here?

≤10% generalization

why am I here?

• one interesting generalization setting: understood

≤10% generalization

why am I here?

- one interesting generalization setting: understood
- another: not

≤10% generalization

why am I here?

- one interesting generalization setting: understood
- another: not
- the quantifications are interesting too (hopefully)

Generative Modeling

Given samples of an unknown probability distribution (possibly in very high dim.), generate **more samples** of the same distribution.

0.1 Introduction: Generative Modeling

Generative Modeling

Given samples of an unknown probability distribution (possibly in very high dim.), generate **more samples** of the same distribution.

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...)

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...) Stable Diffusion, DALL·E, Midjourney; Sora;

(Chat)GPT, Gemini, Llama, Claude, …

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...)

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...)

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...)

backward denoising

process: use

"score"

to generate

data

from

noise

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...)

$$
\frac{dX = -Xdt + \sqrt{2}dW_t}{t = T >> 1} \approx \mathcal{N}(0, I)
$$

backward denoising process:

> use "score"

to generate

> data from

noise

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...)

backward denoising process: use "score" to generate data from noise

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...)

backward

denoising

process:

use

"score"

to

generate

data

from

noise

Yang+ 22

forward noising process: learn "score" (~ evolution of data density)

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...)

$$
dX = -Xdt + \sqrt{2}dW_t
$$

\n
$$
D \qquad t=0 \qquad t=\tau>>1 \qquad \approx \mathcal{N}(0, I)
$$

\n
$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$

\nscore
\n
$$
s(x, t) := \nabla_x \log p(x, t)
$$

\n
$$
X(t) \stackrel{d}{=} Y(T - t), \forall t \qquad X(t) \sim p(x, t)
$$

forward noising process: learn "score" (~ evolution of data density)

backward denoising process: use "score" to

generate

data

from noise

denoising diffusion model

(*Sohl-Dickstein*+ 15,

 $X(t) \sim p(x,t)$

$$
\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_t} \|\nabla_x \log p(X_t, t) - s_{\theta}(X_t, t)\|^2 dt
$$

$$
\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} \|\nabla_x \log p_{t|0}(X_t | X_0, t) - s_{\theta}(X_t, t)\|^2 dt
$$

$$
\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} \|\nabla_x \log p_{t|0}(X_t | X_0, t) - s_{\theta}(X_t, t)\|^2 dt
$$
\nanalytically available

$$
\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} \|\nabla_x \log p_{t|0}(X_t | X_0, t) - s_{\theta}(X_t, t)\|^2 dt
$$
\nanalytically available

1.1 Quantification of Diffusion Model's Generation Quality: Overview

denoising diffusion model

(*Sohl-Dickstein*+ 15,

1. forward training/learning process: optimization \rightarrow score s

1.1 Quantification of Diffusion Model's Generation Quality: Overview

denoising diffusion model

(*Sohl-Dickstein*+ 15,

- 1. forward training/learning process: optimization \rightarrow score s
- 2. backward sampling/inference process: numerical simulation \rightarrow sample Y

1.1 Quantification of Diffusion Model's Generation Quality: Overview

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...) $\qquad \qquad \mathcal{I}$

- 1. forward training/learning process: optimization \rightarrow score s
- 2. backward sampling/inference process: numerical simulation \rightarrow sample Y
- **?** quality of generated samples

 $KL\left(\text{Law}(X_0)|\text{Law}(Y_T)\right) \leq \cdots$

$$
dX = -Xdt + \sqrt{2}dW_t
$$

\n
$$
t = T >> 1
$$
\n
$$
\approx \mathcal{N}(0, I)
$$
\n
$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$
\n
$$
s = \text{score}
$$
\n
$$
s(x, t) := \nabla_x \log p(x, t)
$$
\n
$$
X(t) \sim p(x, t)
$$

denoising diffusion model

(*Sohl-Dickstein*+ 15,

- 1. forward training/learning process: optimization \rightarrow score s
- 2. backward sampling/inference process: numerical simulation \rightarrow sample Y
- **?** quality of generated samples

 $KL(Law(X_0)|Law(Y_T)) \leq \cdots$

if score is approximated with error $\leq \varepsilon$ in the sense of ______, then generated and training samples have statistical distance/divergence $\leq \underline{\hspace{1cm}}$, under assumptions .

Lee+ 22, *de Bortoli* 22, *Yang* & *Wibisono* 22, *S Chen*+ 23, *H Chen*+ 23, *Benton*+ 23, *Conforti*+ 23, …

only

denoising diffusion model

(*Sohl-Dickstein*+ 15, *Ho*+ 20, *Song*+ 21 ...)

- 1. forward training/learning process: optimization \rightarrow score s
- 2. backward sampling/inference process: numerical simulation \rightarrow sample Y
- **?** quality of generated samples

 $\text{KL}(\text{Law}(X_0)|\text{Law}(Y_T)) \leq \cdots$

if score is approximated with error $\leq \varepsilon$ in the sense of ______, then generated and training samples have statistical distance/divergence $\leq \underline{\hspace{1cm}}$, under assumptions .

Lee+ 22, *de Bortoli* 22, *Yang* & *Wibisono* 22, *S Chen*+ 23, *H Chen*+ 23, *Benton*+ 23, *Conforti*+ 23, …

already highly nontrivial

already highly nontrivial

sources of error

• score error

already highly nontrivial

sources of error

• score error

already highly nontrivial

sources of error

- score error
- integration error

integration error

integration error

$$
dY_t = Y_t dt + 2s(Y_t, T - t)dt + \sqrt{2}dB_t
$$

already highly nontrivial

sources of error

- score error
- integration error
- initialization error

• initialization error

2. backward sampling/inference process: numerical simulation \rightarrow sample Y only

already highly nontrivial

sources of error

- score error
- integration error
- initialization error
- early stopping

- initialization error
- early stopping

already highly nontrivial

sources of error

assumptions on data distribution

already highly nontrivial

sources of error

assumptions on data distribution

Ex (prior to diffusion model & its analysis)

already highly nontrivial

sources of error

assumptions on data distribution

Ex (prior to diffusion model & its analysis)

(overdamped) Langevin dynamics:

 $dZ_t = -\nabla V(Z_t)dt + \sqrt{2}dB_t \stackrel{V:=-\log p(\cdot,0)}{=\!\!\!=\!\!\!=\!\!\!=} s(Z_t,0)dt + \sqrt{2}dB_t$

$$
dX = -Xdt + \sqrt{2}dW_t
$$

\n
$$
U = 0 \qquad t = T >> 1 \qquad \approx \mathcal{N}(0, I)
$$

\n
$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$

\nscore
\n
$$
s(x, t) := \nabla_x \log p(x, t)
$$

\n
$$
X(t) \sim p(x, t)
$$

How long? Depends on V and thus data distribution need long time to conv.

suffer from multimodality etc.

a specific annealing scheme made multimodal sampling effectively

a specific annealing scheme made multimodal sampling effectively

Lee, *Risteski*, *Ge* 18 *Chehab*, *Hyvarinen*, *Risteski* 23

already highly nontrivial

sources of error

$$
dX = -Xdt + \sqrt{2}dW_t
$$

$$
t = T >> 1 \approx \mathcal{N}(0, I)
$$

$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$

assumptions on data distribution denoising diffusion annealing: **agnostic** to multimodality

already highly nontrivial

sources of error

$$
dX = -Xdt + \sqrt{2}dW_t
$$

$$
t = T >> 1 \approx \mathcal{N}(0, I)
$$

$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$

assumptions on data distribution

denoising diffusion annealing: **agnostic** to multimodality

ideally:

isoperimetric ineq. $(LSI, PI, ...)$: ~2-3 years ago

bounded $2nd$ moment + Lipschitz score: \sim 1-2 years ago

bounded $2nd$ moment: \sim 0-1 years ago

$$
dX = -Xdt + \sqrt{2}dW_t
$$

$$
t = T >> 1 \approx \mathcal{N}(0, I)
$$

$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$

Variance Preserving SDE

more general

 $dX = -f(X, t)dt + g(t)dW_t$

Variance Preserving SDE

$$
dX = -Xdt + \sqrt{2}dW_t
$$

$$
D \qquad t=0 \qquad t=\tau>>1 \qquad \approx \mathcal{N}(0, I)
$$

$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$

Variance Preserving SDE

more general

 $dX = -f(X, t)dt + g(t)dW_t$

 $dY = f(Y, T - t)dt + gg^{\top}s(Y, T - t)dt + g(T - t)dB_t$

more general

 $dX = -f(X, t)dt + g(t)dW_t$

 $dY = f(Y, T - t)dt + gg^{\top}s(Y, T - t)dt + g(T - t)dB_t$

Variance Preserving SDE

popular version (e.g., EDM [*Karras*+ 22])

more general

 $dX = -f(X, t)dt + g(t)dW_t$

 $dY = f(Y, T - t)dt + gg^{\top}s(Y, T - t)dt + g(T - t)dB_t$

Variance Preserving SDE

popular version (e.g., EDM [*Karras*+ 22])

(generalized) Variance Exploding SDE

 $dX = g(t)dW_t$

[*Conforti*+ 23]

popular version (e.g., EDM [*Karras*+ 22])

(generalized) Variance Exploding SDE

 $dX = g(t)dW_t$

2. backward sampling/inference process: numerical simulation \rightarrow sample Y

new

popular version (e.g., EDM [*Karras*+ 22])

[*Wang*+ 24] arbitrary + **(generalized) Variance Exploding SDE** $dX = g(t)dW_t$

new

popular version (e.g., EDM [*Karras*+ 22])

[*Wang*+ 24] arbitrary + **(generalized) Variance Exploding SDE** $dX = g(t)dW_t$

$$
dY = g^2(T - t)s(Y, T - t)dt + g(T - t)dB_t
$$

approximating score is essential

$$
dX = -Xdt + \sqrt{2}dW_t
$$

$$
D \qquad t=0 \qquad t=\text{T>>1} \qquad \approx \mathcal{N}(0, I)
$$

$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$

approximating score is essential

"main stream" generation quality bound

if $||s_{\theta} - s|| \leq \epsilon$, then \cdots

$$
dX = -Xdt + \sqrt{2}dW_t
$$

$$
D \qquad t=0 \qquad t=\text{T>>1} \approx \mathcal{N}(0, I)
$$

$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$

approximating score is essential

"main stream" generation quality bound

if
$$
\|\mathbf{S}_{\theta} - s\| \leq \epsilon
$$
, then \cdots

\nwhere does it come from **?**

$$
dX = -Xdt + \sqrt{2}dW_t
$$

$$
D \qquad t=0 \qquad t=\text{T>>1} \approx \mathcal{N}(0, I)
$$

$$
dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t
$$

• nontrivial even when the target density is known (e.g., [*Huang*+ 24], [*He*, *Rojas*, *Tao* 24], [*Gupta*+ 24])

- nontrivial even when the target density is known (e.g., [*Huang*+ 24], [*He*, *Rojas*, *Tao* 24], [*Gupta*+ 24])
- it also matters to innovation / generalization (an open question, to be discussed in the end)

- nontrivial even when the target density is known (e.g., [*Huang*+ 24], [*He*, *Rojas*, *Tao* 24], [*Gupta*+ 24])
- it also matters to innovation / generalization (an open question, to be discussed in the end)

$$
\text{ideal} \qquad \min_{\theta} \frac{1}{2} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} || \nabla_x \log p_{t|0}(X_t | X_0, t) - s_\theta(X_t, t) ||^2 dt
$$

- nontrivial even when the target density is known (e.g., [*Huang*+ 24], [*He*, *Rojas*, *Tao* 24], [*Gupta*+ 24])
- it also matters to innovation / generalization (an open question, to be discussed in the end)

$$
\text{ideal} \qquad \qquad \min_{\theta} \frac{1}{2} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} || \nabla_x \log p_{t|0}(X_t | X_0, t) - s_\theta(X_t, t) ||^2 dt
$$

practice time discretization/sampling \rightarrow empirical approximation \rightarrow optimization

- nontrivial even when the target density is known (e.g., [*Huang*+ 24], [*He*, *Rojas*, *Tao* 24], [*Gupta*+ 24])
- it also matters to innovation / generalization (an open question, to be discussed in the end)

ideal
$$
\min_{\theta} \frac{1}{2} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} || \nabla_x \log p_{t|0}(X_t | X_0, t) - s_{\theta}(X_t, t) ||^2 dt
$$

practice time discretization/sampling \rightarrow empirical approximation \rightarrow optimization

$$
\text{ideal} \quad \min_{\theta} \frac{1}{2} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} \|\nabla_x \log p_{t|0}(X_t | X_0, t) - S(\theta; t, X_t) \|^2 dt
$$

ideal
$$
\min_{\theta} \frac{1}{2} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} || \nabla_x \log p_{t|0}(X_t | X_0, t) - S(\theta; t, X_t) ||^2 dt
$$

forward dynamics $\Rightarrow X_t = e^{-\mu_t} X_0 + \bar{\sigma}_t \xi$

ideal	\n $\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t} X_{0}} \ \nabla_{x} \log p_{t 0}(X_{t} X_{0}, t) - S(\theta; t, X_{t})\ ^{2} dt$ \n
forward dynamics	\n $X_{t} = e^{-\mu_{t}} X_{0} + \bar{\sigma}_{t} \xi$ \n
0 for Variance Exploding SDE	

ideal	\n $\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t} X_{0}} \ \nabla_{x} \log p_{t 0}(X_{t} X_{0},t) - S(\theta; t, X_{t})\ ^{2} dt$ \n
forward dynamics	\n $\Rightarrow X_{t} = e^{-\mu_{t}} X_{0} + \frac{1}{\sigma_{t}} \xi \quad \text{variance schedule}$ \n
for Variance Exploding SDE	

ideal	\n $\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t} X_{0}} \ \nabla_{x} \log p_{t 0}(X_{t} X_{0},t) - S(\theta; t, X_{t})\ ^{2} dt$ \n <p>forward dynamics</p> \n	\n $X_{t} = e^{-\mu_{t}} X_{0} + \overline{\sigma}_{t} \xi$ \n	\n variance schedule \n
\n $\min_{\theta} \frac{1}{2} \int_{t_{0}}^{T} w(t) \frac{1}{\overline{\sigma}_{t}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \ \overline{\sigma}_{t} S(\theta; t, X_{0} + \overline{\sigma}_{t} \xi) + \xi \ ^{2} dt$ \n	\n $\text{O for Variance Exploding SDE}$ \n		

ideal
$$
\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \|\nabla_{x} \log p_{t|0}(X_{t}|X_{0},t) - S(\theta; t, X_{t})\|^{2} dt
$$
\nforward dynamics\n
$$
\left\| X_{t} = e^{-\mu t} X_{0} + \frac{1}{\sigma t} \xi \longrightarrow \text{variance schedule}
$$
\n
$$
\min_{\theta} \frac{1}{2} \int_{t_{0}}^{T} w(t) \frac{1}{\bar{\sigma}_{t}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \|\bar{\sigma}_{t} S(\theta; t, X_{0} + \bar{\sigma}_{t} \xi) + \xi \|^{2} dt
$$
\nretization\n
$$
\min_{\theta} \frac{1}{2} \sum_{j=1}^{N} w(t_{j})(t_{j} - t_{j-1}) \frac{1}{\bar{\sigma}_{t_{j}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \|\bar{\sigma}_{t_{j}} S(\theta; t_{j}, X_{0} + \bar{\sigma}_{t_{j}} \xi) + \xi \|^{2}
$$
\n
$$
\widehat{\bar{\mathcal{L}}(\theta)}
$$

time discre

ideal	$\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t} X_{0}} \ \nabla_{x} \log p_{t 0}(X_{t} X_{0},t) - S(\theta; t, X_{t})\ ^{2} dt$
forward dynamics	$X_{t} = e^{-\mu_{t} X_{0}} \ \nabla_{x} \log \mathbb{E}_{\xi} \ \nabla_{x$

ideal	$\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t} X_{0}} \ \nabla_{x} \log p_{t 0}(X_{t} X_{0},t) - S(\theta;t,X_{t})\ ^{2} dt$ \n
forward dynamics	$\left\ X_{t} = e^{-\frac{U_{t}t}{U}}X_{0} + \frac{1}{\overline{O}_{t}\xi} \right\ _{0}^{T} \text{ variance schedule}$
$\min_{\theta} \frac{1}{2} \int_{t_{0}}^{T} w(t) \frac{1}{\overline{\sigma}_{t}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \ \overline{\sigma}_{t} S(\theta;t,X_{0} + \overline{\sigma}_{t}\xi) + \xi \ ^{2} dt$	
time discretization	$\min_{\theta} \frac{1}{2} \sum_{j=1}^{N} w(t_{j})(t_{j} - t_{j-1}) \frac{1}{\overline{\sigma}_{t_{j}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \ \overline{\sigma}_{t_{j}} S(\theta; t_{j}) X_{0} + \overline{\sigma}_{t_{j}} \xi) + \xi \ ^{2}$
empirical version	$\min_{\theta} \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_{j} \ \overline{\sigma}_{t_{j}} S(\theta;t_{j},x_{i} + \overline{\sigma}_{t_{j}} \xi_{ij}) + \xi_{ij} \ ^{2}$
$\widehat{\mathcal{L}}_{em}(\theta)$	

ideal	$\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t} X_{0}} \nabla_{x} \log p_{t 0}(X_{t} X_{0},t) - S(\theta;t,X_{t}) ^{2} dt$ \n
forward dynamics	$\mathbb{E}_{X_{0}} \left\{ X_{t} = e^{-\frac{t \mu_{t}}{2}} X_{0} + \frac{1}{\sqrt{2}} \xi + \frac{1}{2} \xi + \frac{1}{2}$

ideal	$\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t} X_{0}} \ \nabla_{x} \log p_{t 0}(X_{t} X_{0},t) - S(\theta;t,X_{t})\ ^{2} dt$ \n
forward dynamics	$\mathbb{E}_{X_{t}} = e^{-\frac{U_{t} \mathbb{I}}{2} X_{0} + \frac{1}{\sigma_{t} \xi} \longrightarrow \text{variance schedule}$
$\min_{\theta} \frac{1}{2} \int_{t_{0}}^{T} w(t) \frac{1}{\sigma_{t}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \ \sigma_{t} S(\theta;t,X_{0} + \sigma_{t} \xi) + \xi\ ^{2} dt$	
time discretization	$\min_{\theta} \frac{1}{2} \sum_{j=1}^{N} \frac{w(t_{j})(t_{j} - t_{j-1}) \frac{1}{\sigma_{t_{j}}}}{\sigma_{t_{j}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \ \sigma_{t_{j}} S(\theta; t_{j}, X_{0} + \bar{\sigma}_{t_{j}} \xi) + \xi\ ^{2}$
empirical version	$\min_{\theta} \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \frac{1}{\beta_{i}} \frac{\beta_{j}}{\sigma_{t_{j}} S(\theta;t_{j},x_{i} + \bar{\sigma}_{t_{j}} \xi_{ij}) + \xi_{ij} \ ^2}$
training	$\theta^{(k+1)} = \theta^{(k)} - h \nabla \bar{\mathcal{L}}_{em}(\theta^{(k)})$

GD training

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2
$$

score parameterization $S(\theta; \cdot)$ wide (& deep) ReLU MLP

GD training

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2
$$

score parameterization $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

GD training

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2
$$

score parameterization $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

6D training

\n
$$
\overline{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\overline{\sigma}_{t_j} S(\theta; \overline{t_j}, x_i + \overline{\overline{\sigma}_{t_j}} \xi_{ij}) + \xi_{ij}\|^2} \longrightarrow \text{time schedule}
$$
\nvariance schedule

score parameterization $S(\theta;\cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

GD training

\n
$$
\overline{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\overline{\sigma}_{t_j} S(\theta; t_j], x_i + \left| \overline{\sigma}_{t_j} \xi_{ij} \right| + \left| \xi_{ij} \right\|^2} \longrightarrow \text{time schedule}
$$
\nvariance schedule

roadmap

non-asymptotic bound of GD optimization of $\bar{\mathcal{L}}_{em}$

score parameterization $S(\theta;\cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

6D training

\n
$$
\overline{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\overline{\sigma}_{t_j} S(\theta; t_j, x_i + \left|\overline{\sigma}_{t_j} \xi_{ij}\right|) + \xi_{ij}\|^2} \longrightarrow \text{time schedule}
$$
\nvariance schedule

roadmap

 $C>0$

non-asymptotic bound of GD optimization of $\bar{\mathcal{L}}_{em} \gtrsim C$

score parameterization $S(\theta;\cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

6D training

\n
$$
\overline{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\overline{\sigma}_{t_j} S(\theta; t_j, x_i + \left| \overline{\sigma}_{t_j} \xi_{ij} \right|) + \xi_{ij} \|^2} \longrightarrow \text{time schedule}
$$
\nvariance schedule

score parameterization $S(\theta;\cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

6D training

\n
$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; \bar{t_j}, x_i + |\bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij}\|^2 \longrightarrow \text{time schedule}
$$
\nvariance schedule

score parameterization $S(\theta;\cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

total weighting the field weighting weighting the

6D training

\n
$$
\overline{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\overline{\sigma}_{t_j} S(\theta; t_j], x_i + \left| \overline{\sigma}_{t_j} \xi_{ij} \right| + \xi_{ij} \|^2 \longrightarrow \text{time schedule}
$$
\nvariance schedule

score parameterization $S(\theta;\cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

total weighting the first sector weighting the

6D training

\n
$$
\overline{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\overline{\sigma}_{t_j} S(\theta; t_j], x_i + \left[\overline{\sigma}_{t_j} \xi_{ij}\right) + \xi_{ij}\|^2 \longrightarrow \text{time schedule}
$$
\nvariance schedule

score parameterization $S(\theta;\cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

total weighting the first sector weighting the

6D training

\n
$$
\overline{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\overline{\sigma}_{t_j} S(\theta; t_j], x_i + \left| \overline{\sigma}_{t_j} \xi_{ij} \right| + \xi_{ij} \|^2 \longrightarrow \text{time schedule}
$$
\nvariance schedule

▶ Objective function (minimized by GD):

▶ Objective function (minimized by GD):

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1}) \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij} \|^2}{\beta_j}
$$

 $\begin{picture}(100,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($

▶ Objective function (minimized by GD):

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1}) \left\| \bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij} \right\|^2}{\beta_j}
$$

▶ Architecture: deep ReLU network

$$
\leftarrow \Box \rightarrow \leftarrow \Box \Box \rightarrow \leftarrow \Xi \rightarrow \leftarrow \Xi \rightarrow \leftarrow \Box \Box \rightarrow \leftarrow \Box \leftarrow \leftarrow \Box / 22
$$

▶ Objective function (minimized by GD):

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1}) \left\| \bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij} \right\|^2}{\beta_j}
$$

▶ Architecture: deep ReLU network

$$
S(\theta;X_{ij})=W_{L+1}\sigma(W_L\cdots W_1\sigma(W_0[X_{ij},t_j])),
$$

 $\begin{picture}(100,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($

▶ Objective function (minimized by GD):

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1}) \left\| \bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij} \right\|^2}{\beta_j}
$$

▶ Architecture: deep ReLU network

$$
S(\theta;X_{ij})=W_{L+1}\sigma(W_L\cdots W_1\sigma(W_0[X_{ij},t_j])),
$$

 $1/22$

 $\blacktriangleright \ W_{L+1} \in \mathbb{R}^{d \times m}, W_{\ell} \in \mathbb{R}^{m \times m}, W_0 \in \mathbb{R}^{m \times d}$

▶ Objective function (minimized by GD):

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1}) \left\| \bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij} \right\|^2}{\beta_j}
$$

▶ Architecture: deep ReLU network

$$
S(\theta;X_{ij})=W_{L+1}\sigma(W_L\cdots W_1\sigma(W_0[X_{ij},t_j])),
$$

 $\begin{picture}(100,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($

$$
\begin{array}{ll}\n\blacktriangleright & W_{L+1} \in \mathbb{R}^{d \times m}, \ W_{\ell} \in \mathbb{R}^{m \times m}, \ W_{0} \in \mathbb{R}^{m \times d} \\
\blacktriangleright & \theta := (W_{0}, W_{1}, \cdots, W_{L}, W_{L+1})\n\end{array}
$$

Input data (t_j, X_{ij}) :

4/ □ > 4 @ > 4 문 > 4 문 > 2 문 - 9 9 0 2/22

Input data (t_j, X_{ij}) :

$$
X_{ij}=x_i+\bar{\sigma}_{t_j}\xi_{ij}\sim P_{t_j}(X|X(0)=x_i),
$$

4/ □ > 4 @ > 4 문 > 4 문 > 2 문 - 9 9 0 2/22

Input data (t_j, X_{ij}) :

$$
X_{ij}=x_i+\bar{\sigma}_{t_j}\xi_{ij}\sim P_{t_j}(X|X(0)=x_i),
$$

2/22

where $\bar{\sigma}^2_{t_j}$ is the variance of $X_{t_j} | X_0$, and $\xi_{ij} \sim \mathcal{N}(0,I)$

Input data (t_j, X_{ij}) :

$$
X_{ij}=x_i+\bar{\sigma}_{t_j}\xi_{ij}\sim P_{t_j}(X|X(0)=x_i),
$$

4 ロ → 4 레 → 4 리 → 4 리 → 그리 코 → 9 Q O + 2/22

where $\bar{\sigma}^2_{t_j}$ is the variance of $X_{t_j} | X_0$, and $\xi_{ij} \sim \mathcal{N}(0,I)$ \blacktriangleright $\bar{\sigma}_t$: monotonically increasing functions of t; $\bar{\sigma}_0 = 0$

Input data (t_j, X_{ij}) :

$$
X_{ij}=x_i+\bar{\sigma}_{t_j}\xi_{ij}\sim P_{t_j}(X|X(0)=x_i),
$$

where $\bar{\sigma}^2_{t_j}$ is the variance of $X_{t_j} | X_0$, and $\xi_{ij} \sim \mathcal{N}(0,I)$ \blacktriangleright $\bar{\sigma}_t$: monotonically increasing functions of t; $\bar{\sigma}_0 = 0$ ▶ Output data:

$$
\frac{-\xi_{ij}}{\bar{\sigma}_{t_j}}
$$

4 ロ → 4 레 → 4 리 → 4 리 → 그리 코 → 9 Q O + 2/22

Input data (t_j, X_{ij}) :

$$
X_{ij}=x_i+\bar{\sigma}_{t_j}\xi_{ij}\sim P_{t_j}(X|X(0)=x_i),
$$

where $\bar{\sigma}^2_{t_j}$ is the variance of $X_{t_j} | X_0$, and $\xi_{ij} \sim \mathcal{N}(0,I)$ \blacktriangleright $\bar{\sigma}_t$: monotonically increasing functions of t; $\bar{\sigma}_0 = 0$ ▶ Output data:

$$
\frac{-\xi_{ij}}{\bar{\sigma}_{t_j}}
$$

4 ロ → 4 레 → 4 리 → 4 리 → 그리 코 → 9 Q O + 2/22

▶ Very large if $\bar{\sigma}_{t_i} \approx 0$

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 Q Q + 3/22
\triangleright Assumptions: mild + preserve the nature of diffusion models

 \triangleright Assumptions: mild + preserve the nature of diffusion models

4 ロ → 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 Q Q - 4/22

▶ For example,

 \triangleright Assumptions: mild + preserve the nature of diffusion models

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → 三 글 → 9 Q O + 4/22

▶ For example,

Assumption

► Data scaling:
$$
||x_i|| = \Theta(\sqrt{d})
$$
 for all *i*.

 \triangleright Assumptions: mild + preserve the nature of diffusion models

4 ロ → 4 레 → 4 리 → 4 리 → 리 코 → 9 Q O + 4/22

▶ For example,

Assumption

► Data scaling:
$$
||x_i|| = \Theta(\sqrt{d})
$$
 for all *i*.

Interpretation:

 \triangleright Assumptions: mild + preserve the nature of diffusion models

4/22 4/22 4/22 4/22 4/24 4/22

 \blacktriangleright For example,

Assumption

► Data scaling:
$$
||x_i|| = \Theta(\sqrt{d})
$$
 for all *i*.

Interpretation:

 \triangleright Assumptions: mild + preserve the nature of diffusion models

 \blacktriangleright For example,

Assumption

► Data scaling:
$$
||x_i|| = \Theta(\sqrt{d})
$$
 for all *i*.

Interpretation:

▶ Recall input data:

$$
X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}
$$

4/22 4/22 4/22 4/22 4/24 4/22

 \triangleright Assumptions: mild + preserve the nature of diffusion models

 \blacktriangleright For example,

Assumption

► Data scaling:
$$
||x_i|| = \Theta(\sqrt{d})
$$
 for all *i*.

Interpretation:

▶ Recall input data:

$$
X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}
$$

4/22 4/22 4/22 4/22 4/24 4/22

$$
\blacktriangleright \xi_{ij} \sim \mathcal{N}(0, I) \Rightarrow ||\xi_{ij}|| \approx \sqrt{d}
$$

 \triangleright Assumptions: mild + preserve the nature of diffusion models

 \blacktriangleright For example,

Assumption

► Data scaling:
$$
||x_i|| = \Theta(\sqrt{d})
$$
 for all *i*.

Interpretation:

▶ Recall input data:

$$
X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}
$$

$$
\begin{array}{ll}\n\blacktriangleright & \xi_{ij} \sim \mathcal{N}(0, I) \Rightarrow \|\xi_{ij}\| \approx \sqrt{d} \\
\text{Data} & \text{Noise} \\
x_i \sim P_0 \text{ dominates} & \xi_{ij} \sim \mathcal{N}(0, I) \text{ dominates} \\
\Rightarrow \|x_i\| = \Omega(\sqrt{d}) & \Rightarrow \|x_i\| = \mathcal{O}(\sqrt{d}) \\
0 & \Leftrightarrow \exists \forall i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists \forall i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \exists i \in \mathbb{N} \text{ and } \bar{f}(i) \Rightarrow \bar{f}(i) \
$$

Theorem

For any $\epsilon_{\text{train}} > 0$, consider $m \geq M(\epsilon_{\text{train}})$. With high probability,

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)})
$$
\nMoreover, when $K = \Theta(d^{\frac{1-a_0}{2}} n^2 N \log(\frac{d}{\epsilon_{\text{train}}}))$,
\n
$$
\bar{\mathcal{L}}_{em}(\theta^{(K)}) \leq \epsilon_{\text{train}}.
$$

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 Q Q + 5/22

Theorem

For any $\epsilon_{\text{train}} > 0$, consider $m \geq M(\epsilon_{\text{train}})$. With high probability,

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)})
$$
\n
$$
\leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)})
$$
\nMoreover, when $K = \Theta(d^{\frac{1-a_0}{2}} n^2 N \log(\frac{d}{\epsilon_{\text{train}}}))$,\n
$$
\bar{\mathcal{L}}_{em}(\theta^{(K)}) \leq \epsilon_{\text{train}}.
$$

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 Q Q + 5/22

Theorem

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right) \bar{\mathcal{L}}_{em}(\theta^{(0)})
$$

6/22

Theorem

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right) \bar{\mathcal{L}}_{em}(\theta^{(0)})
$$

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)
$$

4 미 > 4 레 > 4 로 > 4 로 > 1 로 - 9 9 0 - 6/22

Theorem

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right) \bar{\mathcal{L}}_{em}(\theta^{(0)})
$$

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)
$$

K □ K K @ K K 경 K 제공 K 시골 X 시 공 (2) 20 22

▶ $(i^*(s), j^*(s))$ = the index of the largest loss $f(\theta^{(s)}; i, j)$

Theorem

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right) \bar{\mathcal{L}}_{em}(\theta^{(0)})
$$

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)
$$

4 ロ ▶ (@) (홍) (홍) - 홍 - 9 9 0 - 6/22

▶ $(i^*(s), j^*(s))$ = the index of the largest loss $f(\theta^{(s)}; i, j)$ ▶ Faster convergence:

Theorem

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right) \bar{\mathcal{L}}_{em}(\theta^{(0)})
$$

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)
$$

▶ $(i^*(s), j^*(s))$ = the index of the largest loss $f(\theta^{(s)}; i, j)$ ▶ Faster convergence:

want to maximize over all the indices

Theorem

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right) \bar{\mathcal{L}}_{em}(\theta^{(0)})
$$

$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)
$$

▶ $(i^*(s), j^*(s))$ = the index of the largest loss $f(\theta^{(s)}; i, j)$ ▶ Faster convergence:

> \Rightarrow \Rightarrow \Rightarrow \Rightarrow want all $f(\theta^{(\bm{s})};i,j)$ $f(\theta^{(\bm{s})};i,j)$ $f(\theta^{(\bm{s})};i,j)$ $f(\theta^{(\bm{s})};i,j)$ $f(\theta^{(\bm{s})};i,j)$ to [be](#page-158-0) [th](#page-160-0)e [l](#page-154-0)ar[ge](#page-131-0)[st](#page--1-0) [los](#page-131-0)s $\frac{1}{\epsilon}$ are $\frac{6}{22}$ want to maximize over all the indices

Corollary

When $f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$ for all $(i, j), (i', j'), k$, GD obtains the optimal rate of convergence

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \left(1 - C_7 h \max_{j=1,\cdots,N} w(t_j)(t_j - t_{j-1}) \bar{\sigma}_{t_j} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right)^k \bar{\mathcal{L}}_{em}(\theta^{(0)}).
$$

4 ロ → 4 레 → 4 로 → 4 로 → 22 로 → 9 Q Q + 7/22

Corollary

When $f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$ for all $(i, j), (i', j'), k$, GD obtains the optimal rate of convergence

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \left(1 - C_7 h \max_{j=1,\cdots,N} w(t_j)(t_j - t_{j-1}) \bar{\sigma}_{t_j} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right)^k \bar{\mathcal{L}}_{em}(\theta^{(0)}).
$$

4 ロ → 4 레 → 4 로 → 4 로 → 22 로 → 9 Q Q + 7/22

$$
\blacktriangleright f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j').
$$

Corollary

When $f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$ for all $(i, j), (i', j'), k$, GD obtains the optimal rate of convergence

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \left(1 - C_7 h \max_{j=1,\cdots,N} w(t_j)(t_j - t_{j-1}) \bar{\sigma}_{t_j} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right)^k \bar{\mathcal{L}}_{em}(\theta^{(0)}).
$$

4 ロ → 4 레 → 4 로 → 4 로 → 22 로 → 9 Q Q + 7/22

$$
\triangleright f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j').
$$
\n
$$
f(\theta; i, j) = \underbrace{\beta_j}_{\text{total weighting}} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}||^2
$$

Corollary

When $f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$ for all $(i, j), (i', j'), k$, GD obtains the optimal rate of convergence

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \left(1 - C_7 h \max_{j=1,\cdots,N} w(t_j)(t_j - t_{j-1}) \bar{\sigma}_{t_j} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right)^k \bar{\mathcal{L}}_{em}(\theta^{(0)}).
$$

$$
\triangleright f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j').
$$
\n
$$
f(\theta; i, j) = \underbrace{\beta_j}_{\text{total weighting}} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}||^2
$$

▶ Claim: this implies how to choose the total weighting β_i

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - 90 0 - 7/22

Total weighting: theory vs practice $f(\theta; i, j) = \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij} \|^2$

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - 9040 - 8/22

Total weighting: theory vs practice $f(\theta; i, j) = \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij} \|^2$ $\blacktriangleright \|\bar{\sigma}_t S(\theta; t, x_0 + \bar{\sigma}_t \xi) + \xi\|^2$:

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - 9040 - 8/22

K ロ X (日 X X 원 X X 원 X 원 X 원 X 8 8/22)

K ロ X (日 X X 원 X X 원 X 원 X 원 X 8 8/22)

In practice:

▶ EDM [\[Karras et al., 2022\]](#page--1-1)

In practice:

▶ EDM [\[Karras et al., 2022\]](#page--1-1)

(ロ) (@) (경) (경) (경) 경 (9/22

In practice:

▶ EDM [\[Karras et al., 2022\]](#page--1-1)

9/22

▶ Other total weighting functions used in practice (mostly monotone): e.g., $\beta_{\bar{\sigma}} = \frac{1}{\bar{\sigma}}$ $\frac{1}{\bar{\sigma}}$ [\[Song et al., 2021\]](#page--1-2)

In practice:

▶ EDM [\[Karras et al., 2022\]](#page--1-1)

4 ロ → 4 레 → 4 코 → 4 코 → 1 코 → 9 9 0 0 9/22

- ▶ Other total weighting functions used in practice (mostly monotone): e.g., $\beta_{\bar{\sigma}} = \frac{1}{\bar{\sigma}}$ $\frac{1}{\bar{\sigma}}$ [\[Song et al., 2021\]](#page--1-2)
- \blacktriangleright Performance: EDM $>$ other models

In practice:

▶ EDM [\[Karras et al., 2022\]](#page--1-1)

- ▶ Other total weighting functions used in practice (mostly monotone): e.g., $\beta_{\bar{\sigma}} = \frac{1}{\bar{\sigma}}$ $\frac{1}{\bar{\sigma}}$ [\[Song et al., 2021\]](#page--1-2)
- ▶ Performance: EDM > other models \Rightarrow "bell-shape" is preferable

In practice:

▶ EDM [\[Karras et al., 2022\]](#page--1-1)

- ▶ Other total weighting functions used in practice (mostly monotone): e.g., $\beta_{\bar{\sigma}} = \frac{1}{\bar{\sigma}}$ $\frac{1}{\bar{\sigma}}$ [\[Song et al., 2021\]](#page--1-2)
- \triangleright Performance: EDM $>$ other models \Rightarrow "bell-shape" is preferable
- ▶ Roughly, Theory \approx Practice

\n- Recall: input data
$$
X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}
$$
, output data $-\frac{\xi_{ij}}{\bar{\sigma}_{t_j}}$, where $x_i \sim P_0$, $\xi_{ij} \sim \mathcal{N}(0, I)$
\n

10 → 1日 → 1日 → 1日 → 1日 → 20 → 20 → 20 → 22

• Recall: input data $X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}$, output data $-\frac{\xi_{ij}}{\bar{\sigma}_t}$ $\frac{\varsigma_{\it y}}{\bar{\sigma}_{t_j}}$, where $x_i \sim P_0$, $\xi_{ii} \sim \mathcal{N}(0, I)$ ▶ Framework [\[Allen-Zhu et al., 2019\]](#page--1-3):

10→1日→1월→1월→ 월 990 10/22

• Recall: input data $X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}$, output data $-\frac{\xi_{ij}}{\bar{\sigma}_t}$ $\frac{\varsigma_{\it y}}{\bar{\sigma}_{t_j}}$, where $x_i \sim P_0$, $\xi_{ii} \sim \mathcal{N}(0, I)$ ▶ Framework [\[Allen-Zhu et al., 2019\]](#page--1-3): semi-smoothness $+$ local strongly convex \overline{y} \overline{y} \overline{y} \overline{z} $\overline{$ key

10→1日→1월→1월→ 월 990 10/22

• Recall: input data $X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}$, output data $-\frac{\xi_{ij}}{\bar{\sigma}_t}$ $\frac{\varsigma_{\it y}}{\bar{\sigma}_{t_j}}$, where $x_i \sim P_0$, $\xi_{ii} \sim \mathcal{N}(0, I)$ ▶ Framework [\[Allen-Zhu et al., 2019\]](#page--1-3): semi-smoothness $+$ local strongly convex | {z } key

▶ No longer works in denoising diffusion models

10/22

10/22
Proof of convergence

10/22

Proof of convergence

• Recall: input data $X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}$, output data $-\frac{\xi_{ij}}{\bar{\sigma}_t}$ $\frac{\varsigma_{\it y}}{\bar{\sigma}_{t_j}}$, where $x_i \sim P_0$, $\xi_{ii} \sim \mathcal{N}(0, I)$ ▶ Framework [\[Allen-Zhu et al., 2019\]](#page--1-0): semi-smoothness $+$ local strongly convex \overline{y} \overline{y} \overline{y} \overline{z} $\overline{$ key ▶ No longer works in denoising diffusion models \blacktriangleright Reason: (1) bad bad
small output data scaling ;(2) correlation $\overline{\qquad \qquad \text{''good''}}$ yood"
data separability ▶ Our proof: high probability bound using some high-dimensional geometry facts

10/22

Recall:

Theorem

For any $\epsilon_{\text{train}} > 0$, consider $m \geq M(\epsilon_{\text{train}})$. With high probability,

$$
\bar{\mathcal{L}}_{em}(\theta^{(k)}) \\ \leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)})
$$

Moreover, when $K = \Theta(d^{\frac{1-a_0}{2}}n^2N\log(\frac{d}{\epsilon_{\text{train}}}))$,

 $\bar{\mathcal{L}}_{em}(\theta^{(K)}) \leq \epsilon_{\text{train}}.$

11/22

Properties of denoising score matching objective:

10 H (日) (정) (정) (정) (정) 3 (9) 90 (2) 12/22

Properties of denoising score matching objective:

$$
\triangleright \bar{\mathcal{L}}_{em}(\theta) \to \bar{\mathcal{L}} \text{ as } n \to \infty
$$
\n
$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \frac{1}{n} \sum_{i=1}^{n} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}||^2
$$
\n
$$
\bar{\mathcal{L}}(\theta) = \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi ||^2
$$

10→ 1日→ 1월→ 1월→ 1월→ 990 12/22

Properties of denoising score matching objective:

$$
\triangleright \bar{\mathcal{L}}_{em}(\theta) \to \bar{\mathcal{L}} \text{ as } n \to \infty
$$
\n
$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \frac{1}{n} \sum_{i=1}^{n} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}||^2
$$
\n
$$
\bar{\mathcal{L}}(\theta) = \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi ||^2
$$

10 → 1日 → 1월 → 1월 → 1월 → 990 + 12/22

▶ Score matching \rightarrow denoising score matching:

Properties of denoising score matching objective:

$$
\triangleright \bar{\mathcal{L}}_{em}(\theta) \to \bar{\mathcal{L}} \text{ as } n \to \infty
$$
\n
$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \frac{1}{n} \sum_{i=1}^{n} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}||^2
$$
\n
$$
\bar{\mathcal{L}}(\theta) = \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi ||^2
$$

▶ Score matching \rightarrow denoising score matching:

$$
0 \leq \mathbb{E}_{X_{t_j}} ||S(\theta; t_j, X_{t_j}) - \nabla_X \log p_{t_j}(X_{t_j})||^2
$$

=
$$
\frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi ||^2 + C_{t_j}
$$

10 → 1日 → 1월 → 1월 → 1월 → 990 + 12/22

Properties of denoising score matching objective:

$$
\triangleright \bar{\mathcal{L}}_{em}(\theta) \to \bar{\mathcal{L}} \text{ as } n \to \infty
$$
\n
$$
\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \frac{1}{n} \sum_{i=1}^{n} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}||^2
$$
\n
$$
\bar{\mathcal{L}}(\theta) = \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} ||\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi ||^2
$$

▶ Score matching \rightarrow denoising score matching:

$$
0 \leq \mathbb{E}_{X_{t_j}} \|S(\theta; t_j, X_{t_j}) - \nabla_X \log p_{t_j}(X_{t_j})\|^2
$$

=
$$
\frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi \|^2 + C_{t_j}
$$

12/22 $\blacktriangleright \Rightarrow \bar{\mathcal{L}}(\theta) + \bar{C} \geq 0$ $\blacktriangleright \Rightarrow \overline{\mathcal{L}}(\theta) \geq -\overline{\overline{\mathcal{C}}} > 0$, i.e., posit[ive](#page-186-0) [lo](#page-188-0)wer [bo](#page-131-0)[un](#page--1-1)[d](#page-131-0) [of](#page--1-1) $\overline{\mathcal{L}}(\theta)$

Theory: more training

▶ Theorem: choose arbitrarily large width m , ϵ_{train} can be as small as possible

1日 H 1日 H 1 리베시코 H 1 - 13/22

▶ Theorem: choose arbitrarily large width m , ϵ_{train} can be as small as possible

$$
0 \stackrel{?}{\leftarrow} \epsilon_\text{train} \approx \bar{\mathcal{L}}_\textit{em}(\theta) \rightarrow \bar{\mathcal{L}}(\theta) \geq -\bar{C} > 0
$$

1日 H 1日 H 1 리베시코 H 1 - 13/22

▶ Theorem: choose arbitrarily large width m , ϵ_{train} can be as small as possible

$$
0 \stackrel{?}{\leftarrow} \epsilon_\text{train} \approx \bar{\mathcal{L}}_\textit{em}(\theta) \rightarrow \bar{\mathcal{L}}(\theta) \geq - \bar{C} > 0
$$

1日 → 1日 → 1월 → 1월 → 1월 → 990 + 13/22

▶ Contradiction?

No contradiction:

No contradiction:

$$
\text{can have both }\bar{\mathcal{L}}_{em}(\theta)\approx 0 \text{ and }\bar{\mathcal{L}}\approx -\bar{C}>0
$$

10 → 1日 → 1월 → 1월 → 1월 → 200 → 14/22

No contradiction:

$$
\text{can have both }\bar{\mathcal{L}}_{em}(\theta)\approx 0 \text{ and }\bar{\mathcal{L}}\approx -\bar{C}>0
$$

 $\begin{picture}(100,100)(-0.000,0.000) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){$

Reason:

No contradiction:

can have both
$$
\bar{\mathcal{L}}_{em}(\theta)\approx 0
$$
 and $\bar{\mathcal{L}}\approx -\bar{C}>0$

10 → 1日 → 1월 → 1월 → 1월 → 990 14/22

Reason:

 \blacktriangleright Overparameterized setting: fix *m*,

No contradiction:

$$
\text{can have both }\bar{\mathcal{L}}_{em}(\theta)\approx 0 \text{ and }\bar{\mathcal{L}}\approx -\bar{C}>0
$$

Reason:

 \blacktriangleright Overparameterized setting: fix *m*, $\triangleright \ \bar{\mathcal{L}}_{em}(\theta) \leq \epsilon_{\text{train}}$: sample size $n \ll m \ \Rightarrow \ n$ is bounded

1대 대 1대 대 대 대 대 대 대 대 대 대 대 대 기능이 있다.
14/22

No contradiction:

$$
\text{can have both }\bar{\mathcal{L}}_{em}(\theta)\approx 0 \text{ and }\bar{\mathcal{L}}\approx -\bar{C}>0
$$

Reason:

 \blacktriangleright Overparameterized setting: fix *m*, $\triangleright \ \bar{\mathcal{L}}_{em}(\theta) \leq \epsilon_{\text{train}}$: sample size $n \ll m \ \Rightarrow \ n$ is bounded \blacktriangleright $\vec{\mathcal{L}}_{em} \rightarrow \vec{\mathcal{L}}$ as $n \rightarrow \infty$

14/22 14/22 14/22 14/22 14/22

No contradiction:

$$
\text{can have both }\bar{\mathcal{L}}_{em}(\theta)\approx 0 \text{ and }\bar{\mathcal{L}}\approx -\bar{C}>0
$$

Reason:

\n- Overparameterized setting: fix
$$
m
$$
,
\n- $\mathcal{L}_{\text{em}}(\theta) \leq \epsilon_{\text{train}}$: sample size $n \ll m \Rightarrow n$ is bounded
\n- $\mathcal{L}_{\text{em}} \rightarrow \mathcal{L}$ as $n \rightarrow \infty$
\n

10 → 1日 → 1월 → 1월 → 1월 → 990 14/22

Consequence:

No contradiction:

$$
\text{can have both }\bar{\mathcal{L}}_{em}(\theta)\approx 0 \text{ and }\bar{\mathcal{L}}\approx -\bar{C}>0
$$

Reason:

\n- Overparameterized setting: fix
$$
m
$$
,
\n- $\bar{\mathcal{L}}_{em}(\theta) \leq \epsilon_{\text{train}}$: sample size $n \ll m \Rightarrow n$ is bounded
\n- $\bar{\mathcal{L}}_{em} \rightarrow \bar{\mathcal{L}}$ as $n \rightarrow \infty$
\n

10 → 1日 → 1월 → 1월 → 1월 → 990 14/22

Consequence:

$$
\blacktriangleright \epsilon_n = |\bar{\mathcal{L}}_{em}(\theta) - \bar{\mathcal{L}}(\theta)|
$$

No contradiction:

$$
\text{can have both }\bar{\mathcal{L}}_{em}(\theta)\approx 0 \text{ and }\bar{\mathcal{L}}\approx -\bar{C}>0
$$

Reason:

\n- Overparameterized setting: fix
$$
m
$$
,
\n- $\bar{\mathcal{L}}_{em}(\theta) \leq \epsilon_{\text{train}}$: sample size $n \ll m \Rightarrow n$ is bounded
\n- $\bar{\mathcal{L}}_{em} \rightarrow \bar{\mathcal{L}}$ as $n \rightarrow \infty$
\n

10 → 1日 → 1월 → 1월 → 1월 → 990 14/22

Consequence:

\n- $$
\epsilon_n = |\bar{\mathcal{L}}_{em}(\theta) - \bar{\mathcal{L}}(\theta)|
$$
\n- If ϵ_{train} is small $\Rightarrow \epsilon_n$ is large
\n

$$
\mathsf{KL}(p_{\delta} | q_{\mathcal{T} - \delta}) \lesssim \underbrace{E_D + E_I}_{\mathsf{sampling}} + E_S
$$

1日 → 1日 → 1월 → 1월 → 1월 → 990 + 15/22

where p_{δ} is the true density at time δ , and $q_{\mathcal{T}-\delta}$ is the approximated density of p_{δ} .

$$
\mathsf{KL}(p_{\delta} | q_{\mathcal{T} - \delta}) \lesssim \underbrace{E_D + E_I}_{\mathsf{sampling}} + E_S
$$

1日 → 1日 → 1월 → 1월 → 1월 → 990 + 15/22

where p_{δ} is the true density at time δ , and $q_{\mathcal{T}-\delta}$ is the approximated density of p_{δ} .

 \blacktriangleright E_S : score error

16/22 - 16/22 - 16/22 - 16/22 - 16/22 - 16/22

16/22 - 16/22 - 16/22 - 16/22 - 16/22 - 16/22

 $\blacktriangleright \epsilon_n + \epsilon_{\text{est}} + \epsilon_{\text{approx}}$ [\[Chen et al., 2023,](#page--1-2) [Oko et al., 2023,](#page--1-3) [Han et al., 2024\]](#page--1-4)

16/22 - 16/22 - 16/22 - 16/22 - 16/22 - 16/22

- $\blacktriangleright \epsilon_n + \epsilon_{\text{est}} + \epsilon_{\text{approx}}$ [\[Chen et al., 2023,](#page--1-2) [Oko et al., 2023,](#page--1-3) [Han et al., 2024\]](#page--1-4)
- ▶ Regression generalization \rightarrow Diffusion models

$$
\triangleright
$$
 $\epsilon_n + \epsilon_{\text{est}} + \epsilon_{\text{approx}}$ [Chen et al., 2023, Oko et al., 2023, Han et al., 2024]

▶ Regression generalization \rightarrow Diffusion models

▶ Open problem:

$$
\blacktriangleright \ \epsilon_{\text{train}} + \epsilon_n \geq -2\bar{C} > 0 \ \Rightarrow \text{error bound} \not\to 0
$$

16/22 - 16/22 - 16/22 - 16/22 - 16/22 - 16/22

$$
\triangleright
$$
 $\epsilon_n + \epsilon_{\text{est}} + \epsilon_{\text{approx}}$ [Chen et al., 2023, Oko et al., 2023, Han et al., 2024]

$$
\blacktriangleright
$$
 Regression generalization \rightarrow Diffusion models

- ▶ Open problem:
	- \triangleright $\epsilon_{\text{train}} + \epsilon_n \ge -2\bar{C} > 0 \Rightarrow$ error bound $\neq 0$ change decomposition \Rightarrow tighter analysis?

16/22 16/22 14/22 12:22 12:22

$$
\triangleright
$$
 $\epsilon_n + \epsilon_{\text{est}} + \epsilon_{\text{approx}}$ [Chen et al., 2023, Oko et al., 2023, Han et al., 2024]

$$
\blacktriangleright
$$
 Regression generalization \rightarrow Diffusion models

- ▶ Open problem:
	- \triangleright $\epsilon_{\text{train}} + \epsilon_n \ge -2\bar{C} > 0 \Rightarrow$ error bound $\neq 0$ change decomposition \Rightarrow tighter analysis?

$$
\blacktriangleright S(\theta; t, X_t) \stackrel{?}{\to} \nabla_X \log p_t(X_t)
$$

Example full error analysis

Theorem (EDM polynomial schedule [\[Karras et al., 2022\]](#page--1-5))

$$
\mathcal{K}L(p_{\delta}|q_{\mathcal{T}-\delta}) \lesssim \underbrace{\frac{\mathrm{m}_2^2}{\mathcal{T}^2}}_{E_f} + \underbrace{\frac{da^2\,\mathcal{T}^{\frac{1}{3}}}{\delta^{\frac{1}{s}}N} + (\mathrm{m}_2^2 + d)\left(\frac{a^2\,\mathcal{T}^{\frac{1}{s}}}{\delta^{\frac{1}{s}}N} + \frac{a^3\,\mathcal{T}^{\frac{2}{s}}}{\delta^{\frac{2}{s}}N^2}\right)}_{E_D} + \underbrace{\frac{1}{N}\left(C_2 + \left(1 - C_1h\left(\frac{md^{\frac{a_0-1}{2}}}{n^3N^2}\right)\right)^K\right)}_{E_S},
$$

10 H 1日 H 1 로베 1 로베 1 로 1 9 Q 0 17/22

where $\delta = t_0$, $a = 7$, $a_0 \in (1/2, 1)$.

$$
\blacktriangleright \ \mathcal{C}_2 = \epsilon_n + \epsilon_{\text{est}} + \epsilon_{\text{approx}}
$$

sampling $+$ optimization

18/22 18/22 18/24 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:1

 $\rightharpoonup \alpha_j(t_j,\bar{\sigma}_{t_j}) \neq \beta_j$, the weighting for training objective

sampling $+$ optimization

- $\rightharpoonup \alpha_j(t_j,\bar{\sigma}_{t_j}) \neq \beta_j$, the weighting for training objective
- First choose total weighting β_j ; then apply the schedules t_j , $\bar{\sigma}_{t_j}$

18/22 - 18/22 - 18/24 - 18/24 - 18/22 - 18/22

sampling $+$ optimization

- $\rightharpoonup \alpha_j(t_j,\bar{\sigma}_{t_j}) \neq \beta_j$, the weighting for training objective
- First choose total weighting β_j ; then apply the schedules t_j , $\bar{\sigma}_{t_j}$

18/22

▶ Next: focus on two concrete schedules used in practice

sampling $+$ optimization

- $\rightharpoonup \alpha_j(t_j,\bar{\sigma}_{t_j}) \neq \beta_j$, the weighting for training objective
- First choose total weighting β_j ; then apply the schedules t_j , $\bar{\sigma}_{t_j}$
- ▶ Next: focus on two concrete schedules used in practice
	- \blacktriangleright Theoretical implication: how to choose between two schedules

18/22 18/22 18/24 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:12 12:1

Two most famous choices:

Two most famous choices:

▶ Exponential schedules [\[Song et al., 2021\]](#page--1-6): first work

10 H 1日 H 1월 H 1월 H 1월 1월 19 19/22
Theory: full error analysis

Two most famous choices:

- ▶ Exponential schedules [\[Song et al., 2021\]](#page--1-0): first work
- ▶ Polynomial schedules [\[Karras et al., 2022\]](#page--1-1): improved design

10 H 1日 H 1 로베 1 로베 - 로베 19 422

Theory: full error analysis

Two most famous choices:

- ▶ Exponential schedules [\[Song et al., 2021\]](#page--1-0): first work
- ▶ Polynomial schedules [\[Karras et al., 2022\]](#page--1-1): improved design

19/22 19/22 19/24 12:22 12:24 12:25

Theory: full error analysis

Two most famous choices:

- ▶ Exponential schedules [\[Song et al., 2021\]](#page--1-0): first work
- ▶ Polynomial schedules [\[Karras et al., 2022\]](#page--1-1): improved design

19/22

 \blacktriangleright Time schedule t_k : a function of k

 $\rightharpoonup \rho = 7$

Implication from theory: How to choose schedules?

4 ロ → 4 @ ▶ 4 로 → 4 로 → 2 로 → 9 Q Q + 20/22

• 1st quantitative result that analyzes forward training + backward sampling

- 1st quantitative result that analyzes forward training + backward sampling
- nontrivial analysis of training dynamics
	- overparameterized ReLU MLP

- 1st quantitative result that analyzes forward training + backward sampling
- nontrivial analysis of training dynamics
	- overparameterized ReLU MLP
	- weaker data assumpts (no separability, unbdd output, …)

- 1st quantitative result that analyzes forward training + backward sampling
- nontrivial analysis of training dynamics
	- overparameterized ReLU MLP
	- weaker data assumpts (no separability, unbdd output, …)
	- interesting generalization setting #1: SM DSM gap

- 1st quantitative result that analyzes forward training + backward sampling
- nontrivial analysis of training dynamics
	- overparameterized ReLU MLP
	- weaker data assumpts (no separability, unbdd output, …)
	- interesting generalization setting #1: SM DSM gap
- besides understanding, practical implication

- 1st quantitative result that analyzes forward training + backward sampling
- nontrivial analysis of training dynamics
	- overparameterized ReLU MLP
	- weaker data assumpts (no separability, unbdd output, …)
	- interesting generalization setting #1: SM DSM gap
- besides understanding, practical implication
	- total weighting

- 1st quantitative result that analyzes forward training + backward sampling
- nontrivial analysis of training dynamics
	- overparameterized ReLU MLP
	- weaker data assumpts (no separability, unbdd output, …)
	- interesting generalization setting #1: SM DSM gap
- besides understanding, practical implication
	- total weighting
	- variance and time schedules

Generalization Setting #2 (open)

Quantifications: $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$

What if: generated data = uniformly drawn from training data?

Quantifications: $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$

What if: generated data = uniformly drawn from training data?

accurate, but not innovative

```
d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdotsQuantifications:
```

```
What if: generated data = uniformly drawn from training data?
```

```
accurate, but not innovative
```

```
Key: what exactly is this?
```
 $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$ Quantifications:

What if: generated data = uniformly drawn from training data?

accurate, but not innovative

Key: what exactly is this?

$$
\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_t} \|\nabla_x \log p(X_t, t) - s_{\theta}(X_t, t)\|^2 dt
$$

$$
\approx \frac{1}{n} \sum_{i=1}^n \|\nabla_x \log p(X_t^i, t) - s_{\theta}(X_t^i, t)\|^2
$$

 $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$ Quantifications:

What if: generated data = uniformly drawn from training data?

accurate, but not innovative

Key: what exactly is this?

$$
\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_t} \|\nabla_x \log p(X_t, t) - s_{\theta}(X_t, t)\|^2 dt
$$

$$
\approx \frac{1}{n} \sum_{i=1}^n \|\nabla_x \log p(X_t^i, t) - s_{\theta}(X_t^i, t)\|^2
$$

 $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$ Quantifications:

What if: generated data = uniformly drawn from training data?

accurate, but not innovative

Key: what exactly is this?

$$
\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_t} \|\nabla_x \log p(X_t, t) - s_{\theta}(X_t, t)\|^2 dt
$$

$$
\approx \frac{1}{n} \sum_{i=1}^n \|\nabla_x \log p(X_t^i, t) - s_{\theta}(X_t^i, t)\|^2
$$

natural: empirical distribution, i.e. sum of Dirac's

exact density evolution

3.2 Discussion and Future Direction 1

 -2 -1.5 -1 -0.5

 $\overline{0}$

 0.5

 $\overline{1}$

 1.5

 $\overline{2}$

 -3

 -2.5

 -2.5 -2 -1.5 -1 -0.5

 -3

 $\overline{0}$

 0.5

 $\overline{1}$

 1.5

 $\overline{2}$

3.2 Discussion and Future Direction 1 Generalization Setting #2 (open) $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$ perfect score Quantifications:What if: generated data = uniformly drawn from training data? **accurate, but not innovative** 4 types of errors • score error • integration error • initialization error exact Key: what exactly is this? • early stopping NN approx 1.6 1.4 $\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_t} || \nabla_x \log p(X_t, t) - s_{\theta}(X_t, t) ||^2 dt$ 1.2 $\mathbf{1}$ $\approx \frac{1}{n} \sum_{i=1}^{n} \|\nabla_x \log p(X_t^i, t) - s_\theta(X_t^i, t)\|^2$ 0.8 0.6 0.4 0.2

 -2.5 -2 -1.5 -1 -0.5

 -3

 $\overline{0}$

 0.5

 $\overline{1}$

 1.5

 $\overline{2}$

 0.2

-3

 -2.5 -2 -1.5 -1 -0.5 0

 0.5

 $1 \t 1.5$

2

 -2.5 -2 -1.5 -1 -0.5 0

-3

 0.5

 $1 \t 1.5$

2

Can discrete diffusion model add to the success of LLM?

Can discrete diffusion model add to the success of LLM?

Quantitative error analysis (possible)

Can discrete diffusion model add to the success of LLM?

Quantitative error analysis (possible) \rightarrow

what is it good at?

Can discrete diffusion model add to the success of LLM?

Quantitative error analysis (possible) \rightarrow

what is it good at?

difference and similarity to autoregressive model

Can discrete diffusion model add to the success of LLM?

Quantitative error analysis (possible) \rightarrow

what is it good at?

difference and similarity to autoregressive model

how to best deploy it?

…

Thank you for your attention and feedback!

Support: **NSF** DMS-1847802, ECCS-1936776 **Cullen-Peck** Scholarship **Emory-GT** AI.Humanity Award **Simons Institute** Research Fellowship

