

How well does diffusion model generate?

- a training and sampling combined quantification

arXiv:2406.12839

1 Georgia Tech, USA

2 Simons Institute, UC Berkeley

Sep 10, 2024 Emerging Generalization Settings Workshop @ Simons

≤10% generalization

why am I here?

≤10% generalization

why am I here?

• one interesting generalization setting: understood

≤10% generalization

why am I here?

- one interesting generalization setting: understood
- another: not

≤10% generalization

why am I here?

- one interesting generalization setting: understood
- another: not
- the quantifications are interesting too (hopefully)

Generative Modeling

Given samples of an unknown probability distribution (possibly in very high dim.), generate **more** samples of the same distribution.

0.1 Introduction: Generative Modeling

Generative Modeling

Given samples of an unknown probability distribution (possibly in very high dim.), generate **more** samples of the same distribution.

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...) Stable Diffusion, DALL·E, Midjourney; Sora;

(Chat)GPT, Gemini, Llama, Claude, ...

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

backward denoising

process:

use "score"

to

generate data

from

noise

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

$$dX = -Xdt + \sqrt{2}dW_t$$

t=0 t=T>>1 $\approx \mathcal{N}(0, I)$

backward denoising process:

> use "score"

> > to

generate data

from

noise

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

forward noising process: learn "score" (~ evolution of data density)

backward denoising process: use "score" to generate data from noise

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

forward noising process: learn "score" (~ evolution of data density)

backward denoising process: use "score" to generate data from

from noise

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

$$dX = -Xdt + \sqrt{2}dW_t$$

$$\mathcal{D} \quad t=0 \qquad t=T>>1 \approx \mathcal{N}(0, I)$$

$$dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t$$
score
$$s(x, t) := \nabla_x \log p(x, t)$$

$$X(t) \stackrel{d}{=} Y(T - t), \forall t \qquad X(t) \sim p(x, t)$$

forward noising process: learn "score" (~ evolution of data density)

backward denoising process: use "score" to generate

data

from

noise

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

 $X(t) \sim p(x, t)$

$$\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_t} \| \nabla_x \log p(X_t, t) - s_{\theta}(X_t, t) \|^2 dt$$

$$\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} \| \nabla_x \log p_{t|0}(X_t | X_0, t) - s_{\theta}(X_t, t) \|^2 dt$$

$$\begin{split} \min_{\theta} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0},t) - s_{\theta}(X_{t},t) \|^{2} dt \\ \text{analytically available} \end{split}$$

$$\min_{\theta} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0},t) - s_{\theta}(X_{t},t) \|^{2} dt$$

analytically available

1.1 Quantification of Diffusion Model's Generation Quality: Overview

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

1. forward training/learning process: optimization \rightarrow score s

1.1 Quantification of Diffusion Model's Generation Quality: Overview

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

- forward training/learning process: optimization → score s
- 2. backward sampling/inference process: numerical simulation → sample Y

1.1 Quantification of Diffusion Model's Generation Quality: Overview

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

- forward training/learning process: optimization → score s
- 2. backward sampling/inference process: numerical simulation → sample Y
- **?** quality of generated samples

 $\mathrm{KL}(\mathrm{Law}(X_0)|\mathrm{Law}(Y_T)) \leq \cdots$

"r

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

- forward training/learning process: optimization → score s
- 2. backward sampling/inference process: numerical simulation → sample Y
- **?** quality of generated samples

 $\mathrm{KL}(\mathrm{Law}(X_0)|\mathrm{Law}(Y_T)) \leq \cdots$

$$dX = -Xdt + \sqrt{2}dW_t$$

$$t=0$$

$$t=T>>1 \approx \mathcal{N}(0, I)$$

$$dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t$$
score
$$s(x, t) := \nabla_x \log p(x, t)$$

$$X(t) \sim p(x, t)$$
main stream"

if score is approximated with error $\leq \varepsilon$ in the sense of _____, then generated and training samples have statistical distance/divergence \leq ____, under assumptions _____.

Lee+ 22, de Bortoli 22, Yang & Wibisono 22, S Chen+ 23, H Chen+ 23, Benton+ 23, Conforti+ 23, ...

only

denoising diffusion model

(Sohl-Dickstein+ 15, Ho+ 20, Song+ 21 ...)

- forward training/learning process: optimization → score s
- backward sampling/inference process: numerical simulation → sample Y
- **?** quality of generated samples

 $\mathrm{KL}(\mathrm{Law}(X_0)|\mathrm{Law}(Y_T)) \leq \cdots$

if score is approximated with error $\leq \varepsilon$ in the sense of _____, then generated and training samples have statistical distance/divergence \leq ____, under assumptions _____.

Lee+ 22, de Bortoli 22, Yang & Wibisono 22, S Chen+ 23, H Chen+ 23, Benton+ 23, Conforti+ 23, ...

2.	backward sampling/inference process:
only	numerical simulation \rightarrow sample Y

2.	backward sampling/inference process:
nly	numerical simulation \rightarrow sample Y

already highly nontrivial

2.	backward sampling/inference process:
only	numerical simulation $ ightarrow$ sample Y

already highly nontrivial

sources of error

• score error

2.	backward sampling/inference process:
only	numerical simulation \rightarrow sample Y

already highly nontrivial

sources of error

• score error

2.	backward sampling/inference process:
only	numerical simulation \rightarrow sample Y

already highly nontrivial

sources of error

- score error
- integration error

• integration error

• integration error

$$dY_t = Y_t dt + 2s(Y_t, T - t)dt + \sqrt{2}dB_t$$

2.	backward sampling/inference process:
only	numerical simulation \rightarrow sample Y

already highly nontrivial

sources of error

- score error
- integration error
- initialization error

initialization error

2. backward sampling/inference process: only numerical simulation → sample Y

already highly nontrivial

sources of error

- score error
- integration error
- initialization error
- early stopping

- initialization error
- early stopping

2.	backward sampling/inference process:
only	numerical simulation \rightarrow sample Y

already highly nontrivial

sources of error

assumptions on data distribution

2.	backward sampling/inference process:
only	numerical simulation \rightarrow sample Y

already highly nontrivial

sources of error

assumptions on data distribution

Ex (prior to diffusion model & its analysis)

2.	backward sampling/inference process:
only	numerical simulation \rightarrow sample Y

already highly nontrivial

sources of error

assumptions on data distribution

Ex (prior to diffusion model & its analysis)

(overdamped) Langevin dynamics:

 $dZ_t = -\nabla V(Z_t)dt + \sqrt{2}dB_t \xrightarrow{V:=-\log p(\cdot,0)} s(Z_t,0)dt + \sqrt{2}dB_t$

$$dX = -Xdt + \sqrt{2}dW_t$$

$$\mathcal{D} \quad t=0 \qquad t=T>>1 \approx \mathcal{N}(0, I)$$

$$dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t$$
score
$$s(x, t) := \nabla_x \log p(x, t)$$

$$X(t) \sim p(x, t)$$

suffer from multimodality etc.

a specific annealing scheme made multimodal sampling effectively

a specific annealing scheme made multimodal sampling effectively

Lee, Risteski, Ge 18 Chehab, Hyvarinen, Risteski 23

2.	backward sampling/inference process:
nly	numerical simulation \rightarrow sample Y

already highly nontrivial

sources of error

assumptions on data distribution

denoising diffusion annealing: agnostic to multimodality

ideally:

2.	backward sampling/inference process:
only	numerical simulation \rightarrow sample Y

already highly nontrivial

sources of error

$$dX = -Xdt + \sqrt{2}dW_t$$

$$\mathcal{D} \quad t=0 \qquad \qquad t=T>>1 \approx \mathcal{N}(0,I)$$

$$dY = Ydt + 2s(Y,T-t)dt + \sqrt{2}dB_t$$

assumptions on data distribution

denoising diffusion annealing: agnostic to multimodality

isoperimetric ineq. (LSI, PI, ...): ~2-3 years ago

<u>bounded 2nd moment + Lipschitz score</u>: ~1-2 years ago

<u>bounded 2nd moment</u>: ~0-1 years ago

$$\begin{aligned} dX &= -Xdt + \sqrt{2}dW_t \\ \mathbf{\mathcal{D}} \quad \mathbf{t=0} \qquad \mathbf{t=T>>1} \approx \mathcal{N}(0,I) \\ dY &= Ydt + 2s(Y,T-t)dt + \sqrt{2}dB_t \end{aligned}$$

Variance Preserving SDE

more general

 $dX = -f(X,t)dt + g(t)dW_t$

Variance Preserving SDE

$$dX = -Xdt + \sqrt{2}dW_t$$

$$\mathcal{D} \quad t=0 \qquad \qquad t=T>>1 \approx \mathcal{N}(0, I)$$

$$dY = Ydt + 2s(Y, T - t)dt + \sqrt{2}dB_t$$

Variance Preserving SDE

more general

 $dX = -f(X,t)dt + g(t)dW_t$

 $dY = f(Y, T - t)dt + gg^{\top}s(Y, T - t)dt + g(T - t)dB_t$

more general

 $dX = -f(X,t)dt + g(t)dW_t$

 $dY = f(Y, T - t)dt + gg^{\top}s(Y, T - t)dt + g(T - t)dB_t$

Variance Preserving SDE

popular version (e.g., EDM [Karras+ 22])

more general

 $dX = -f(X,t)dt + g(t)dW_t$

 $dY = f(Y, T - t)dt + gg^{\top}s(Y, T - t)dt + g(T - t)dB_t$

Variance Preserving SDE

popular version (e.g., EDM [Karras+ 22])

(generalized) Variance Exploding SDE

 $dX = g(t)dW_t$

[*Benton*+ 23] [Conforti+ 23]

popular version (e.g., EDM [Karras+ 22])

(generalized) Variance Exploding SDE

 $dX = g(t)dW_t$

2. backward sampling/inference process: numerical simulation → sample Y

new

[*Wang*+ 24]

arbitrary

+

popular version (e.g., EDM [Karras+ 22])

(generalized) Variance Exploding SDE $dX = g(t)dW_t$

$$dY = g^{2}(T-t)s(Y, T-t)dt + g(T-t)dB_{t}$$

new

[*Wang*+ 24]

arbitrary

+

popular version (e.g., EDM [Karras+ 22])

(generalized) Variance Exploding SDE $dX = g(t)dW_t$

$$dY = g^{2}(T-t)s(Y, T-t)dt + g(T-t)dB_{t}$$

approximating score is essential

$$\begin{aligned} dX &= -Xdt + \sqrt{2}dW_t \\ \mathcal{D} \quad t=0 \qquad \qquad t=T>>1 \quad \approx \mathcal{N}(0,I) \\ dY &= Ydt + 2s(Y,T-t)dt + \sqrt{2}dB_t \end{aligned}$$

approximating score is essential

"main stream" generation quality bound

if $||s_{\theta} - s|| \leq \epsilon$, then \cdots

$$\begin{aligned} dX &= -Xdt + \sqrt{2}dW_t \\ \mathcal{D} \quad t=0 \qquad \qquad t=T>>1 \quad \approx \mathcal{N}(0,I) \\ dY &= Ydt + 2s(Y,T-t)dt + \sqrt{2}dB_t \end{aligned}$$

approximating score is essential

"main stream" generation quality bound

if
$$\|s_{\theta} - s\| \le \epsilon$$
, then \cdots

t
where does it come from ?

$$\begin{aligned} dX &= -Xdt + \sqrt{2}dW_t \\ \mathcal{D} \quad t=0 \qquad \qquad t=T>>1 \quad \approx \mathcal{N}(0,I) \\ dY &= Ydt + 2s(Y,T-t)dt + \sqrt{2}dB_t \end{aligned}$$

• nontrivial even when the target density is known (e.g., [Huang+ 24], [He, Rojas, Tao 24], [Gupta+ 24])

- nontrivial even when the target density is known (e.g., [Huang+ 24], [He, Rojas, Tao 24], [Gupta+ 24])
- it also matters to innovation / generalization (an open question, to be discussed in the end)

- nontrivial even when the target density is known (e.g., [Huang+ 24], [He, Rojas, Tao 24], [Gupta+ 24])
- it also matters to innovation / generalization (an open question, to be discussed in the end)

ideal
$$\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \|\nabla_{x} \log p_{t|0}(X_{t}|X_{0}, t) - s_{\theta}(X_{t}, t)\|^{2} dt$$

- nontrivial even when the target density is known (e.g., [Huang+ 24], [He, Rojas, Tao 24], [Gupta+ 24])
- it also matters to innovation / generalization (an open question, to be discussed in the end)

ideal
$$\min_{\theta} \frac{1}{2} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} \| \nabla_x \log p_{t | 0}(X_t | X_0, t) - s_{\theta}(X_t, t) \|^2 dt$$

practice time discretization/sampling \rightarrow empirical approximation \rightarrow optimization

- nontrivial even when the target density is known (e.g., [Huang+ 24], [He, Rojas, Tao 24], [Gupta+ 24])
- it also matters to innovation / generalization (an open question, to be discussed in the end)

ideal
$$\min_{\theta} \frac{1}{2} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t \mid X_0} \|\nabla_x \log p_{t\mid 0}(X_t \mid X_0, t) - s_{\theta}(X_t, t)\|^2 dt$$

practice time discretization/sampling \rightarrow empirical approximation \rightarrow optimization

ideal
$$\min_{\theta} \frac{1}{2} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} \| \nabla_x \log p_{t | 0}(X_t | X_0, t) - S(\theta; t, X_t) \|^2 dt$$

ideal
$$\min_{\theta} \frac{1}{2} \int_0^T w(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t | X_0} \| \nabla_x \log p_{t | 0}(X_t | X_0, t) - S(\theta; t, X_t) \|^2 dt$$

forward dynamics $\Rightarrow X_t = e^{-\mu_t} X_0 + \bar{\sigma}_t \xi$

ideal
$$\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0}, t) - S(\theta; t, X_{t}) \|^{2} dt$$
forward dynamics $\Rightarrow X_{t} = e^{-\mu_{t}} X_{0} + \bar{\sigma}_{t} \xi$
0 for Variance Exploding SDE

ideal
$$\min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0}, t) - S(\theta; t, X_{t}) \|^{2} dt$$

forward dynamics $\Rightarrow X_{t} = e^{-\mu_{t}} X_{0} + \overline{\sigma_{t}} \xi \longrightarrow$ variance schedule
0 for Variance Exploding SDE

$$\begin{array}{ll} \mbox{ideal} & \min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0},t) - S(\theta;t,X_{t}) \|^{2} dt \\ & \text{forward dynamics} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

$$\begin{aligned} & \text{ideal} \quad \min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0},t) - S(\theta;t,X_{t}) \|^{2} dt \\ & \text{forward dynamics} \quad X_{t} = e^{-\mu t} X_{0} + \overline{\sigma_{t}} \xi \quad \text{variance schedule} \\ & 0 \text{ for Variance Exploding SDE} \\ & \min_{\theta} \frac{1}{2} \int_{t_{0}}^{T} w(t) \frac{1}{\overline{\sigma_{t}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t}} S(\theta;t,X_{0}+\overline{\sigma_{t}}\xi) + \xi \|^{2} dt \end{aligned}$$

$$\text{time discretization} \quad \min_{\theta} \frac{1}{2} \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta;t_{j},X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \frac{1}{\overline{\mathcal{L}}(\theta)} \underbrace{ \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta;t_{j},X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \frac{1}{\overline{\mathcal{L}}(\theta)} \underbrace{ \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta;t_{j},X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \frac{1}{\overline{\mathcal{L}}(\theta)} \underbrace{ \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta;t_{j},X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \frac{1}{\overline{\mathcal{L}}(\theta)} \underbrace{ \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta;t_{j},X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \frac{1}{\overline{\mathcal{L}}(\theta)} \underbrace{ \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta;t_{j},X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \frac{1}{\overline{\mathcal{L}}(\theta)} \underbrace{ \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta;t_{j},X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \frac{1}{\overline{\mathcal{L}}(\theta)} \underbrace{ \sum_{j=1}^{N} w(t_{j},X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \frac{1}{$$

$$\begin{array}{ll} \mbox{ideal} & \min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0},t) - S(\theta;t,X_{t}) \|^{2} dt \\ & \text{forward dynamics} & X_{t} = e^{-\mu t} X_{0} + \overline{\sigma_{t}} \xi \quad \text{variance schedule} \\ & 0 \mbox{ for Variance Exploding SDE} \\ & \min_{\theta} \frac{1}{2} \int_{t_{0}}^{T} w(t) \frac{1}{\overline{\sigma_{t}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t}} S(\theta;t,X_{0}+\overline{\sigma_{t}}\xi) + \xi \|^{2} dt \\ & \text{time discretization} & \min_{\theta} \frac{1}{2} \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta; t_{j}), X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \\ & \overline{\mathcal{L}}(\theta) \end{array}$$

$$\begin{aligned} & \operatorname{ideal} \quad \min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0}, t) - S(\theta; t, X_{t}) \|^{2} dt \\ & \text{forward dynamics} & X_{t} = e^{-\mu_{0}} X_{0} + \overline{\sigma_{l}} \xi \quad \text{variance schedule} \\ & 0 \text{ for Variance Exploding SDE} \\ & \min_{\theta} \frac{1}{2} \int_{t_{0}}^{T} w(t) \frac{1}{\overline{\sigma_{t}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t}} S(\theta; t, X_{0} + \overline{\sigma_{t}} \xi) + \xi \|^{2} dt \\ & \text{time discretization} \quad \min_{\theta} \frac{1}{2} \sum_{j=1}^{N} w(t_{j})(t_{j} - t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta; t_{j}, X_{0} + \overline{\sigma_{t_{j}}} \xi) + \xi \|^{2} \\ & \overline{\mathcal{L}}(\theta) \end{aligned}$$

$$\begin{array}{ccc} \textbf{ideal} & \min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0},t) - S(\theta;t,X_{t}) \|^{2} dt \\ & \text{forward dynamics} & X_{t} = e^{-\frac{1}{\mu_{0}}} X_{0} + \overline{\sigma_{j}} \xi & \text{variance schedule} \\ & 0 \text{ for Variance Exploding SDE} \\ & \min_{\theta} \frac{1}{2} \int_{t_{0}}^{T} w(t) \frac{1}{\bar{\sigma}_{t}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \bar{\sigma}_{t} S(\theta;t,X_{0}+\bar{\sigma}_{t}\xi) + \xi \|^{2} dt \\ & \text{ime discretization} & \min_{\theta} \frac{1}{2} \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\bar{\sigma}_{t_{j}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \bar{\sigma}_{t_{j}} S(\theta; t_{j},X_{0}+\bar{\sigma}_{t_{j}}\xi) + \xi \|^{2} \\ & \overline{\mathcal{L}}(\theta) \\ \end{array}$$

time

$$\begin{array}{ccc} \text{ideal} & \min_{\theta} \frac{1}{2} \int_{0}^{T} w(t) \mathbb{E}_{X_{0}} \mathbb{E}_{X_{t}|X_{0}} \| \nabla_{x} \log p_{t|0}(X_{t}|X_{0},t) - S(\theta;t,X_{t}) \|^{2} dt \\ & \text{forward dynamics} & X_{t} = e^{-\mu t} X_{0} + \overline{\sigma_{t}} \xi & \text{variance schedule} \\ & 0 \text{ for Variance Exploding SDE} \\ & \min_{\theta} \frac{1}{2} \int_{t_{0}}^{T} w(t) \frac{1}{\overline{\sigma_{t}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t}} S(\theta;t,X_{0}+\overline{\sigma_{t}}\xi) + \xi \|^{2} dt \\ & \text{time discretization} & \min_{\theta} \frac{1}{2} \sum_{j=1}^{N} w(t_{j})(t_{j}-t_{j-1}) \frac{1}{\overline{\sigma_{t_{j}}}} \mathbb{E}_{X_{0}} \mathbb{E}_{\xi} \| \overline{\sigma_{t_{j}}} S(\theta; t_{j},X_{0}+\overline{\sigma_{t_{j}}}\xi) + \xi \|^{2} \\ & \overline{\mathcal{L}}(\theta) \\ \\ \text{empirical version} & \min_{\theta} \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_{j} \| \overline{\sigma_{t_{j}}} S(\theta; t_{j},x_{i}+\overline{\sigma_{t_{j}}}\xi_{ij}) + \xi_{ij} \|^{2} \\ & \overline{\mathcal{L}}_{em}(\theta) \\ \\ & \text{training} & \theta^{(k+1)} = \theta^{(k)} - h \nabla \overline{\mathcal{L}}_{em}(\theta^{(k)}) \end{array}$$

GD training

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2$$

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP

GD training

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2$$

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

GD training

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2$$

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

GD training

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2 \longrightarrow \text{ time schedule}$$

$$\text{variance schedule}$$

roadmap

non-asymptotic bound of GD optimization of $\bar{\mathcal{L}}_{em}$

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

GD training $\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij}\|^2 \longrightarrow \text{time schedule}$

roadmap

C>0

non-asymptotic bound of GD optimization of $\bar{\mathcal{L}}_{em}\gtrsim C$

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

A set and set as the desidence of the set of the set

GD training

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij}\|^2 \longrightarrow \text{ time schedule}$$

$$\text{variance schedule}$$

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

GD training

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2 \longrightarrow \text{ time schedule}$$

$$\downarrow \text{ variance schedule}$$

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

GD training

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2 \longrightarrow \text{ time schedule}$$

$$\downarrow \text{ variance schedule}$$

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

GD training

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2 \longrightarrow \text{ time schedule}$$

$$\downarrow \text{ variance schedule}$$

score parameterization

 $S(\theta; \cdot)$ wide (& deep) ReLU MLP (challenge: U-Net? DiT?)

GD training

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, x_i + \bar{\sigma}_{t_j} \xi_{ij}) + \xi_{ij} \|^2 \longrightarrow \text{ time schedule}$$

$$\downarrow \text{ variance schedule}$$

Objective function (minimized by GD):

Objective function (minimized by GD):

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1})}_{\beta_j} \|\bar{\sigma}_{t_j}S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2}_{f(\theta; i, j)}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ < ⊃ < ? 1/22

Objective function (minimized by GD):

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1})}_{\beta_j} \|\bar{\sigma}_{t_j}S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2}_{f(\theta; i, j)}$$

Architecture: deep ReLU network

Objective function (minimized by GD):

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1})}_{\beta_j} \|\bar{\sigma}_{t_j}S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2}_{f(\theta; i, j)}$$

Architecture: deep ReLU network

$$S(\theta; X_{ij}) = W_{L+1}\sigma(W_L \cdots W_1\sigma(W_0[X_{ij}, t_j])),$$

Objective function (minimized by GD):

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1})}_{\beta_j} \|\bar{\sigma}_{t_j}S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2}_{f(\theta; i, j)}$$

Architecture: deep ReLU network

$$S(\theta; X_{ij}) = W_{L+1}\sigma(W_L \cdots W_1\sigma(W_0[X_{ij}, t_j])),$$

<□> <□> <□> <□> <=> <=> <=> <=> = のQ@ 1/22

 $\blacktriangleright W_{L+1} \in \mathbb{R}^{d \times m}, W_{\ell} \in \mathbb{R}^{m \times m}, W_0 \in \mathbb{R}^{m \times d}$

Objective function (minimized by GD):

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{N} \underbrace{\frac{w(t_j)}{\bar{\sigma}_{t_j}}(t_j - t_{j-1})}_{\beta_j} \|\bar{\sigma}_{t_j}S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2}_{f(\theta; i, j)}$$

Architecture: deep ReLU network

$$S(\theta; X_{ij}) = W_{L+1}\sigma(W_L \cdots W_1\sigma(W_0[X_{ij}, t_j])),$$

►
$$W_{L+1} \in \mathbb{R}^{d \times m}$$
, $W_{\ell} \in \mathbb{R}^{m \times m}$, $W_0 \in \mathbb{R}^{m \times d}$
► $\theta := (W_0, W_1, \cdots, W_L, W_{L+1})$

< □ ▶ < @ ▶ < 壹 ▶ < 壹 ▶ ○ 章 の Q ♀ 1/22

▶ Input data (*t_j*, *X_{ij}*):

lnput data (t_j, X_{ij}) :

$$X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij} \sim P_{t_j}(X|X(0) = x_i),$$

<□ > < @ > < ≧ > < ≧ > < ≧ > ○ Q @ 2/22

▶ Input data (*t_j*, *X_{ij}*):

$$X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij} \sim P_{t_j}(X|X(0) = x_i),$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $\bar{\sigma}_{t_i}^2$ is the variance of $X_{t_j}|X_0$, and $\xi_{ij} \sim \mathcal{N}(0, I)$

▶ Input data (t_j, X_{ij}):

$$X_{ij} = x_i + \bar{\sigma}_{t_j}\xi_{ij} \sim P_{t_j}(X|X(0) = x_i),$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

where $\bar{\sigma}_{t_j}^2$ is the variance of $X_{t_j}|X_0$, and $\xi_{ij} \sim \mathcal{N}(0, I)$ $\blacktriangleright \bar{\sigma}_t$: monotonically increasing functions of t; $\bar{\sigma}_0 = 0$

▶ Input data (t_j, X_{ij}):

$$X_{ij} = x_i + \bar{\sigma}_{t_j}\xi_{ij} \sim P_{t_j}(X|X(0) = x_i),$$

where σ²_{tj} is the variance of X_{tj} |X₀, and ξ_{ij} ~ N(0, I)
σ_t: monotonically increasing functions of t; σ₀ = 0
Output data:

$$\frac{-\xi_{ij}}{\bar{\sigma}_{t_j}}$$

<□ ▶ < @ ▶ < E ▶ < E ▶ 9 < 2/22

▶ Input data (t_j, X_{ij}):

$$X_{ij} = x_i + \bar{\sigma}_{t_j}\xi_{ij} \sim P_{t_j}(X|X(0) = x_i),$$

where $\bar{\sigma}_{t_j}^2$ is the variance of $X_{t_j}|X_0$, and $\xi_{ij} \sim \mathcal{N}(0, I)$ $\bullet \ \bar{\sigma}_t$: monotonically increasing functions of t; $\bar{\sigma}_0 = 0$ \bullet Output data:

$$\frac{-\xi_{ij}}{\bar{\sigma}_{t_j}}$$

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 2/22

• Very large if $\bar{\sigma}_{t_i} \approx 0$

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 3/22
Assumptions: mild + preserve the nature of diffusion models

Assumptions: mild + preserve the nature of diffusion models

► For example,

Assumptions: mild + preserve the nature of diffusion models

► For example,

Assumption

• Data scaling:
$$||x_i|| = \Theta(\sqrt{d})$$
 for all *i*.

Assumptions: mild + preserve the nature of diffusion models

► For example,

Assumption

• Data scaling:
$$||x_i|| = \Theta(\sqrt{d})$$
 for all *i*.

Interpretation:

Assumptions: mild + preserve the nature of diffusion models

For example,

Assumption

• Data scaling:
$$||x_i|| = \Theta(\sqrt{d})$$
 for all *i*.

Interpretation:

- Assumptions: mild + preserve the nature of diffusion models
- For example,

Assumption

• Data scaling:
$$||x_i|| = \Theta(\sqrt{d})$$
 for all *i*.

Interpretation:

Recall input data:

$$X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}$$

- Assumptions: mild + preserve the nature of diffusion models
- For example,

Assumption

• Data scaling:
$$||x_i|| = \Theta(\sqrt{d})$$
 for all *i*.

Interpretation:

$$X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}$$

$$\blacktriangleright \ \xi_{ij} \sim \mathcal{N}(0, I) \Rightarrow \|\xi_{ij}\| \approx \sqrt{d}$$

- Assumptions: mild + preserve the nature of diffusion models
- ► For example,

Assumption

• Data scaling:
$$||x_i|| = \Theta(\sqrt{d})$$
 for all *i*.

Interpretation:

Recall input data:

$$X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}$$

Theorem

For any $\epsilon_{\text{train}} > 0$, consider $m \ge M(\epsilon_{\text{train}})$. With high probability, $\bar{\mathcal{L}}_{em}(\theta^{(K)})$ $\le \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{md^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)})$ Moreover, when $K = \Theta(d^{\frac{1-a_0}{2}} n^2 N \log(\frac{d}{\epsilon_{\text{train}}}))$, $\bar{\mathcal{L}}_{em}(\theta^{(K)}) \le \epsilon_{\text{train}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 5/22

Theorem

For any $\epsilon_{\text{train}} > 0$, consider $m \ge M(\epsilon_{\text{train}})$. With high probability, $\bar{\mathcal{L}}_{em}(\theta^{(k)})$ $\le \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{md^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)})$ Moreover, when $K = \Theta(d^{\frac{1-a_0}{2}} n^2 N \log(\frac{d}{\epsilon_{\text{train}}}))$, $\bar{\mathcal{L}}_{em}(\theta^{(K)}) \le \epsilon_{\text{train}}.$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○ 5/22

Theorem

$$\begin{split} \bar{\mathcal{L}}_{em}(\theta^{(k)}) &\leq \\ \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{md^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)}) \end{split}$$

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹▶ ○ 壹 → ♡ � ᡤ 6/22

Theorem

$$\begin{split} \bar{\mathcal{L}}_{em}(\theta^{(k)}) &\leq \\ \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{md^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)}) \end{split}$$

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)$$

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹▶ ○ 壹 → ♡ � ᡤ 6/22

Theorem

$$\begin{split} \bar{\mathcal{L}}_{em}(\theta^{(k)}) &\leq \\ \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{md^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)}) \end{split}$$

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)$$

• $(i^*(s), j^*(s)) =$ the index of the largest loss $f(\theta^{(s)}; i, j)$

Theorem

$$\begin{split} \bar{\mathcal{L}}_{em}(\theta^{(k)}) &\leq \\ \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{md^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)}) \end{split}$$

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)$$

Theorem

$$\begin{split} \bar{\mathcal{L}}_{em}(\theta^{(k)}) &\leq \\ \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{md^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)}) \end{split}$$

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)$$

want to maximize over all the indices

Theorem

$$\begin{split} \bar{\mathcal{L}}_{em}(\theta^{(k)}) &\leq \\ \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{md^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)}) \end{split}$$

$$\bar{\mathcal{L}}_{em}(\theta) = \frac{1}{2n} \sum_{i=1,j=1}^{n,N} f(\theta; i, j)$$

(i*(s), j*(s)) = the index of the largest loss f(θ^(s); i, j)
 Faster convergence:

want to maximize over all the indices \Rightarrow want all $f(\theta^{(s)}; i, j)$ to be the largest loss

Corollary

When $f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$ for all (i, j), (i', j'), k, GD obtains the optimal rate of convergence

$$\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \left(1 - C_7 h \max_{j=1,\cdots,N} w(t_j)(t_j - t_{j-1}) \bar{\sigma}_{t_j} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right)^k \bar{\mathcal{L}}_{em}(\theta^{(0)}).$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - の Q @ 7/22

Corollary

When $f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$ for all (i, j), (i', j'), k, GD obtains the optimal rate of convergence

$$\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \left(1 - C_7 h \max_{j=1,\cdots,N} w(t_j)(t_j - t_{j-1}) \bar{\sigma}_{t_j} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right)^k \bar{\mathcal{L}}_{em}(\theta^{(0)}).$$

•
$$f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$$
:

Corollary

When $f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$ for all (i, j), (i', j'), k, GD obtains the optimal rate of convergence

$$\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \left(1 - C_7 h \max_{j=1,\cdots,N} w(t_j)(t_j - t_{j-1}) \bar{\sigma}_{t_j} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right)^k \bar{\mathcal{L}}_{em}(\theta^{(0)}).$$

•
$$f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$$
:
 $f(\theta; i, j) = \underbrace{\beta_j}_{\text{total weighting}} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2$

Corollary

When $f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$ for all (i, j), (i', j'), k, GD obtains the optimal rate of convergence

$$\bar{\mathcal{L}}_{em}(\theta^{(k)}) \leq \left(1 - C_7 h \max_{j=1,\cdots,N} w(t_j)(t_j - t_{j-1}) \bar{\sigma}_{t_j} \frac{m d^{\frac{a_0-1}{2}}}{n^3 N^2}\right)^k \bar{\mathcal{L}}_{em}(\theta^{(0)}).$$

•
$$f(\theta^{(k)}; i, j) \approx f(\theta^{(k)}; i', j')$$
:
 $f(\theta; i, j) = \underbrace{\beta_j}_{\text{total weighting}} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij} \|^2$

Claim: this implies how to choose the total weighting β_j

Total weighting: theory vs practice $f(\theta; i, j) = \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2$

<□ > < @ > < E > < E > E の Q @ 8/22

Total weighting: theory vs practice $f(\theta; i, j) = \beta_j \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij} \|^2$ $\blacktriangleright \|\bar{\sigma}_t S(\theta; t, x_0 + \bar{\sigma}_t \xi) + \xi \|^2$:

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ● 8/22

<□ > < @ > < E > < E > E の Q @ 8/22

In practice:

► EDM [Karras et al., 2022]

In practice:

▶ EDM [Karras et al., 2022]

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 9/22

In practice:

▶ EDM [Karras et al., 2022]

<□> < @> < E> < E> E の Q @ 9/22

Other total weighting functions used in practice (mostly monotone): e.g., β_{σ̄} = ¹/_{σ̄} [Song et al., 2021]

In practice:

▶ EDM [Karras et al., 2022]

- Other total weighting functions used in practice (mostly monotone): e.g., β_{σ̄} = ¹/_{σ̄} [Song et al., 2021]
- Performance: EDM > other models

In practice:

▶ EDM [Karras et al., 2022]

- Other total weighting functions used in practice (mostly monotone): e.g., β_{σ̄} = ¹/_{σ̄} [Song et al., 2021]
- Performance: EDM > other models
 ⇒ "bell-shape" is preferable

In practice:

EDM [Karras et al., 2022]

- Other total weighting functions used in practice (mostly monotone): e.g., β_{σ̄} = ¹/_{σ̄} [Song et al., 2021]
- Performance: EDM > other models
 ⇒ "bell-shape" is preferable
- ► Roughly, **Theory** ≈ **Practice**

► Recall: input data
$$X_{ij} = x_i + \bar{\sigma}_{t_j} \xi_{ij}$$
,
output data $-\frac{\xi_{ij}}{\bar{\sigma}_{t_j}}$,
where $x_i \sim P_0$, $\xi_{ij} \sim \mathcal{N}(0, I)$

▶ Recall: input data X_{ij} = x_i + σ̄_{tj}ξ_{ij}, output data - ξ_{ij}/σ̄_{tj}, where x_i ~ P₀, ξ_{ij} ~ N(0, I)
 ▶ Framework [Allen-Zhu et al., 2019]:

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 10/22

 Recall: input data X_{ij} = x_i + σ̄_{tj}ξ_{ij}, output data - ξ_{ij}/σ̄_{tj}, where x_i ~ P₀, ξ_{ij} ~ N(0, I)
 Framework [Allen-Zhu et al., 2019]: semi-smoothness + local strongly convex key

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall: input data X_{ij} = x_i + σ̄_{tj}ξ_{ij}, output data - ξ_{ij}/σ̄_{tj}, where x_i ~ P₀, ξ_{ij} ~ N(0, I)
 Framework [Allen-Zhu et al., 2019]: semi-smoothness + local strongly convex key

No longer works in denoising diffusion models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 10/22

• Recall: input data $X_{ii} = x_i + \bar{\sigma}_{t_i} \xi_{ii}$, output data $-\frac{\xi_{ij}}{\bar{\sigma}_{t_i}}$, where $x_i \sim P_0, \ \xi_{ii} \sim \mathcal{N}(0, I)$ Framework [Allen-Zhu et al., 2019]: semi-smoothness + local strongly convexkev No longer works in denoising diffusion models Reason: (1) scaling ; bad small output data
Proof of convergence

• Recall: input data $X_{ij} = x_i + \bar{\sigma}_{t_i} \xi_{ij}$, output data $-\frac{\xi_{ij}}{\bar{\sigma}_{ti}}$, where $x_i \sim P_0, \ \xi_{ii} \sim \mathcal{N}(0, I)$ Framework [Allen-Zhu et al., 2019]: semi-smoothness + local strongly convexkey No longer works in denoising diffusion models Reason: (1) ;(2) correlation scaling "good" bad data separability small output data

Proof of convergence

• Recall: input data $X_{ij} = x_i + \bar{\sigma}_{t_i} \xi_{ij}$, output data $-\frac{\xi_{ij}}{\bar{\sigma}_{ti}}$, where $x_i \sim P_0, \ \xi_{ii} \sim \mathcal{N}(0, I)$ Framework [Allen-Zhu et al., 2019]: semi-smoothness + local strongly convexkev No longer works in denoising diffusion models Reason: (1) scaling ;(2) correlation "good" bad data separability small output data Our proof: high probability bound using some high-dimensional geometry facts

Recall:

Theorem

For any $\epsilon_{ ext{train}} > 0$, consider $m \ge M(\epsilon_{ ext{train}})$. With high probability,

$$\begin{split} \bar{\mathcal{L}}_{em}(\theta^{(k)}) \\ &\leq \prod_{s=0}^{k-1} \left(1 - C_5 h \ w(t_{j^*(s)})(t_{j^*(s)} - t_{j^*(s)-1}) \bar{\sigma}_{t_{j^*(s)}} \frac{md^{\frac{a_0-1}{2}}}{n^3 N^2} \right) \bar{\mathcal{L}}_{em}(\theta^{(0)}) \\ & \text{Moreover, when } K = \Theta(d^{\frac{1-a_0}{2}} n^2 N \log(\frac{d}{\epsilon_{\text{train}}})), \end{split}$$

 $\bar{\mathcal{L}}_{em}(\theta^{(K)}) \leq \epsilon_{\text{train}}.$

Properties of denoising score matching objective:

Properties of denoising score matching objective:

$$\begin{split} \quad \bar{\mathcal{L}}_{em}(\theta) \to \bar{\mathcal{L}} \text{ as } n \to \infty \\ \bar{\mathcal{L}}_{em}(\theta) &= \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \frac{1}{n} \sum_{i=1}^{n} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2 \\ \bar{\mathcal{L}}(\theta) &= \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi\|^2 \end{split}$$

<□ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = うへで 12/22

Properties of denoising score matching objective:

$$\begin{split} \quad \bar{\mathcal{L}}_{em}(\theta) \to \bar{\mathcal{L}} \text{ as } n \to \infty \\ \bar{\mathcal{L}}_{em}(\theta) &= \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \frac{1}{n} \sum_{i=1}^{n} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2 \\ \bar{\mathcal{L}}(\theta) &= \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi\|^2 \end{split}$$

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ ○ 12/22

► Score matching → denoising score matching:

Properties of denoising score matching objective:

$$\begin{split} \quad \bar{\mathcal{L}}_{em}(\theta) \to \bar{\mathcal{L}} \text{ as } n \to \infty \\ \bar{\mathcal{L}}_{em}(\theta) &= \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \frac{1}{n} \sum_{i=1}^{n} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2 \\ \bar{\mathcal{L}}(\theta) &= \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi\|^2 \end{split}$$

► Score matching → denoising score matching:

$$0 \leq \mathbb{E}_{X_{t_j}} \| S(\theta; t_j, X_{t_j}) - \nabla_x \log p_{t_j}(X_{t_j}) \|^2$$

= $\frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} \| \bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi \|^2 + C_{t_j}$

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ Q ○ 12/22

Properties of denoising score matching objective:

$$\begin{split} \quad \bar{\mathcal{L}}_{em}(\theta) \to \bar{\mathcal{L}} \text{ as } n \to \infty \\ \bar{\mathcal{L}}_{em}(\theta) &= \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \frac{1}{n} \sum_{i=1}^{n} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{ij}) + \xi_{ij}\|^2 \\ \bar{\mathcal{L}}(\theta) &= \frac{1}{2} \sum_{j=1}^{N} w(t_j)(t_j - t_{j-1}) \frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} \|\bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi\|^2 \end{split}$$

► Score matching → denoising score matching:

$$0 \leq \mathbb{E}_{X_{t_j}} \| S(\theta; t_j, X_{t_j}) - \nabla_x \log p_{t_j}(X_{t_j}) \|^2$$

= $\frac{1}{\bar{\sigma}_{t_j}} \mathbb{E}_{X_0} \mathbb{E}_{\xi} \| \bar{\sigma}_{t_j} S(\theta; t_j, X_{t_j}) + \xi \|^2 + C_{t_j}$

 $\Rightarrow \bar{\mathcal{L}}(\theta) + \bar{\mathcal{C}} \ge 0$ $\Rightarrow \bar{\mathcal{L}}(\theta) \ge -\bar{\mathcal{C}} > 0, \text{ i.e., positive lower bound of } \bar{\mathcal{L}}(\theta) = 12/22$

Theory: more training

• Theorem: choose arbitrarily large width *m*, ϵ_{train} can be as small as possible

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪

> Theorem: choose arbitrarily large width *m*, ϵ_{train} can be as small as possible

$$0 \stackrel{?}{\leftarrow} \epsilon_{\text{train}} \approx \bar{\mathcal{L}}_{em}(\theta) \rightarrow \bar{\mathcal{L}}(\theta) \geq -\bar{\mathcal{C}} > 0$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪

▶ Theorem: choose arbitrarily large width *m*, ϵ_{train} can be as small as possible

$$\mathbf{0} \stackrel{?}{\leftarrow} \epsilon_{\text{train}} \approx \bar{\mathcal{L}}_{em}(\theta) \rightarrow \bar{\mathcal{L}}(\theta) \geq -\bar{\mathcal{C}} > \mathbf{0}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 13/22

Contradiction?

No contradiction:

No contradiction:

can have both
$$ar{\mathcal{L}}_{em}(heta)pprox {\sf 0}$$
 and $ar{\mathcal{L}}pprox -ar{\mathcal{C}}>{\sf 0}$

<□ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ ■ ● ○ ○ ○ 14/22

No contradiction:

can have both
$$ar{\mathcal{L}}_{em}(heta)pprox {\sf 0}$$
 and $ar{\mathcal{L}}pprox -ar{\mathcal{C}}>{\sf 0}$

◆□ ▶ ◆昼 ▶ ◆ 星 ▶ ▲ 星 → 오 ○ 14/22

Reason:

No contradiction:

can have both
$$ar{\mathcal{L}}_{em}(heta)pprox 0$$
 and $ar{\mathcal{L}}pprox -ar{\mathcal{C}}>0$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 14/22

Reason:

▶ Overparameterized setting: fix *m*,

No contradiction:

can have both
$$ar{\mathcal{L}}_{em}(heta)pprox 0$$
 and $ar{\mathcal{L}}pprox -ar{\mathcal{C}}>0$

Reason:

Overparameterized setting: fix m,
 *L
{em}(θ) ≤ ε{train}*: sample size n ≪ m ⇒ n is bounded

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 14/22

No contradiction:

can have both
$$ar{\mathcal{L}}_{em}(heta)pprox 0$$
 and $ar{\mathcal{L}}pprox -ar{\mathcal{C}}>0$

Reason:

◆□ ▶ ◆昼 ▶ ◆ 星 ▶ ▲ 星 → 오 ○ 14/22

No contradiction:

can have both
$$ar{\mathcal{L}}_{em}(heta)pprox {\sf 0}$$
 and $ar{\mathcal{L}}pprox -ar{\mathcal{C}}>{\sf 0}$

Reason:

◆□▶ ◆母▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q ↔ 14/22

Consequence:

No contradiction:

can have both
$$ar{\mathcal{L}}_{em}(heta)pprox {\sf 0}$$
 and $ar{\mathcal{L}}pprox -ar{\mathcal{C}}>{\sf 0}$

Reason:

◆□▶ ◆母▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q ↔ 14/22

Consequence:

$$\triangleright \ \epsilon_n = |\bar{\mathcal{L}}_{em}(\theta) - \bar{\mathcal{L}}(\theta)|$$

No contradiction:

can have both
$$ar{\mathcal{L}}_{em}(heta)pprox {\sf 0}$$
 and $ar{\mathcal{L}}pprox -ar{\mathcal{C}}>{\sf 0}$

Reason:

◆□▶ ◆母▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q ↔ 14/22

Consequence:

$$\mathsf{KL}(p_{\delta}|q_{T-\delta}) \lesssim \underbrace{E_D + E_l}_{\mathsf{sampling}} + \underbrace{E_S}$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ 15/22

where p_{δ} is the true density at time δ , and $q_{T-\delta}$ is the approximated density of p_{δ} .

$$\mathsf{KL}(p_{\delta}|q_{T-\delta}) \lesssim \underbrace{\mathcal{E}_D + \mathcal{E}_I}_{\mathsf{sampling}} + \mathcal{E}_S$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ <u>15/22</u>

where p_{δ} is the true density at time δ , and $q_{T-\delta}$ is the approximated density of p_{δ} .

E_S: score error

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ → ○ ○ ○ 16/22

• $\epsilon_n + \epsilon_{est} + \epsilon_{approx}$ [Chen et al., 2023, Oko et al., 2023, Han et al., 2024]

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○ 16/22

- $\epsilon_n + \epsilon_{est} + \epsilon_{approx}$ [Chen et al., 2023, Oko et al., 2023, Han et al., 2024]
- ▶ Regression generalization \rightarrow Diffusion models

•
$$\epsilon_n + \epsilon_{est} + \epsilon_{approx}$$

[Chen et al., 2023, Oko et al., 2023, Han et al., 2024]

▶ Regression generalization → Diffusion models

Open problem:

•
$$\epsilon_{\text{train}} + \epsilon_n \ge -2\bar{C} > 0 \implies \text{error bound} \not\rightarrow 0$$

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ → ○ ○ ○ 16/22

•
$$\epsilon_n + \epsilon_{est} + \epsilon_{approx}$$

[Chen et al., 2023, Oko et al., 2023, Han et al., 2024]

▶ Regression generalization → Diffusion models

- Open problem:
 - $\epsilon_{\text{train}} + \epsilon_n \ge -2\bar{C} > 0 \Rightarrow \text{error bound } \neq 0$ change decomposition \Rightarrow tighter analysis?

•
$$\epsilon_n + \epsilon_{est} + \epsilon_{approx}$$

[Chen et al., 2023, Oko et al., 2023, Han et al., 2024]

▶ Regression generalization → Diffusion models

- Open problem:
 - $\epsilon_{\text{train}} + \epsilon_n \ge -2\bar{C} > 0 \Rightarrow \text{error bound} \neq 0$ change decomposition \Rightarrow tighter analysis?

$$\blacktriangleright S(\theta; t, X_t) \stackrel{!}{\to} \nabla_x \log p_t(X_t)$$

Example full error analysis

Theorem (EDM polynomial schedule [Karras et al., 2022])

$$\begin{split} \mathcal{K}\mathcal{L}(p_{\delta}|q_{T-\delta}) \lesssim \underbrace{\frac{\mathrm{m}_{2}^{2}}{\mathcal{T}_{E_{I}}^{2}}}_{E_{I}} + \underbrace{\frac{da^{2}T^{\frac{1}{a}}}{\delta^{\frac{1}{a}}N} + (\mathrm{m}_{2}^{2} + d)\left(\frac{a^{2}T^{\frac{1}{a}}}{\delta^{\frac{1}{a}}N} + \frac{a^{3}T^{\frac{2}{a}}}{\delta^{\frac{2}{a}}N^{2}}\right)}_{E_{D}} \\ + \underbrace{\frac{1}{N}\left(C_{2} + \left(1 - C_{1}h\left(\frac{md^{\frac{a_{0}-1}{2}}}{n^{3}N^{2}}\right)\right)^{K}\right)}_{E_{S}}, \end{split}$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q (* 17/22)

where $\delta = t_0$, a = 7, $a_0 \in (1/2, 1)$.

$$\blacktriangleright C_2 = \epsilon_n + \epsilon_{\text{est}} + \epsilon_{\text{approx}}$$

sampling + optimization

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ Q ○ 18/22

• $\alpha_j(t_j, \bar{\sigma}_{t_j}) \neq \beta_j$, the weighting for training objective

sampling + optimization

- $\alpha_j(t_j, \bar{\sigma}_{t_i}) \neq \beta_j$, the weighting for training objective
- First choose total weighting β_j ; then apply the schedules t_j , $\bar{\sigma}_{t_i}$

sampling + optimization

- $\alpha_j(t_j, \bar{\sigma}_{t_j}) \neq \beta_j$, the weighting for training objective
- First choose total weighting β_j ; then apply the schedules t_j , $\bar{\sigma}_{t_i}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 18/22

Next: focus on two concrete schedules used in practice

sampling + optimization

- $\alpha_j(t_j, \bar{\sigma}_{t_j}) \neq \beta_j$, the weighting for training objective
- First choose total weighting β_j ; then apply the schedules t_j , $\bar{\sigma}_{t_i}$
- Next: focus on two concrete schedules used in practice
 - Theoretical implication: how to choose between two schedules

Two most famous choices:

Two most famous choices:

Exponential schedules [Song et al., 2021]: first work
Theory: full error analysis

Two most famous choices:

- Exponential schedules [Song et al., 2021]: first work
- Polynomial schedules [Karras et al., 2022]: improved design

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ りへで 19/22

Theory: full error analysis

Two most famous choices:

- Exponential schedules [Song et al., 2021]: first work
- Polynomial schedules [Karras et al., 2022]: improved design

	Variance $\bar{\sigma}_t$	Time <i>t_k</i>
[Karras et al., 2022]	t	$\left(ar{\sigma}_{\max}^{1/ ho} - \left(ar{\sigma}_{\max}^{1/ ho} - ar{\sigma}_{\min}^{1/ ho} ight) rac{N-k}{N} ight)^{ ho}$
[Song et al., 2021]	\sqrt{t}	$ar{\sigma}_{\max}^2\left(rac{ar{\sigma}_{\min}^2}{ar{\sigma}_{\max}^2} ight)^{rac{N-\kappa}{N}}$

Theory: full error analysis

Two most famous choices:

- Exponential schedules [Song et al., 2021]: first work
- Polynomial schedules [Karras et al., 2022]: improved design

	Variance $\bar{\sigma}_t$	Time <i>t_k</i>
[Karras et al., 2022]	t	$\left(\bar{\sigma}_{\max}^{1/ ho} - (\bar{\sigma}_{\max}^{1/ ho} - \bar{\sigma}_{\min}^{1/ ho})\frac{N-k}{N} ight)^{ ho}$
[Song et al., 2021]	\sqrt{t}	$ar{\sigma}_{\max}^2\left(rac{ar{\sigma}_{\min}^2}{ar{\sigma}_{\max}^2} ight)^{rac{N-\kappa}{N}}$

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ ∽ Q ↔ 19/22

Time schedule t_k : a function of k

$$\triangleright \rho = 7$$

Implication from theory: How to choose schedules?

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 20/22

 1st quantitative result that analyzes forward training + backward sampling

- 1st quantitative result that analyzes forward training + backward sampling
- nontrivial analysis of training dynamics
 - overparameterized ReLU MLP

- 1st quantitative result that analyzes forward training + backward sampling
- nontrivial analysis of training dynamics
 - overparameterized ReLU MLP
 - weaker data assumpts (no separability, unbdd output, ...)

- 1st quantitative result that analyzes
 forward training + backward sampling
- nontrivial analysis of training dynamics
 - overparameterized ReLU MLP
 - weaker data assumpts (no separability, unbdd output, ...)
 - interesting generalization setting #1: SM DSM gap

- 1st quantitative result that analyzes
 forward training + backward sampling
- nontrivial analysis of training dynamics
 - overparameterized ReLU MLP
 - weaker data assumpts (no separability, unbdd output, ...)
 - interesting generalization setting #1: SM DSM gap
- besides understanding, practical implication

- 1st quantitative result that analyzes
 forward training + backward sampling
- nontrivial analysis of training dynamics
 - overparameterized ReLU MLP
 - weaker data assumpts (no separability, unbdd output, ...)
 - interesting generalization setting #1: SM DSM gap
- besides understanding, practical implication
 - total weighting

- 1st quantitative result that analyzes
 forward training + backward sampling
- nontrivial analysis of training dynamics
 - overparameterized ReLU MLP
 - weaker data assumpts (no separability, unbdd output, ...)
 - interesting generalization setting #1: SM DSM gap
- besides understanding, practical implication
 - total weighting
 - variance and time schedules

Generalization Setting #2 (open)

Quantifications: $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$

What if: generated data = uniformly drawn from training data ?

Quantifications: $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$

What if: generated data = uniformly drawn from training data ?

accurate, but not innovative

```
Quantifications: d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots
```

```
What if: generated data = uniformly drawn from training data ?
```

```
accurate, but not innovative
```

```
Key: what exactly is this?
```

Quantifications: $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$

What if: generated data = uniformly drawn from training data ?

accurate, but not innovat ve

Key: what exactly is this?

$$\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_t} \| \nabla_x \log p(X_t, t) - s_{\theta}(X_t, t) \|^2 dt$$
$$\approx \frac{1}{n} \sum_{i=1}^n \| \nabla_x \log p(X_t^i, t) - s_{\theta}(X_t^i, t) \|^2$$

Quantifications: $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$

What if: generated data = uniformly drawn from training data ?

accurate, but not innovat ve

Key: what exactly is this?

$$\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_t} \| \nabla_x \log p(X_t, t) - s_{\theta}(X_t, t) \|^2 dt$$
$$\approx \frac{1}{n} \sum_{i=1}^n \| \nabla_x \log p(X_t^i, t) - s_{\theta}(X_t^i, t) \|^2$$

Generalization Setting #2 (open)

Quantifications: $d(p_{\text{training data}}|p_{\text{generated data}}) \leq \cdots$

What if: generated data = uniformly drawn from training data ?

accurate, but not innovative

Key: what exactly is this?

$$\min_{\theta} \int_0^T w(t) \mathbb{E}_{X_t} \| \nabla_x \log p(X_t, t) - s_{\theta}(X_t, t) \|^2 dt$$
$$\approx \frac{1}{n} \sum_{i=1}^n \| \nabla_x \log p(X_t^i, t) - s_{\theta}(X_t^i, t) \|^2$$

natural: empirical distribution, i.e. sum of Dirac's

(forward) t=0 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 -2 -1.5 -1 -2.5 -0.5 0.5 1.5 -3 0 1 2

exact density evolution

-2 -1.5 -1 -0.5

-3

-2.5

0.5

1

1.5

2

0

-2.5 -2 -1.5 -1 -0.5 0

-3

0.5

1 1.5

2

-2.5 -2 -1.5 -1 -0.5 0

-3

0.5

1 1.5

2

$$\min_{\theta} \int_{0}^{\infty} w(t) \mathbb{E}_{X_{t}} \| \nabla_{x} \log p(X_{t}, t) - s_{\theta}(X_{t}, t) \|^{2} dt$$
$$\approx \frac{1}{n} \sum_{i=1}^{n} \| \nabla_{x} \log p(X_{t}^{i}, t) - s_{\theta}(X_{t}^{i}, t) \|^{2}$$

-2.5 -2 -1.5 -1 -0.5 0

-3

0.5

1 1.5

2

-3

1

1.5

2

Can discrete diffusion model add to the success of LLM?

Can discrete diffusion model add to the success of LLM?

Quantitative error analysis (possible)

Can discrete diffusion model add to the success of LLM?

Quantitative error analysis (possible) \rightarrow

what is it good at?

Can discrete diffusion model add to the success of LLM?

Quantitative error analysis (possible) \rightarrow

what is it good at?

difference and similarity to autoregressive model

Can discrete diffusion model add to the success of LLM?

Quantitative error analysis (possible) \rightarrow

what is it good at?

difference and similarity to autoregressive model

how to best deploy it?

. . .

Thank you for your attention and feedback!

Support: NSF DMS-1847802, ECCS-1936776 Cullen-Peck Scholarship Emory-GT Al.Humanity Award Simons Institute Research Fellowship

