Continuous-Token Behavior Cloning: Pitfalls and Promises

Max Simchowitz (MIT → CMU)

joint w/ Adam Block (MIT \rightarrow Columbia) Dan Pfrommer, Russ Tedrake, Ali Jadbabie (MIT) + Thomas Zhang, Boyuan Chen, Allen Ren et others..

(not my work)

Behavior Cloning

Understanding Behavior Cloning

a building block for modern robot learning

Diffusion Policy

Robotic Transformer 2 (RT-2)

Dobb·E

TEACHING ROBOTS NEW BEHAVIORS

) TOYOTA RESEARCH INSTITUTE

Teaching

Video Language Action Models

towards 'continuous tokens'

OpenVLA

SoTA Generalist Robot Policy

7B param Vision-Language-Action Model

Open-Source Model on HuggingFace

Open-Source PyTorch Training Code

continuous state & action

 $x_{t+1} = f(x_t, u_t)$

*no partial observability

abstraction reflects physical laws.

 $x_{t+1} = f(x_t, u_t)$

network routing, AlphaGo, etc ...

*no partial observability

abstraction reflects physical laws.

 $x_{t+1} = f(x_t, u_t)$

*no partial observability

 $x_{t+1} = f(x_t, u_t)$

nonlinear

Behavior Cloning

**caveat: focus on states*

- 1. How things go out-of-distribution
- 2. How this differs from discrete tokens
- 3. Theoretical Guarantees
- 4. Some applications

 $x_{t+1} = f(x_t, u_t)$

Algorithm Template: (1) Collect N expert demonstrations $(x_{1:T}^{\star}, u_{1:T}^{\star})$ (2) train a **predictive model** to predict $\hat{\pi}(u \mid x) \approx \mathbb{P}[u_t^{\star} = u \mid x_t^{\star} = x]$

1. supervised learning from demonstration 2. no **reward model** (given or inferred).

disclaimer: other approaches exist.

Behavior Cloning meets Generative Models

Algorithm Template:

(1) Collect N expert demonstrations $(x_{1:T}^{\star}, u_{1:T}^{\star})$

(2) train a generative model to predict $\hat{\pi}(u \mid x) \approx \mathbb{P}[u_t^* = u \mid x_t^* = x]$

$$\pi: x \mapsto u \sim P(x)$$
 $\pi: x \mapsto f(x) + \text{noise}$

'conditional sampling'

'mean parametrization'

(as supervised learners)

(e.g. Diffusion)

multiple strategies

Behavior Cloning meets Generative Models

Hypothesis 1: Condition sampling models can fit complex data distributions ('realizability')

Hypothesis 2: Condition sampling allow for different out-of-distribution inductive biases.

How distribution shift arises

Goal: Make trajectory distance small dist $(x_{1:T}^{\star}, \hat{x}_{1:T}) = \max ||x_t^{\star} - \hat{x}_t||$

(*deterministic* policies, in expectation over initial condition)

Challenge A: Error accumulates over time steps, possibly exponentially in horizon!

Challenge B: After error has accumulated, we are now out of distribution.

How this differs from discrete tokens

Goal: Make trajectory distance small

dist $(x_{1:T}^{\star}, \hat{x}_{1:T}) = \max ||x_t^{\star} - \hat{x}_t||$

probabilistic mistakes accumulate at most linearly.

(e.g. DAGGER, see also Foster '24 et al.)

 $x_{t+1} = f(x_t, u_t)$

Schematic of Results

Theorem 1 *(informal)*: With **generative-model policies** (conditional sampling), we can imitate **without exponentially compounding error** in **contractive systems**.

Theorem 2 (informal): If we know the dynamics, there is a reduction to learning in contractive systems Theorem 3 (informal): If we don't known the dynamics, learning is hard, even in "incrementally stable" but non-contractive systems.

 $x_{t+1} = f(x_t, u_t)$

Schematic of Results

Theorem 1 (informal): With generative-model policies (conditional sampling), we can imitate without exponentially compounding error in contractive systems.

Theorem 2 (*informal*): If we know the dynamics, there is a **reduction** to learning in contractive systems

*all new results

Theorem 3 (*informal*): If we don't known the dynamics, learning is hard, even in "incrementally stable systems."

 $x_{t+1} = f(x_t, u_t)$

Schematic of Results

- A. Introduce contractive systems
- B. Show just fitting the expert data isn't enough.
- C. Introduce an inductive bias, TVC, guarantees imitation.
- D. Given an algorithmic recommendation to ensure TVC.

*all new results

Theorem 1 (*informal*): With **generative-model policies** (conditional sampling), we can imitate without exponentially compounding error in contractive systems.

 $x_{t+1} = f(x_t, u_t)$

Contractive Systems

Definition: We will say a system is (α, β) -contractive if

$$\|f(x', u') - f(x, u)\| \le \alpha \|x - x'\| + \beta \|u - u'\|$$

 $x_{t+1} = f(x_t, u_t)$

Contractive Systems

Definition: We will say a system is (α, β) -contractive if

$$\|f(x', u') - f(x, u)\| \le \alpha \|x - x'\| + \beta \|u - u'\|$$

Lemma: If dynamics are (α, β) -contractive, given two sequences $(x_{1:T}^{\star}, u_{1:T}^{\star}), (\hat{x}_{1:T}, \hat{u}_{1:T})$ with $x_1^* = \hat{x}_1$, and if $\alpha < 1$, we get

$$\max_{1 \le t \le T} \| x_t^{\star} - \hat{x}_t \| \le \frac{\beta}{1 - \alpha} \quad \max_{1 \le t \le T} \| u_t^{\star} - \hat{u}_t \|$$

special case of 'stability'

$$x_{t+1} = f(x_t, u_t)$$

Example (*Contractive*, *Scalar Dynamics*): (a) f(x, u) = .9x + u(b) $\pi^{\star}(x) = 0$ (c) training data: "0"-trajectory $x_1^* = x_2^* = ... = 0$

Bad Learner Policy: $\hat{\pi}^{\text{Bad}}(x) = |.15x| + \epsilon$

(a) For all training x, $\pi^{\star}(x) - \hat{\pi}^{\text{Bad}}(x) = \epsilon$

(b) On deployment, $\hat{x}_t \geq (1.05)^t \epsilon = e^{\Omega(t)} \cdot \epsilon$

$$x_{t+1} = f(x_t, u_t)$$

Is Low Training Error Enough?

Example (*Contractive*, *Scalar Dynamics*): (a) f(x, u) = .9x + u(b) $\pi^{\star}(x) = 0$ (c) training data: "0"-trajectory $x_1^{\star} = x_2^{\star} = \ldots = 0$

Bad Learner Policy: $\hat{\pi}^{\text{Bad}}(x) = |.15x| + \epsilon$

inductive bias creates 'feedback'

can be improved by better data coverage

A different inductive bias.

Example (*Contractive*, *Scalar Dynamics*): $f(x, u) = .9x + u, \pi^{\star}(x) = 0$

Not-So-Bad Learner Policy: $\hat{\pi}^{NSB}(x) = Bernoulli(min\{1, .15x\}) + \epsilon$ (a) For all training x, $\pi^{\star}(x) - \hat{\pi}(x) = \epsilon$ (b) On deployment, $\hat{x}_t \leq O(\epsilon)$ w.p. $1 - O(t\epsilon)$

'Discrete Token Error'?

Example (*Contractive, Scalar Dynamics*): $f(x, u) = .9x + u, \pi^{\star}(x) = 0$

Not-So-Bad Learner Policy: $\hat{\pi}^{\text{NSB}}(x) = \text{Bernoulli}(\min\{1, .15x\}) + \epsilon$

convert 'metric mistakes' into 'probabilistic mistakes'

Discrete Token Error?

Example (*Contractive*, *Scalar Dynamics*): $f(x, u) = .9x + u, \pi^{\star}(x) = 0$

Not-So-Bad Learner Policy: $\hat{\pi}^{NSB}(x) = Bernoulli(min\{1, .15x\}) + \epsilon$

For small enough x, $\hat{\pi}^{\text{Bad}}(x) = \mathbb{E}[\hat{\pi}^{\text{NSB}}(x)] = .15x + \epsilon$ is the OG bad policy.

Generative models

Total Variation Continuity

Definition: We say $\pi(x)$ is L-TVC if $TV(\pi(x), \pi(x')) \le L ||x - x'||$

$$\operatorname{TV}(P,Q) := \inf_{(X_P,X_Q)\sim\mu} \Pr\left[X_P \neq X_Q\right]$$

Example 1: $\hat{\pi}^{NSB}(x) = Bernoulli(min\{1, .15x\}) + \epsilon$ is L = .15 TVC

Example 2: $\hat{\pi}^{\text{Bad}}(x) = \mathbb{E}[\hat{\pi}^{\text{NSB}}(x)] = .15x + \epsilon$ is not TVC

Total Variation Continuity

Definition: We say $\pi(x)$ is L-TVC if $TV(\pi(x), \pi(x')) \le L ||x - x'||$

$$\operatorname{TV}(P,Q) := \inf_{(X_P,X_Q)\sim\mu} \Pr\left[X_P \neq X_Q\right]$$

TVC is the opposite of **mode-collapse**

We will show TVC Policies have low execution error.

*contractive dynamics

 $x_{t+1} = f(x_t, u_t)$

Problem Definition

Definition: Let **P**, **Q** be two distribution on the same normed space. We define

$$\operatorname{TV}_{\epsilon}(P,Q) := \inf_{(X_P,X_Q) \sim \mu} \Pr\left[\|X_P - X_Q\| > \epsilon \right]$$

- **1.** Optimal Transport Distance', reduces to regular **TV** for $\epsilon = 0$
- 2. A way of measuring distance between continuous-valued R.V.s
- 3. Like Wasserstein, but easier to work with for imitation learning

 $x_{t+1} = f(x_t, u_t)$

Problem Definition

$$D_{\text{train},\epsilon} \left(\hat{\pi} \| \pi^{\star} \right) := \max_{t} \mathbb{E}_{x_{t}^{\star}} \mathbf{T}^{\star}$$

Training Error: Suppose we get trajectories $(x_1^*, u_1^*, x_2^*, u_2^*, \dots, x_H^*, u_H^*)$, $u_t^* \sim \pi^*(x_t^*)$

 $V_{\epsilon}(\pi^{\star}(x_{t}^{\star}), \hat{\pi}(x_{t}^{\star}))$ (can be made small w/ DDPM)

 $x_{t+1} = f(x_t, u_t)$

Problem Definition

$$D_{\text{train},\epsilon} \left(\hat{\pi} \| \pi^{\star} \right) := \max_{t} \mathbb{E}_{x_{t}^{\star}} \mathsf{T}^{\mathsf{v}}$$

Test Error: We roll out $(\hat{x}_1, \hat{u}_1, \hat{x}_2, \hat{u}_2, ..., \hat{x}_H, \hat{u}_H)$, $\hat{u}_t \sim \hat{\pi}(x_t)$ $D_{\text{test},\epsilon} \left(\hat{\pi} \| \pi^{\star} \right) := \max_{t} \text{TV}_{\epsilon} (\text{Law}(x_{t}^{\star}), \text{Law}(\hat{x}_{t}))$

Goal:
$$D_{\text{test},\epsilon} \leq \text{poly}(A)$$

Training Error: Suppose we get trajectories $(x_1^*, u_1^*, x_2^*, u_2^*, \dots, x_H^*, u_H^*)$, $u_t^* \sim \pi^*(x_t^*)$

 $V_{c}(\pi^{\star}(x_{t}^{\star}), \hat{\pi}(x_{t}^{\star}))$

Theorem: If $\hat{\pi}$ is L-TVC, and system is $(1 - c^{-1}, O(1))$ contractive

$$\mathbf{D}_{\text{test},\epsilon}\left(\hat{\boldsymbol{\pi}} \| \boldsymbol{\pi}^{\star}\right) \leq O(cLH) \cdot \mathbf{D}_{\text{train},\epsilon/c}\left(\hat{\boldsymbol{\pi}} \| \boldsymbol{\pi}^{\star}\right)$$

(1) Distribution Shift can be bad in continuous-state BC

(2) **TVC** + **Contractive Dynamics*** gets us around the issue

TVC is a nice inductive bias. By how do we get it?

TVC via Noising

- Elementary Lemma: Let $\hat{\pi} : x \in \mathbb{R}^d \mapsto \Delta$ Define smoothed policy $\hat{\pi}_{\sigma} : x \mapsto \hat{\pi} \circ \mathcal{N}(x)$ Then $\hat{\pi}_{\sigma}$ is $(1/2\sigma)$ - **TVC**
 - **Proof:** $TV(\hat{\pi}_{\sigma}(x), \hat{\pi}_{\sigma}(x')) \leq TV(\mathcal{N}(x, \sigma^2 \mathbf{I}))$

$$\leq \left(\frac{1}{2} \operatorname{KL}(\mathcal{N}(x, \sigma^{2}))\right)$$
$$= \frac{1}{2\sigma} ||x - x'||$$

$$\mathbf{x}(\mathcal{U})$$

 $\mathbf{x}, \sigma^2 \mathbf{I}$

),
$$\mathcal{N}(x', \sigma^2 \mathbf{I}))$$

(Data Processing)

 $\mathbf{F}^{2}\mathbf{I}$), $\mathcal{N}(x', \sigma^{2}\mathbf{I})$))^{1/2}

(Pinsker)

(Stat Class)

TVC via Noising

Smoothed policy $\hat{\pi}_{\sigma} : x \mapsto \hat{\pi}(x + \sigma w)$ is $(1/2\sigma)$ -TVC

1. Nothing new here - we know noising gives robustness

2. This might be a terrible idea:

Algorithm

(1) Collect demonstrations $\{x^*, u^* \sim \pi^*(x^*)\}$ (2) Train policy (e.g. Diffusion) $\hat{\pi} (x^* + \sigma w) \approx \mathbb{P}[u^* | x^* + \sigma w]$ (3) Deploy $\hat{\pi}_{\sigma} (x) = \hat{\pi} (x + \sigma w')$

train with same noise as testing

'conditional sampling'

Observation: If $\hat{\pi} (x^* + \sigma w) = \mathbb{P}[u^* | x^* + \sigma w]$ is perfect, then, 1. $\hat{\pi} (x) = \pi^* \circ \mathbb{P}[x^* | x^* + \sigma w] = x$

2. $\hat{\pi}_{\sigma}(x) = \pi^* \circ \mathbb{P}[x^* | x^* + \sigma w] = x + \sigma w'$

 $\mathsf{K}^{\mathrm{rep}}: \mathscr{X} \mapsto \Delta(\mathscr{X})$

Observation: If $\hat{\pi}(x^* + \sigma w) = \mathbb{P}[u^* | x^* + \sigma w]$ is perfect, then, 1. $\hat{\pi}(x) = \pi^* \circ \mathbb{P}[x^* \mid x^* + \sigma w = x]$

2. $\hat{\pi}_{\sigma}(x) = \pi^* \circ \mathbb{P}[x^* | x^* + \sigma w] = x + \sigma w'$

 $\mathsf{K}^{\mathrm{rep}}: \mathscr{X} \mapsto \Delta(\mathscr{X})$

Lemma: Let $x \sim \text{Law}(x^{\star})$, and let $x' \sim K^{\text{rep}}(x)$ Then, (x, x') are

identically distributed (and exchangeable) (1)

(2) $\mathbb{P}[\|x - x'\| > 2\sigma\tau] \le 2\mathbb{P}[\|w\| > \tau]$

With perfect training, $\hat{\pi}_{\sigma}(x) = \pi^{\star} \circ K^{rep}(x)$ is unbiased at a distributional level (and TVC).

Lemma: Let $x \sim \text{Law}(x^{\star})$, and let $x' \sim \text{K}^{\text{rep}}(x)$ Then, (x, x') are

(1) identically distributed (and exchangeable)

(2) $\mathbb{P}[\|x - x'\| > 2\sigma\tau] \le 2\mathbb{P}[\|w\| > \tau]$

This argument requires modeling distributions, not simply 'means'!

Theorem: tuning $\sigma = \epsilon^{1/2}$, and with some caveats $D_{\text{test},\epsilon}\left(\hat{\pi} \| \pi^{\star}\right) \leq O(H) \cdot D_{\text{train},\epsilon^2}\left(\hat{\pi} \| \pi^{\star}\right)$

- 1. **TVC** enforced, not **assumed**!
- 2. Degradation in rates due to noising parameter tradeoff
- 3. **Noising** introduces the possibility of 'mode swapping'...
- ... which means we imitation joint distributions, not per-trajectory ones.

Theorem: tuning $\sigma = \epsilon^{1/2}$, and with some caveats $\mathbf{D}_{\mathrm{train},\epsilon}\left(\hat{\boldsymbol{\pi}} \| \boldsymbol{\pi}^{\star}\right) \leq O(H) \cdot \mathbf{D}_{\mathrm{train},\epsilon^{2}}\left(\hat{\boldsymbol{\pi}} \| \boldsymbol{\pi}^{\star}\right)$

Clever **smoothing** with noise induces **TVC TVC** converts 'metric error' into 'discrete-token-error' **Imitation** with 'discrete-token-error' is easier

What did we do?

Theorem 1 (super informal): We can imitate without exponentially compounding error in contractive systems.

We algorithmically enforced the TVC inductive bias.

(+ use control theory to induce

What did we do?

Theorem 1 (super informal): We can imitate without exponentially compounding error in contractive systems.

Open Question: What are the intrinsic inductive biases of diffusion models?

$$x \mapsto u \sim P(x)$$

Forthcoming work: Validates that diffusion models are not just 'more expressive', but have different inductive biases OOD.

(+ use control theory to induce contractivity)

Simulation Study.

low-level control helps!

data noising helps!

data noising hurts without stabilization

Applications?

discrete-token sequence model.

continuous-token sequence model.

Recap: Diffusion

Training

Inference

Diffusion for Sequences

(Boyuan Chen ... S ... et al. '24) *we tell the model the noise level $_{49}$

Diffusion Forcing (Ours)

Full-Seq Diffusion

Teacher Forcing

Example: Explicit Algorithmic Modification enabled by Generative Model

dict token
$$x_t^0 \mid x_{t-1}^{k_0}, x_{t-2}^{k_0}, \dots$$

 $\approx x_t^0 \mid x_{t-1}^0 + \sigma w_{t-1}', x_{t-2}^0 + \sigma w_{t-2}', \dots$

edict token
$$x_t^0 \mid x_{t-1}^{k_0}, x_{t-2}^{k_0}, \dots$$

= $x_t^0 \mid x_{t-1}^0 + \sigma w_{t-1}, x_{t-2}^0 + \sigma w_{t-2}, \dots$

Replica Noising!

Replica Noising 'Mathematical Foundation' for why this works....

(Allen Ren ... S et al. '24)

conditional sampling

$\pi: x \mapsto f(x) +$ **noise**

Real Hardware!

Simply that Diffusion Policies can 'represent' better performing policies?

Example of richer models having better 'intrinsic' O.O.D. inductive bias

Training trajectories at the beginning of fine-tuning

Open Question: Richer Models = More 'Reasonable' Exploration!

Training trajectories at the beginning of fine-tuning

Pontification...

1. Lot's of exciting questions in continuous-token prediction! (robots, video, climate, AI4Science, conditional diffusion...)

2. More expressive models + alg. choices = richer O.O.D. inductive biases!

3. How can we take full advantage of large/rich models for exploration?

(this should be true in LLMs!)

Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level Stability and High-Level Behavior

Adam Block*

Ali Jadbabaie

Daniel Pfrommer[†]

Max Simchowitz[‡]

Russ Tedrake

Massachusetts Institute of Technology

Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion

Boyuan Chen MIT CSAIL boyuanc@mit.edu

Diego Martí Monsó* Technical University of Munich diego.marti@tum.de

Max Simchowitz MIT CSAIL msimchow@mit.edu

Russ Tedrake MIT CSAIL russt@mit.edu

Yilun Du MIT CSAIL yilundu@mit.edu

Vincent Sitzmann MIT CSAIL sitzmann@mit.edu

Diffusion Policy Policy Optimization

Allen Z. Ren¹, Justin Lidard¹, Lars L. Ankile², Anthony Simeonov², Pulkit Agrawal², Anirudha Majumdar¹, Benjamin Burchfiel³, Hongkai Dai³, Max Simchowitz^{2,4}

> ¹Princeton University ²Massachusetts Institute of Technology ³Toyota Research Institute ⁴Carnegie Mellon University

Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression

Dylan J. Foster² Akshay Krishnamurthy² Max Simchowitz¹ Cyril Zhang² Adam Block^{1*}

> ²Microsoft Research NYC 1 MIT

Enjoy the weekend!