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Understanding Behavior Cloning

a building block for modern
robot learning

' £ [TEACHING ROBOTS
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Video Language Action Models

I.OAOf SoTA Generalist Robot Policy

7B param Vision-Language-Action Model

w  Open-Source Model on HuggingFace

Open-Source PyTorch Training Code
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towards ‘continuous tokens’
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Control Systems

action u,

system state  control input

state X,

continuous state & action



“no partial observability
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“no partial observability

Control Systems

action (or input) u,

‘feedback’
state x,

abstraction reflects physical laws.

network routing, AlphaGo, etc ...



“no partial observability

Control Systems

action (or input) u,

‘feedback’

state X,

Defn. a ‘policy’ maps {state x} — actions i,




nonlinear

Behavior Cloning

states x, = state of robot + object

inputs u, = robot action

‘continuous tokens’

9 “caveat: fOCLIS on states




1. How things go out-of-distribution

2. How this differs from discrete tokens

3. Theoretical Guarantees

4. Some applications
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Behavior Cloning @ denonsvaor i ~ )

. robot imitation.

Algorithm Template:

(1) Collect N expert demonstrations

(2) train a predictive model to predict
Au | x)~Plu =u|x* = x]

1. supervised learning from demonstration

disclaimer: other
approaches exist.

2. no reward model (given or inferred).

1



Behavior Cloning meets Generative Models

(as supervised learners)

() ~. y‘
Algorithm Template:
L 4 multi-modal expert data
(1) Collect N expert demonstrations (XL Uy7) Obstacle
(2) train a generative model to predict i
Au | x)#Plu” =u|x* = x]
x> u~ P(x) 7. x — f(x) + noise - e —

‘conditional sampling”  ‘mean parametrization’ 2

(e.g. Diffusion) ‘
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multiple strategies



Behavior Cloning meets Generative Models

Hypothesis 1: Condition sampling models can
fit complex data distributions (‘realizability’)

Hypothesis 2: Condition sampling allow for different

out-of-distribution inductive biases. 7 x — f(x) + noise

‘mean parametrization’

T.x u~ P(x)

‘conditional sampling’
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How distribution shift arises

Goal: Make trajectory distance small

dist(x[7p. £1.7) = max b =7 |

(deterministic policies, in expectation over initial condition)

"' Expert Trajectory 7% - @ 5 9/

% Challenge A: Error accumulates over time steps,
possibly exponentially in horizon!

Learner Trajectory 7 . 4 — U X

Challenge B: After error has accumulated,
we are now out of distribution.




How this differs from discrete tokens

Goal: Make trajectory distance small

diSt(X;T, xl:T) — IMax H'Xt _‘)/(\"tH
A

Contrast: Discrete Behavior Cloning

/SN N N

0009
O

probabilistic mistakes accumulate at most linearly.

"- Expert Trajectory * -

Va\

Learner Trajectory 7T .

ATy

(c.g. DAGGER, sce also Foster 24 et al.)



Schematic of Results

Theorem 1 (informal): With generative-model policies (conditional sampling), we

can imitate without exponentially compounding error in contractive systems.

Theorem 2 (informal): If
we know the dynamics,
there is a reduction to

Theorem 3 (informal): If we
don’t known the dynamics,
learning is hard, even in

“incrementally stable” but
non-contractive systems.

learning in contractive
systems




*all new results

Schematic of Results
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we know the dynamics,
there is a reduction to

Theorem 3 (informal): If we
don’t known the dynamics,
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*all new results

Schematic of Results

Theorem 1 (informal): With generative-model policies (conditional sampling), we

can imitate without exponentially compounding error in contractive systems,

A. Introduce contractive systems

B. Show just fitting the expert data isn’t enough.
C. Introduce an inductive bias, TVC, guarantees imitation.

D. Given an algorithmic recommendation to ensure TVC.



Contractive Systems

Definition: We will say a system is (a, /)-contractive if

', u') = fx w| < alflx = x| + fllu —ul]

’ contractive C ‘stable’, o < 1 expansive C ‘unstable’, a > 1



Contractive Systems

Definition: We will say a system is (a, /)-contractive if

s u) = fx, wll < allx = x| + pllu — ol

. . ° . > >* A A
Lemma: If dynamics are («, /)-contractive, given two sequences (x|, 1), (X{.7, iy.7)

withx =%, andifa < 1, we get

max ||x* =% || < 4 max ||, —i,||
1<t<T l —a 1<<T

special case of ‘stability’



Is Low Training Error Enough?

Example (Contractive, Scalar Dynamics):

@) f(x,u) = 9x+ u

b) 77 (x) =0
(¢) training data: “O”—trajectoryxl* — xz* =...=0 ‘feedback’: f(x, 7(x))
environment
Bad Learner Policy: 7°%(x) = € ‘ |
@) Forall trainingx, 7*(x)-72%%(x) =¢ learner policy <+——

inductive bias creates ‘feedback’

(b) Ondeployment, %, > (1.05)c = eV . ¢



Is Low Training Error Enough?

Example (Contractive, Scalar Dynamics):

@) f(x,u) = 9%+ u
b) 77 (x) =0

(c) training data: “0”-trajectory x| = x

Bad Learner Policy: 7°%(x) = €

Butterfly Effects of SGD, Block 24

Step 115000 Step 120000

k4
-

BC error

\/
&
=
|; learner policy j

inductive bias creates ‘feedback’

can be improved by better data coverage.....



A different inductive bias.

Example (Contractive, Scalar Dynamics):

fx,u) = Ox+u, 7%(x) =0

Not-So-Bad Learner Policy: 7">2(x) = Bernoulli(min{1,.15x})+¢

(@) Forall trainingx, n*(x)-7(x) =€ ‘ — .—> ‘_.‘1
O(te)

(b) Ondeployment, x, < O(e) w.p. 1 —

probabilistic mistakes accumulate at most linearly.




‘Discrete Token Error’?

Example (Contractive, Scalar Dynamics):

fx,u) = Ox+u, 7%(x) =0

Not-So-Bad Learner Policy: 7">2(x) = Bernoulli(min{1,.15x})+e¢

|

convert ‘metric mistakes’ into ‘probabilistic mistakes’



‘Discrete Token Error’?

Example (Contractive, Scalar Dynamics):

fx,u) = 9x+u, 7*(x) =0

Not-So-Bad Learner Policy: 7">2(x) = Bernoulli(min{1,.15x})+¢

Generative models

For small enough x, #5%(x) = E[#™°B(x)] =.15x + € is the OG bad policy.




Total Variation Continuity

Definition: We say z(x) is L-TVC if TV (z(x), #(x")) < Ll||x — x'|]

Example 1: 7™°8(x) = Bernoulli(min{1,.15x})4¢ is L = .15 TVC

Example 2: 75%%(x) = E[2">B(x)] =.15x + € is not TVC



Total Variation Continuity

Definition: We say z(x) is L-TVC if TV (z(x), #(x")) < Ll||x — x'|]

Left Mode

‘ Right Mode

‘ TVC Interpolation

‘ Non-TVC Interpolation

*contractive dynamics



Problem Definition

Definition: Let P, Q be two distribution on the same normed space. We define

TV.(P,Q):= inf Pr [HXP—XQH > e]
(XPaXQ)Nﬂ

1. ‘Optimal Transport Distance’, reduces to regular TV fore = 0

2. A way of measuring distance between continuous-valued R.V.s

3. Like Wasserstein, but easier to work with for imitation learning



Problem Definition
Training Error: Suppose we get trajectories (x[, 1, X, U3, ..., X7, upy), u) ~ n*(x)
D aine (7 |77 := max E - TV (*(x ), #(x”))  (can be made small w/ DDPM)

[

‘data manifold’ (exact TV not tractable)



Problem Definition

Training Error: Suppose we get trajectories (x[, u;", X, U3, ..., X7, upy), u) ~ n*(x)

D

raine (77 |77) := max E o TV (7% (), #(x))

[

Test Error: We roll out (X, it{, Xy, Uy, ..., Xz, Uy), U, ~ 7(X,)

Diesie (7 |1 77) := max TV (Law(x)), Law(X)))

1

Goal: D . < poly(H) - D,

est,e rain,e’




A First Guarantee

Theorem: If 7is L-TVC,

obstacle

Proof Sketch:
(1) TVC implies coupling s.t. P[ii, ~ #(X) # 1.~ 7(x”)] < Le  (changeof measure)

(2) Supervised Learning ensures that 11/ ~ 7 (X)) & 77 (x) - Expert

: e . Imitator
(3) Contractive of dynamics implies errors compound by at most c-factor []



A Recap

Theorem: If 7 is L-TVC, and systemis (1 — ¢~!, O(1)) contractive

Dyt (7 |7*) < O(cLH) -D

Ak
train,e/c (ﬂ Hﬂ )

(1) Distribution Shift can be bad in continuous-state BC

(2) TVC + Contractive Dynamics* gets us around the issue

TVC is a nice inductive bias. By how do we get it?

obstacle

- Expert

Imitator



Replica Noising.



TVC via Noising

Elementary Lemma: Let 7: x € RY » A (%)

Define smoothed policy 7_:x = 7o /I (x, 1)

Then 7z_is (1/20) - TVC

Proof: TV(7,(x), 7,(x) < TV(N (x, 6°I), / (x, 6°T)) (Data Processing)

1 2 ;2 1/2 o
< (EKL(/V (x,0°D), /(x', 0 I))) (Pinsker)

— LH x — x| (Stat Class)
20



TVC viaNoising

obstacle

1. Nothing new here - we know noising gives robustness

2. This might be a terrible idea:

‘noise goes off manifold’

‘data manifold’

Noise might knock me off modes



Replica Noising

Algorithm

(1) Collect demonstrations {x*, u™ ~ 7*(x™)}

train with same noise as testing
(2) Train policy (e.g. Diffusion)

7 (x5 4+ow) X Plu™ | x*+ow ]

(3) Deploy 7. (x) = # (x+ow) ‘data manifold’

“data augmentation +
test-time smoothing”

‘conditional sampling’



Replica Noising

Observation: If 7 (x*+ow) =P[u™ | x*+ow ]is
perfect, then,

LAX) =" Px™ | x +ow = x]

2.7 (x)=n" o Px™ | x*+ow = x+ow]

K X = A(X)




Replica Noising

Observation: If 7 (x*+ow) =P[u™ | x*+ow ]is
perfect, then,

LAX) =" Px™ | x +ow = x]

2.7 (x)=n" o Px™ | x*+ow = x+ow]

K X = A(X)



proof via more complex
coupling argument using the
replica property

Replica Noising

Lemma: Let x ~ Law(x™), and let x' ~ K™P(x)

- Imitator Policy Then, (x, x) are

(1) identically distributed (and exchangeable)

Bl s @) Plllx—x|| > 207 < 2P[|w]l > 7]
i 1 Statei =x+ow'

B o~ Pt | x*4on = 7]

With perfect training, 7_(x) = 77 o KP(x) is
unbiased at a distributional level (and TVC).



Replica Noising

Lemma: Let x ~ Law(x™), and let x' ~ K™P(x)

- Imitator Policy Then, (x, x) are

(1) identically distributed (and exchangeable)

Bl s @) Plllx—x|| > 207 < 2P[|w]l > 7]
i 1 Statei =x+ow'

- X~ Px™ | x* +ow' = 1]

This argument requires modeling
distributions, not simply ‘means’!



Replica Noising

172 , and with some caveats

(7|7

Theorem: tuning o = ¢

teste(ﬂ Hﬂ*) < O(H)

train,e?

State ¥ = x+ow’ 1. TVC enforced, not assumed!

I’ »
* ' 4
N O s .

* ([ ) ° ° °
- x'~ P | x*+ow' = 1] 2. Degradation in rates due to noising parameter tradeoff

3. Noising introduces the possibility of ‘mode swapping’...

... which means we imitation joint distributions, not per-trajectory ones.



What did we do?

1/2

Theorem: tuning o = ¢'<, and with some caveats

Dtrain,e (ﬁ' Hﬂ*) < O(H) °Dtrain,€2 (ﬁ- Hﬂ*)

Clever smoothing with noise induces TVC

Left Mode

‘ Right Mode

‘ TVC Interpolation

‘ Non-TVC Interpolation

TVC converts ‘metric error’ into ‘discrete-token-error’

Imitation with ‘discrete-token-error’ is easier



(+ use control theory to induce

What did we do?

We algorithmically enforced the TVC
inductive bias.

‘ TVC Interpolation

‘ Non-TVC Interpolation




(+ use control theory to induce
contractivity)

What did we do?

Open Question: What are the intrinsic
inductive biases of diffusion models?

X u~ P(x)

Forthcoming work: Validates that diffusion
models are not just ‘more expressive’, but
have different inductive biases OOD.

‘ TVC Interpolation

. Non-TVC Interpolation




Simulation Studly.

low-level control helps!

data noising helps!

data noising hurts without stabilization

o)
=
<
=
D)

a4

.
)

B

<
=
-
o

Z.

No Gains, N=1 Gains, N=1
No Gains, N=3 Gains, N=3
No Gains, N=5 Gains, N=5
No Gains, N=10 Gains, N=10

0.15 0.20 0.25 0.30




Applications?


https://www.youtube.com/watch?v=H2gL6KC_W44&pp=ygURcm9ib3QgYWdyaWN1bHR1cmU%3D

@ ChatGPT

discrete-token continuous-token
sequence model. sequence model.

47
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Diffusi

Recap

ining

Tra

Inference
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Diffusion for Sequences

Noise as Masking Full-Seq. Diffusion
: 5663
£ 1t 1

Time

Observation
() Latent State

—> (Generation
W  Add Noise

(Boyuan Chen ... § ... et al. 24)

*we tell the model the n(ll)gse level



Diffusion Forcing
(Ours)

Full-Seq Diffusion

, "'-
Teacher Forcing — _—

,'v




Example: Explicit Algorithmic Modification enabled by Generative Model

Inference
Predict token x° | x x
Sampling ! 1’ t 2’
O
x| X ow |, X, oW, ...
Trainin
Training

Replica Noising!

51



Replica Noising ‘Mathematical Foundation’ for why this works....

F LA, . 1

" AMMO | HEALTH |



https://www.youtube.com/watch?v=C8C0UELhrkE

DPPO: Diffusion Policy Policy Optimization

Environment MDP Policy

Volog zy(a, " | /', 5,)

Diffusion | Diffusion | | [T =] - Gradient
MDP MDP (+C Update

Structured exploration \/ Training stability \/ Policy robustness \/

(Allen Ren ... S et al. "24)



conditional sampling 7. x = f(x) + noise

Real Hardware!



Success rate

Simply that Diffusion Policies can ‘represent’ better performing policies?

1.0
0.87 0.8 0.88
0.8
0.6
04
0.2 0
' Sim Real Sim Real

0.0 ——

DPPO Gaussian

Example of richer models having better ‘intrinsic’ O.0.D. inductive bias



Pre-training  Training trajectories at the beginning of fine-tuning
data DPPO Gaussian GMM

Avoid Environment |
from D3IL M1 |, - f

old’

‘seometry aware’




Pre-training  Training trajectories at the beginning of fine-tuning
data DPPO Gaussian GMM

a9 '.~-.-.-. . ..': 2

Avoid Environment
from D3IL VY A

Open Question: Richer Models = More ‘Reasonable’ Exploration!

Y



Pontification...

1. Lot’s of exciting questions in continuous-token prediction!

(robots, video, climate, Al4Science, conditional diffusion....)
2. More expressive models + alg. choices = richer O.0.D. inductive biases!

3. How can we take full advantage of large/rich models for exploration?

(this should be true in LLMs!)
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Low-Level Stability and High-Level Behavior
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Enjoy the weekend!


https://www.youtube.com/watch?v=H2gL6KC_W44&pp=ygURcm9ib3QgYWdyaWN1bHR1cmU%3D

