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Behavior Cloning
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(not my work)



Understanding Behavior Cloning
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a building block for modern 
robot learning



Video Language Action Models
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towards ‘continuous tokens’



   xt+1 = f(xt , ut)

system state control input
Learning Agent Environment

continuous state & action

action ut

state xt
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Control Systems



Learning Agent Environment

action (or input) ut

state xt

Control Systems

abstraction reflects physical laws.

6

‘feedback’

   xt+1 = f(xt , ut)

*no partial observability



Learning Agent Environment

action (or input) ut

state xt

Control Systems

abstraction reflects physical laws.
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‘feedback’

   xt+1 = f(xt , ut)

*no partial observability

network routing, AlphaGo, etc …



Learning Agent Environment

action (or input) ut

state xt

Control Systems
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‘feedback’

   xt+1 = f(xt , ut)

*no partial observability

Defn. a ‘policy’ maps  {state }  actions  xt ↦ ut



Behavior Cloning
xt+1 = f(xt, ut)
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nonlinear

states  =  state of robot + objectxt

inputs  = robot actionut

*caveat: focus on states

‘continuous tokens’



Themes
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1. How things go out-of-distribution

3. Theoretical Guarantees

4. Some applications

2. How this differs from discrete tokens



Behavior Cloning

(2) train a predictive model to predict
  ̂π(u ∣ x) ≈ ℙ[u⋆

t = u ∣ x⋆
t = x]

(1) Collect N expert demonstrations

Algorithm Template:
(x⋆

1:T, u⋆
1:T) x⋆

2

u⋆
1

u⋆
2

x⋆
3

x⋆
T+1

̂u1 = ̂π( ̂x1) ̂x2

̂u2
̂x3

̂xT+1

x⋆
1 = ̂x1

xt+1 = f(xt, ut)

robot imitation.

demonstrator u⋆ ∼ π⋆(x⋆)

2. no reward model (given or inferred).
disclaimer: other 
approaches exist.

1. supervised learning from demonstration
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Behavior Cloning meets Generative Models

Obstacle Left Mode

Right Mode

multiple strategies12

multi-modal expert data
(1) Collect N expert demonstrations

(2) train a generative model to predict
  ̂π(u ∣ x) ≈ ℙ[u⋆

t = u ∣ x⋆
t = x]

Algorithm Template:
(x⋆

1:T, u⋆
1:T)

(as supervised learners)

π : x ↦ u ∼ P(x) π : x ↦ f(x) +  noise
‘conditional sampling’ ‘mean parametrization’

(e.g. Diffusion) 



Behavior Cloning meets Generative Models

Obstacle Left Mode

Right Mode

13

multi-modal expert dataHypothesis 1: Condition sampling models can 
fit complex data distributions (‘realizability’)

Hypothesis 2: Condition sampling allow for different 
out-of-distribution inductive biases.

X

π : x ↦ u ∼ P(x)
‘conditional sampling’

π : x ↦ f(x) +  noise
‘mean parametrization’



Expert Trajectory

Learner Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π( ̂x1) ̂x2

̂u2
̂x3

̂xT+1

π⋆ : 𝒳 → 𝒰

̂π : 𝒳 → 𝒰 Challenge A: Error accumulates over time steps, 
possibly exponentially in horizon! 

Challenge B: After error has accumulated, 
we are now out of distribution.

How distribution shift arises
Goal: Make trajectory distance small

 dist(x⋆
1:T, ̂x1:T) = max

t
∥x⋆

t − ̂xt∥

(deterministic policies,  in expectation over initial condition) 

xt+1 = f(xt, ut)



Expert Trajectory

Learner Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π( ̂x1) ̂x2

̂u2
̂x3

̂xT+1

π⋆ : 𝒳 → 𝒰

̂π : 𝒳 → 𝒰

Goal: Make trajectory distance small

 dist(x⋆
1:T, ̂x1:T) = max

t
∥x⋆

t − ̂xt∥

xt+1 = f(xt, ut)

Contrast: Discrete Behavior Cloning

probabilistic mistakes accumulate at most linearly.

mistakes are metric.

How this differs from  discrete tokens

(e.g. DAGGER, see also Foster ’24 et al.)



Schematic of Results
xt+1 = f(xt, ut)

Theorem 1 (informal): With generative-model policies (conditional sampling), we 
can imitate without exponentially compounding error in contractive systems.

Theorem 2 (informal): If 
we know the dynamics, 
there is a reduction to 
learning in contractive 
systems

Theorem 3 (informal): If we 
don’t known the dynamics, 
learning is hard, even in 
“incrementally stable” but 
non-contractive systems.
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there is a reduction to 
learning in contractive 
systems
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learning is hard, even in 
“incrementally stable 
systems.”

*all new results



Schematic of Results
xt+1 = f(xt, ut)

Theorem 1 (informal): With generative-model policies (conditional sampling), we 
can imitate without exponentially compounding error in contractive systems.

*all new results

A. Introduce contractive systems

B. Show just fitting the expert data isn’t enough.

C. Introduce an inductive bias, TVC, guarantees imitation.

D. Given an algorithmic recommendation to ensure TVC.



Contractive Systems
xt+1 = f(xt, ut)

time

contractive  ‘stable’, ⊂ α < 1

time

expansive  ‘unstable’, ⊂ α > 1

Definition: We will say a system is -contractive if (α, β)

∥f(x′￼, u′￼) − f(x, u)∥ ≤ α∥x − x′￼∥ + β∥u − u′￼∥



Contractive Systems

Definition: We will say a system is -contractive if (α, β)

∥f(x′￼, u′￼) − f(x, u)∥ ≤ α∥x − x′￼∥ + β∥u − u′￼∥

xt+1 = f(xt, ut)

Lemma: If dynamics are -contractive, given two sequences   
with  , and if , we get

(α, β) (x⋆
1:T, u⋆

1:T), ( ̂x1:T, ̂u1:T)
x⋆

1 = ̂x1 α < 1

      max
1≤t≤T

∥x⋆
t − ̂xt∥ ≤

β
1 − α

max
1≤t≤T

∥u⋆
t − ̂ut∥

special case of ‘stability’



Example (Contractive, Scalar Dynamics):  

(a)  

(b)    

(c) training data: “ ”-trajectory 

f(x, u) = .9x + u

π⋆(x) = 0

0 x⋆
1 = x⋆

2 = … = 0

xt+1 = f(xt, ut)

Bad Learner Policy: ̂πBad(x) = .15x + ϵ

(b) On deployment,  | ̂xt |≥ (1.05)tϵ = eΩ(t) ⋅ ϵ

Is Low Training Error Enough?

(a) For all training x,  -  = |π⋆(x) ̂πBad(x)| ϵ

‘feedback’:   f(x, ̂π(x)) = 1.05x + ϵ

learner policy

environment

inductive bias creates ‘feedback’



Example (Contractive, Scalar Dynamics):  

(a)  

(b)    

(c) training data: “ ”-trajectory 

f(x, u) = .9x + u

π⋆(x) = 0

0 x⋆
1 = x⋆

2 = … = 0

xt+1 = f(xt, ut)

Bad Learner Policy: ̂πBad(x) = .15x + ϵ

Is Low Training Error Enough?

learner policy

environment

inductive bias creates ‘feedback’

Butterfly Effects of SGD, Block ‘24

can be improved by better data coverage ….



Example (Contractive, Scalar Dynamics): 

, f(x, u) = .9x + u π⋆(x) = 0

(a) For all training x,  -  =  

(b) On deployment,   w.p. 

|π⋆(x) ̂π(x)| ϵ

| ̂xt | ≤ O(ϵ) 1 − O(tϵ)

A different inductive bias.

probabilistic mistakes accumulate at most linearly.

Not-So-Bad Learner Policy: ̂πNSB(x) = Bernoulli(min{1,.15x})+ϵ



Example (Contractive, Scalar Dynamics): 

, f(x, u) = .9x + u π⋆(x) = 0

Not-So-Bad Learner Policy: ̂πNSB(x) = Bernoulli(min{1,.15x})+ϵ

‘Discrete Token Error’ ?

convert ‘metric mistakes’ into ‘probabilistic mistakes’



Example (Contractive, Scalar Dynamics): 

, f(x, u) = .9x + u π⋆(x) = 0

Not-So-Bad Learner Policy: ̂πNSB(x) = Bernoulli(min{1,.15x})+ϵ

‘Discrete Token Error’ ?

Generative models

For small enough x,  = [ ] =  +  is the OG bad policy. ̂πBad(x) 𝔼 ̂πNSB(x) .15x ϵ



Example 1:   is  TVC  ̂πNSB(x) = Bernoulli(min{1,.15x})+ϵ L = .15

Total Variation Continuity

TV(P, Q) := inf
(XP,XQ)∼μ

Pr [XP ≠ XQ]

Definition: We say  is L-TVC if π(x) TV(π(x), π(x′￼)) ≤ L∥x − x′￼∥

Example 2:  = [ ] =  +  is not TVĈπBad(x) 𝔼 ̂πNSB(x) .15x ϵ



Total Variation Continuity

TV(P, Q) := inf
(XP,XQ)∼μ

Pr [XP ≠ XQ]

Definition: We say  is L-TVC if π(x) TV(π(x), π(x′￼)) ≤ L∥x − x′￼∥

obstacle

Left Mode

Right Mode

TVC Interpolation

X

TVC is the opposite of mode-collapse

Non-TVC Interpolation
*contractive dynamics

We will show TVC Policies have low execution error.



3. Like Wasserstein, but easier to work with for imitation learning

xt+1 = f(xt, ut)

Problem Definition
Definition: Let P , Q be two distribution on the same normed space. We define 

TVϵ(P, Q) := inf
(XP,XQ)∼μ

Pr [∥XP − XQ∥ > ϵ]

2. A way of measuring distance between continuous-valued R.V.s

1. ‘Optimal Transport Distance’, reduces to regular TV for ϵ = 0



xt+1 = f(xt, ut)

Problem Definition 

Training Error: Suppose we get trajectories , (x⋆
1 , u⋆

1 , x⋆
2 , u⋆

2 , …, x⋆
H , u⋆

H) u⋆
t ∼ π⋆(x⋆

t )

    ( ), )Dtrain,ϵ ( ̂π ∥π⋆) := max
t

𝔼x⋆
t

TVϵ(π⋆ x⋆
t ̂π(x⋆

t ) (can be made small w/ DDPM)

‘data manifold’ (exact TV not tractable) 



x⋆
2

u⋆
1

u⋆
2

x⋆
3

x⋆
T+1

̂u1 = ̂π( ̂x1) ̂x2

̂u2
̂x3

̂xT+1

x⋆
1 = ̂x1

xt+1 = f(xt, ut)

Problem Definition 

Training Error: Suppose we get trajectories , (x⋆
1 , u⋆

1 , x⋆
2 , u⋆

2 , …, x⋆
H , u⋆

H) u⋆
t ∼ π⋆(x⋆

t )

    ( ), )Dtrain,ϵ ( ̂π ∥π⋆) := max
t

𝔼x⋆
t

TVϵ(π⋆ x⋆
t ̂π(x⋆

t )

Test Error: We roll out , ( ̂x1, ̂u1, ̂x2, ̂u2, …, ̂xH, ̂uH) ̂ut ∼ ̂π(xt)

   Law( ), Law )Dtest,ϵ ( ̂π ∥π⋆) := max
t

TVϵ( x⋆
t ( ̂xt)

Goal:    Dtest,ϵ ≤ poly(H) ⋅ Dtrain,ϵ′￼



A First Guarantee

Expert

obstacle

Theorem: If   is L-TVC, and system is  contractivêπ (1 − c−1, O(1))

    Dtest,ϵ ( ̂π ∥π⋆) ≤ O(cLH) ⋅Dtrain,ϵ/c ( ̂π ∥π⋆)

(1) TVC implies coupling s.t.          ℙ[ ̂ut ∼ ̂π( ̂xt) ≠ ̂u′￼t ∼ ̂π( x⋆
t ) ] ≤ Lϵ (change of measure)

(2) Supervised Learning ensures that        ( )̂u′￼t ∼ ̂π ( ̂x⋆
t ) ≈ π⋆ x⋆

t

(3) Contractive of dynamics implies errors compound by at most c-factor

?
Proof Sketch:  

Imitator



A Recap

obstacle

TVC is a nice inductive bias. By how do we get it? 

Imitator

(1) Distribution Shift can be bad in continuous-state BC 

Expert

(2) TVC + Contractive Dynamics* gets us around the issue

Theorem: If   is L-TVC, and system is  contractivêπ (1 − c−1, O(1))

    Dtest,ϵ ( ̂π ∥π⋆) ≤ O(cLH) ⋅Dtrain,ϵ/c ( ̂π ∥π⋆)



Replica Noising.



TVC via Noising

Elementary Lemma: Let  : ̂π x ∈ ℝd ↦ Δ (𝒰)

Then  is  - TVC ̂πσ (1/2σ)

Proof:  TV( , )   TV( , )̂πσ(x) ̂πσ(x′￼) ≤ 𝒩(x, σ2I) 𝒩(x′￼, σ2I) (Data Processing)

 KL( , )  ≤ (1
2

𝒩(x, σ2I) 𝒩(x′￼, σ2I) )1/2 (Pinsker)

 =
1
2σ

∥x − x′￼∥ (Stat Class)

Define smoothed policy  :  ̂πσ x ↦ ̂π ∘ 𝒩(x, σ2I)



TVC via Noising

Smoothed policy  :  is -TVĈπσ x ↦ ̂π(x+σw) (1/2σ)

1. Nothing new here - we know noising gives robustness

2. This might be a terrible idea: 

‘data manifold’
‘noise goes off manifold’

obstacle

Noise might knock me off modes



Replica Noising

train with same noise as testing

‘data manifold’

Algorithm

(1) Collect demonstrations {x⋆, u⋆ ∼ π⋆(x⋆)}

(2) Train policy (e.g. Diffusion)

      ]̂π (x⋆+σw) ≈ ℙ[u⋆ ∣ x⋆+σw

(3) Deploy   ̂πσ (x) = ̂π (x+σw′￼)

“data augmentation + 
test-time smoothing”

‘conditional sampling’



Replica Noising

Observation: If   =    ] is 
perfect, then,

̂π (x⋆+σw) ℙ[u⋆ ∣ x⋆+σw

1.         ]̂π (x) = π⋆ ∘ ℙ[x⋆ ∣ x⋆+σw = x
‘data manifold’

State x

State x̃ = x+σw′￼

     x′￼ ∼ ℙ[x⋆ ∣ x⋆+σw = x̃]

2.          ]̂πσ (x) = π⋆ ∘ ℙ[x⋆ ∣ x⋆+σw = x +σw′￼

𝖪rep : 𝒳 ↦ Δ(𝒳)



Replica Noising

Observation: If   =    ] is 
perfect, then,

̂π (x⋆+σw) ℙ[u⋆ ∣ x⋆+σw

1.         ]̂π (x) = π⋆ ∘ ℙ[x⋆ ∣ x⋆+σw = x

2.          ]̂πσ (x) = π⋆ ∘ ℙ[x⋆ ∣ x⋆+σw = x +σw′￼

𝖪rep : 𝒳 ↦ Δ(𝒳)

obstacle

State x̃ = x+σw′￼

State x

     x′￼ ∼ ℙ[x⋆ ∣ x⋆+σw = x̃]



Replica Noising

Lemma: Let  , and let  . 
Then,   are

x ∼ Law(x⋆) x′￼ ∼ 𝖪rep(x)
(x, x′￼)

(1) identically distributed (and exchangeable)

(2)            ℙ[∥x − x′￼∥ > 2στ] ≤ 2ℙ[∥w∥ > τ]

With perfect training,       is 
unbiased at a distributional level (and TVC).

̂πσ (x) = π⋆ ∘ 𝖪rep(x)

Imitator Policy
obstacle

State x̃ = x+σw′￼

State x

     x′￼ ∼ ℙ[x⋆ ∣ x⋆+σw′￼= x̃]

proof via more complex 
coupling argument using the 

replica property



Replica Noising

Lemma: Let  , and let  . 
Then,   are

x ∼ Law(x⋆) x′￼ ∼ 𝖪rep(x)
(x, x′￼)

(1) identically distributed (and exchangeable)

(2)            ℙ[∥x − x′￼∥ > 2στ] ≤ 2ℙ[∥w∥ > τ]

This argument requires modeling 
distributions, not simply ‘means’!

Imitator Policy
obstacle

State x̃ = x+σw′￼

State x

     x′￼ ∼ ℙ[x⋆ ∣ x⋆+σw′￼= x̃]



Replica Noising

Imitator Policy
obstacle

State x̃ = x+σw′￼

State x

     x′￼ ∼ ℙ[x⋆ ∣ x⋆+σw′￼= x̃]

Theorem: tuning  , and with some caveatsσ = ϵ1/2

    Dtest,ϵ ( ̂π ∥π⋆) ≤ O(H) ⋅Dtrain,ϵ2 ( ̂π ∥π⋆)

1. TVC enforced, not assumed!

2. Degradation in rates due to noising parameter tradeoff 

3. Noising introduces the possibility of ‘mode swapping’… 

… which means we imitation joint distributions, not per-trajectory ones. 



What did we do?

Theorem: tuning  , and with some caveatsσ = ϵ1/2

    Dtrain,ϵ ( ̂π ∥π⋆) ≤ O(H) ⋅Dtrain,ϵ2 ( ̂π ∥π⋆)

Clever smoothing with noise induces TVC

TVC converts ‘metric error’ into ‘discrete-token-error’

Imitation with ‘discrete-token-error’ is easier

obstacle

Left Mode

Right Mode

TVC Interpolation

X

Non-TVC Interpolation



What did we do?

obstacle

Left Mode

Right Mode

TVC Interpolation

X

Non-TVC Interpolation

(+ use control theory to induce contractivity) 

Theorem 1 (super informal): We can imitate without exponentially 
compounding error in contractive systems.

We algorithmically enforced the TVC 
inductive bias.



What did we do?

obstacle

Left Mode

Right Mode

TVC Interpolation

X

Non-TVC Interpolation

(+ use control theory to induce 
contractivity) 

Theorem 1 (super informal): We can imitate without exponentially 
compounding error in contractive systems.

Open Question: What are the intrinsic 
inductive biases of diffusion models?

x ↦ u ∼ P(x)

Forthcoming work: Validates that diffusion 
models are not just ‘more expressive’, but 
have different inductive biases OOD.



Simulation Study.

added noise σ 2d Quadcopter

low-level control helps! 

data noising hurts without stabilization 

data noising helps!



Applications?

https://www.youtube.com/watch?v=H2gL6KC_W44&pp=ygURcm9ib3QgYWdyaWN1bHR1cmU%3D
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discrete-token 
sequence model.

continuous-token 
sequence model.



Recap: Diffusion
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Training

Inference



Diffusion for Sequences

49

(Boyuan Chen … S … et al. ’24)
*we tell the model the noise level
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Predict token   x0
t ∣ xk0

t−1, xk0
t−2, …

Inference

51

k

t

    + ≈ x0
t ∣ x0

t−1+σw′￼t−1, x0
t−2 σw′￼t−2, …

k

t

Predict token   x0
t ∣ xk0

t−1, xk0
t−2, …

   += x0
t ∣ x0

t−1+σwt−1, x0
t−2 σwt−2, …

Training

Replica Noising!

Example: Explicit Algorithmic Modification enabled by Generative Model
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Replica Noising ‘Mathematical Foundation’ for why this works….

https://www.youtube.com/watch?v=C8C0UELhrkE


Diffusion Policy Policy Optimization

53 (Allen Ren … S et al. ’24)



conditional sampling π : x ↦ f(x) +  noise

Real Hardware!



Simply that Diffusion Policies can ‘represent’ better performing policies?

Example of richer models having better ‘intrinsic’  O.O.D. inductive bias
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‘on-manifold’ 

‘geometry aware’
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Open Question: Richer Models =  More ‘Reasonable’ Exploration!



Pontification…

1. Lot’s of exciting questions in continuous-token prediction! 
(robots, video, climate, AI4Science, conditional diffusion….)

2. More expressive models + alg. choices =  richer O.O.D. inductive biases!

3. How can we take full advantage of large/rich models  for exploration?

(this should be true in LLMs!)





Enjoy the weekend!

https://www.youtube.com/watch?v=H2gL6KC_W44&pp=ygURcm9ib3QgYWdyaWN1bHR1cmU%3D

