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Device Modeling

separating experience from models
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Behavior of device &: collection of all current and
lﬁl voltage waveforms that can be produced by
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) connecting & to an arbitrary excitation network
v |/ : : : :
D and closing the switch § at an arbitrary time .

Fig. 1.

Model of device &: a mathematical construct that

Circuit for measuring admissible voltage—current signal pairs

associated with a 2-terminal or one-port device ).

allows us to make predictions about & in various
circumstances of interest without having to
enumerate or measure all the elements of its
behavior.

L.O. Chua, “Device modeling via basic nonlinear circuit elements,” IEEE Trans. on Circuits and Systems, 1980



Device Modeling

separating experience from models

IDEAL Desiderata for models:
AWETER ﬁ]
3/, — | 1. Well-posedness
VOLTMETER Y
\ ;D ) 2. Simulation capability
ex -

3. Qualitative similarity

Fig. 1. Circuit for measuring admissible voltage—current signal pairs 4 Predictive ability

associated with a 2-terminal or one-port device 9.

5. Structural stability

A model obtained from a finite set of measurements should generalize to previously unseen operating
conditions (= good simulation capability + good predictive ability).

But: Probabilistic assumptions about operating conditions are highly artificial and not verifiable!

“Probability does not exist.” (B. de Finetti)




The Behavioral Approach

“by their fruits you will know them”

Developed by Jan Willems in 1980s, but with important precursors in general
systems theory from 1970s (Gaines, Klir, Mesarovic, Windeknecht, Zadeh, ...)

Systems = behaviors (extensional description)
Models = behavioral equations (intensional description)

Goal of learning/modeling /system identification: proceeding from (samples of)
behaviors to models



Generalities

* Basic object: (W, &)
W is the space of outcomes (observable attributes)
B C Wis the behavior

* Models via behavioral equations:
w e B < f(w) =0 — kernel representation
we RS (dA) w=g(l)—image (or latent variable) representation

» Example: autoregressive models
W=1{(..,w(=1),wO),w(l),...):w@i) € 2}
weABSwi=fwi—-1),wi—-2),...,w(i—L))foralli
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appear as particular representations. Finite dimensional line:

Dynamical systems are defined in terms of their behaviour, and inp»:/ &\ eb
are characterized by the fact that their behaviour i< QO(

(equivalently closed) subspace of (R%)? or (R o

Models for Dynamics

Jan C. Willems
Mathematics Institute, University of Groningen

Ce que 'on congoit bien s’¢énonce clairement,
Et les mots pour le dire arrivent aisément.

d( (Boileau, I’Art Poétique, 1674)
.
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Modeling

. N A
g Sampling o i cicn g MOYINg o W fn=0)

* Inductive bias: choice of &# from which f is selected

* Interpolation: % ,,,, C %
(Willems says that 3 ... is unfalsified by RB)

» Complexity: &, C &, C .

fieg'iHa%’,- = {we W: fi(w) =0} such that 8, C %, C

A\

Most Powerful Unfalsified Model: 95’1*, where i* := min{i : B4,., C AB.}



Example: 1-NN

sampling modeling .

B s Byn ={w;:1<i<n) CRB , B={we W:f(w) =0}

B={xfx):xeX}, f:2 — {0,1}unknown

RBgaa = 1, y) - 1 <1 < nj, y; = J(x;)

I-NN classifier: B = {(x,f(x)) : x € X},  f(X) =y, i(x) = arg min dist(x, x,)

1<i<n

* 9B ... i1s unfalsified by &%; this is the most we can say without imposing
probabilistic assumptions

* under suitable probabilistic assumptions (which are not verifiable),
guarantees like Cover & Hart can be given



Example: Interpolating Regression

g Sampling o i cicmcg_modeing o ew: i) =0)
B = {(x,f(x): x € R, f:R?—- R unknown
‘%da‘[a — {(xi9yi) 1 S l S n}9 Yi =f(xi)
2 VK

Nadaraya-Watson estimator: B = {(x, f(x)) X E XY,

where K is a singular kernel, i.e., K(#) > coasu — 0

o« A . isunfalsified by &: this is the most we can say without imposin
data y y P 2
probabilistic assumptions

* under suitable probabilistic assumptions (which are not verifiable), we
have minimax optimality guarantees (Belkin, Rakhlin, Tsybakov, 2018)



Example from Control: “Fundamental Lemma”
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Abstract

We prove that if a component of the response signal of a controllable linear time-invariant system is persistently exciting of
sufficiently high order, then the windows of the signal span the full system behavior. This is then applied to obtain conditions
under which the state trajectory of a state representation spans the whole state space. The related question of when the matrix
formed from a state sequence has linearly independent rows from the matrix formed from an input sequence and a finite

number of its shifts is of central importance in subspace system identification.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Behavioral systems; Persistency of excitation; Lags; Annihilators; System identification




Background: Linear Systems

* Behavioral view of linearity: a system is linear iff its behavior & is a linear subspace of
a vector space

* Time-invariance: &% is invariant with respect to shifts

» Example: discrete-time linear time-invariant systems

W={w=C(..,w(—=1),wO),w(l),...): wi)) € R?}
B={we W:Plow=0}

where o : W — W is the shift operator and

P(c)=R,6° +R,_j6° '+ ...+Ri6c+R,, R €RPX



The Fundamental Lemma

an informal statement

* Given a linear time-invariant system which is controllable, the restriction of its behavior
9B to sequences of length L can be reconstructed from a single observation trajectory
wy = (wy(l),...,wy(T)) for T > L, satistying a certain persistency of excitation condition

» The length-L behavior &% |, is given by the image (column space) of the Hankel matrix

wy(1) wq(2) . Wy(T—=L+1)
() = wd:(Z) wd:(3) oo owy(T —:L + 2)
wy(L) wy(L+1) ... wy(T)

* RKHS interpretation (recent work by O. Molodchyk and T. Faulwasser)



The Fundamental Lemma

generalization/induction perspective

Data: B 4., = {wg = (wy(1), ...,wy(T))} — a single trajectory (designed to have PE)

Data to model:

wy(1) wq(2) . wy(T—L+1)
& ‘L — image %, (w), I,(w,;) = wd:(2) wd:(B) cooowy(T —:L + 2)
wy(L) wy(L+1) ... wy(T)

Reconstruction is exact: B |, = % |,

Caveats: strong inductive bias (linearity, time-invariance, controllability)

These assumptions are the material conditions for the validity of the inference
prescribed by the Fundamental Lemma



The Problem of Induction

you can keep rethinking generalization all you want

» No universal justification that the inference from the particular (23 4,..) to the
general (&) is valid as far as &3 is concerned

* Any attempt to justify an inductive inference schema is either:
» fallacious (using a deductive argument to justify an inductive schema)
* circular (using the same inductive schema to justify itself)

* or leads to an infinite regress (using meta-induction to justify the original
induction, which will require using meta-meta-induction to justify meta-induction,
which will require using meta-meta-meta-...)



The Statistical Learning Approach?

NG ' ~* Harman and Kulkarni argue that the “real” problem of
' induction is a problem of reliability of inductive inference

* Theoretical properties of Empirical and/or Structural Risk
Minimization are interpreted as reliability certificates

* Inductive bias (choice of hypothesis class) formalizes
Nelson Goodman’s notion of projectible predicates

INDUCTION AND  GILBERT HARMAN AND This strategy fails for two reasons:

STATISTICAL SANJEEV KULKARNI
LEARNING THEORY  uses a mathematical deductive argument to justify

inductive inference

* relies on empirically unverifiable probabilistic
assumptions (infinite regress)




Back to Device Modeling

IDEAL
AMMETER ﬁ * Everything comes down to the choice of N,

——-Ei/o-

¥ IDEAL
VOLTMETER

5} . * E.g., it could be a “universal signal
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Nex .
generator” with tunable parameters @

Fig. 1. Circuit for measuring admissible voltage-current signal pairs  ° Traiﬂiﬂg data — generate Li.d. Samples
associated with a 2-terminal or one-port device 9. o
0,,6,, ... from a well-chosen probability

measure P, use each 0, to drive N, collect
measurements

* How can we guarantee good coverage?

No universal procedure for completely characterizing
the device behavior from finitely many measurements!



A Better Option: The Material View

Two slogans of Norton:
* all induction is local

* no universal rules of induction

Some samples of the element Some samples of wax melt at
bismuth melt at 271°C. 91°C.
Therefore, all samples of the Therefore, all samples of
element bismuth melt at 271°C. wax melt at 91 °C.

JOHN D. NORTON Any given inductive argument is warranted by a

network of background material facts that justify it

BSPS ™
BSPS|open . \ (provisionally and locally).




The Material Justification of Behavioral Modeling

* What are the relevant background facts?

* In system identification settings, we know from our experience as engineers that
many systems in use in signal processing or control admit linear time-invariant
approximations under typical (e.g., small-signal) operating conditions.

* In language modeling, we know from our experience (formalized by Shannon and
Harris) that “anyone speaking a language possesses, implicitly, an enormous
knowledge of the statistics of the language” (reliability of next-token prediction).

* Assumptions of this type are inevitably local and provisional, and have to be
checked and re-checked against experience.



Material Theory of Induction, Revisited

Psychological Inquiry Copyright 1990 by
1990, Vol. 1, No. 2. 108-141 Lawrence Erlbaum Associates, Inc.

TARGET ARTICLE

Appraising and Amending Theories:
The Strategy of Lakatosian Defense and Two Principles That Warrant It

Paul E. Meehl

University of Minnesota

In social science, everything is somewhat correlated with everything ( “crud factor” ), so whether
H, is refuted depends solely on statistical power. In psychology, the directional counternull of
interest, H*, is not equivalent to the substantive theory T, there being many plausible alternative
explanations of a mere directional trend (weak use of significance tests). Testing against a
predicted point value (the strong use of significant tests) can discorroborate T by refuting H*. If
used thus to abandon T forthwith, it is too strong, not allowing for theoretical verisimilitude as
distinguished from truth. Defense and amendment of an apparently falsified T are appropriate
strategies only when T has accumulated a good track record ( “money in the bank’ ) by making
successful or near-miss predictions of low prior probability (Salmon’s “damn strange coinci-
dences”). Two rough indexes are proposed for numerifying the track record, by considering
jointly how intolerant (risky) and how close (accurate) are its predictions.

arg min

Home  Lecture Blogs Collections Archive  About

Meehl's Philosophical Psychology

BEN RECHT
APR 24, 2024

Q 17 5 1 Share

Introduction: Blogging Philosophical Psychology

Lecture 1 [YouTube]:

1. Everything Inherently Meta - A historical overview, starting with logical positivism.

Lecture 2 [YouTube]:

1. Popperian Falsification - Popper's program for the logic of science.

2. Inconvenient Facts - Why it might be rational to not abandon theories in light of

falsifying evidence.

3. Risky Predictions - The role of prediction in corroborating theories and

quantifying what makes a prediction surprising.



Model-Building as Theory- Bunldmg

(TC/\AT/\AI/\CP/\CN/\CS) (01302)
pe = Pr|O2 | O1] is small without the theory.

» T.: core theory

» A auxiliary theory

* A auxiliary theories about the instruments

» (' ceteris paribus clause (“all else being equal”)
* Cy: particulars about experimental conditions

» ( : software validity assumption (Ben Recht)




* T¢: core theory (Te NAr A A ACp ACx ACs) = (01 D 02)
dfe Fst. B ={,v): f(i,v) =0} pg = Pr[O2 | O1] is small without the theory.

» A auxiliary theory
assumptions like linearity, time-invariance, passivity, etc.

» A auxiliary theories about the instruments

ammeter, voltmeter are “ideal” for all practical purposes .
Ol: givenv(1),0<t<T

02 : f(i,v) ~ 0

» (' ceteris paribus clause (“all else being equal”)
e.g., experimental stimuli are “similar” to typical use cases

» Cy: particulars about experimental conditions
temperature, humidity don’t matter, instrument calibration

IDEAL
. AMMETER ﬁ)
» ( :software validity assumption { T — .
version of PyTorch used, etc. Nex 5’ ||

Fig. 1. Circuit for measuring admissible voltage—current signal pairs
associated with a 2-terminal or one-port device .



The Role of Probabilistic Assumptions

In engineering (and prescriptive aspects of economics) one can, it seems
to me, take the following intermediate position. An algorithm-based engineer-
ing device, say in signal processing, communication, or control, comes with
a set of ‘certificates’, i.e. statements that guarantee that the device or the
algorithm will work well under certain specified circumstances. These circum-
stances need not be the ones under which the device will operate in actual
practice. They may not even be circumstances which can happen in the real
world. These certificates are merely quality specifications. Examples of such
performance guarantees may be that an error correcting code corrects an en-
coded message that is received with on the average not more than a certain
percentage of errors, or that a filter generates the conditional expectation of
an unobserved signal from an observed one under certain prescribed stochas-
tic assumptions, or that a controller ensures robust stability if the plant is in
a certain neighborhood of a nominal one, etc.

J. Willems, “Thoughts on system identification,” 2006



Summary

Behavioral view: systems = data, models = compressed descriptions of data
Understanding generalization requires rethinking probability (hello Ben!)

Lots of lessons from control and system identification: look for analogues of the
“fundamental lemma” in machine learning

We need a more nuanced modeling philosophy, with clear recognition that:
* all generalizations are local

* no universal justification for generalization



