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Device Modeling
separating experience from models

Behavior of device : collection of all current and 
voltage waveforms that can be produced by 
connecting  to an arbitrary excitation network 
and closing the switch S at an arbitrary time . 

Model of device : a mathematical construct that 
allows us to make predictions about  in various 
circumstances of interest without having to 
enumerate or measure all the elements of its 
behavior.
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L.O. Chua, “Device modeling via basic nonlinear circuit elements,” IEEE Trans. on Circuits and Systems, 1980



A model obtained from a finite set of measurements should generalize to previously unseen operating 
conditions (= good simulation capability + good predictive ability). 

But: Probabilistic assumptions about operating conditions are highly artificial and not verifiable! 

“Probability does not exist.” (B. de Finetti)

Device Modeling
separating experience from models

Desiderata for models: 

1. Well-posedness 

2. Simulation capability 

3. Qualitative similarity 

4. Predictive ability 

5. Structural stability



The Behavioral Approach

• Developed by Jan Willems in 1980s, but with important precursors in general 
systems theory from 1970s (Gaines, Klir, Mesarovic, Windeknecht, Zadeh, …) 

• Systems = behaviors (extensional description) 

• Models = behavioral equations (intensional description) 

• Goal of learning/modeling/system identification: proceeding from (samples of) 
behaviors to models

“by their fruits you will know them”



Generalities

• Basic object:  
 is the space of outcomes (observable attributes) 

 is the behavior 

• Models via behavioral equations: 
 — kernel representation 

 — image (or latent variable) representation 

• Example: autoregressive models 
 

(W, ℬ)
W
ℬ ⊆ W

w ∈ ℬ ⇔ f(w) = 0
w ∈ ℬ ⇔ (∃λ) w = g(λ)

W = {(…, w(−1), w(0), w(1), …) : w(i) ∈ Σ}
w ∈ ℬ ⇔ w(i) = f(w(i − 1), w(i − 2), …, w(i − L)) for all i



Original motivation for the behavioral approach: 

data-driven, nonparametric methods for going from data to models



Modeling
ℬ

    sampling    
ℬdata = {wi : 1 ≤ i ≤ n} ⊆ ℬ

    modeling    
ℬ̂ = {w ∈ W : ̂f(w) = 0}

• Inductive bias: choice of  from which  is selected 

• Interpolation:  
  (Willems says that  is unfalsified by ) 

•  Complexity:  

     
 
   Most Powerful Unfalsified Model: 

ℱ ̂f

ℬdata ⊆ ℬ̂
ℬdata ℬ̂

ℱ1 ⊆ ℱ2 ⊆ …
̂fi ∈ ℱi ↦ ℬ̂i := {w ∈ W : ̂fi(w) = 0} such that ℬ̂1 ⊆ ℬ̂2 ⊆ …

ℬ̂i*,  where i* := min{i : ℬdata ⊆ ℬ̂i}



Example: 1-NN
ℬ

    sampling    
ℬdata = {wi : 1 ≤ i ≤ n} ⊆ ℬ

    modeling    
ℬ̂ = {w ∈ W : ̂f(w) = 0}

 

 
 
1-NN classifier:   

ℬ = {(x, f(x)) : x ∈ 𝒳}, f : 𝒳 → {0,1} unknown

ℬdata = {(xi, yi) : 1 ≤ i ≤ n}, yi = f(xi)

ℬ̂ = {(x, ̂f(x)) : x ∈ 𝒳}, ̂f(x) = yi(x), i(x) = arg min
1≤i≤n

dist(x, xi)

•  is unfalsified by ; this is the most we can say without imposing 
probabilistic assumptions 

• under suitable probabilistic assumptions (which are not verifiable), 
guarantees like Cover & Hart can be given

ℬdata ℬ̂



Example: Interpolating Regression
ℬ

    sampling    
ℬdata = {wi : 1 ≤ i ≤ n} ⊆ ℬ

    modeling    
ℬ̂ = {w ∈ W : ̂f(w) = 0}

 

 

Nadaraya-Watson estimator:    

where  is a singular kernel, i.e., 

ℬ = {(x, f(x)) : x ∈ ℝd}, f : ℝd → ℝ unknown

ℬdata = {(xi, yi) : 1 ≤ i ≤ n}, yi = f(xi)

ℬ̂ = {(x, ̂f(x)) : x ∈ 𝒳}, ̂f(x) =
∑n

i=1 YiK ( x − Xi

h )
∑n

i=1 K ( x − Xi

h )
K K(u) → ∞ as u → 0

•  is unfalsified by ; this is the most we can say without imposing 
probabilistic assumptions 

• under suitable probabilistic assumptions (which are not verifiable), we 
have minimax optimality guarantees (Belkin, Rakhlin, Tsybakov, 2018)

ℬdata ℬ̂



Example from Control: “Fundamental Lemma”



Background: Linear Systems
• Behavioral view of linearity: a system is linear iff its behavior  is a linear subspace of 

a vector space 

• Time-invariance:  is invariant with respect to shifts 

• Example: discrete-time linear time-invariant systems 
                 
                         

 
where  is the shift operator and 
 
                 

ℬ

ℬ

W = {w = (…, w(−1), w(0), w(1), …) : w(i)) ∈ ℝq}
ℬ = {w ∈ W : P(σ)w = 0}

σ : W → W

P(σ) = Rℓσℓ + Rℓ−1σℓ−1 + … + R1σ + R0, Rj ∈ ℝp×q



The Fundamental Lemma

• Given a linear time-invariant system which is controllable, the restriction of its behavior 
 to sequences of length  can be reconstructed from a single observation trajectory 

 for , satisfying a certain persistency of excitation condition 

• The length-  behavior  is given by the image (column space) of the Hankel matrix 
 

                         

• RKHS interpretation (recent work by O. Molodchyk and T. Faulwasser)

ℬ L
wd = (wd(1), …, wd(T)) T > L

L ℬ |L

ℋL(wd) :=

wd(1) wd(2) … wd(T − L + 1)
wd(2) wd(3) … wd(T − L + 2)

⋮ ⋮ … ⋮
wd(L) wd(L + 1) … wd(T)

an informal statement



The Fundamental Lemma

• Data:  — a single trajectory (designed to have PE) 

• Data to model: 

,        

• Reconstruction is exact:  

• Caveats: strong inductive bias (linearity, time-invariance, controllability) 

• These assumptions are the material conditions for the validity of the inference 
prescribed by the Fundamental Lemma

ℬdata = {wd = (wd(1), …, wd(T))}

ℬ̂ |L = image ℋL(wd) ℋL(wd) :=

wd(1) wd(2) … wd(T − L + 1)
wd(2) wd(3) … wd(T − L + 2)

⋮ ⋮ … ⋮
wd(L) wd(L + 1) … wd(T)

ℬ̂ |L = ℬ |L

generalization/induction perspective



The Problem of Induction

• No universal justification that the inference from the particular ( ) to the 
general ( ) is valid as far as  is concerned 

• Any attempt to justify an inductive inference schema is either: 

• fallacious (using a deductive argument to justify an inductive schema) 

• circular (using the same inductive schema to justify itself ) 

• or leads to an infinite regress (using meta-induction to justify the original 
induction, which will require using meta-meta-induction to justify meta-induction, 
which will require using meta-meta-meta-…)

ℬdata
ℬ̂ ℬ

you can keep rethinking generalization all you want



The Statistical Learning Approach?
• Harman and Kulkarni argue that the “real” problem of 

induction is a problem of reliability of inductive inference 

• Theoretical properties of Empirical and/or Structural Risk 
Minimization are interpreted as reliability certificates 

• Inductive bias (choice of hypothesis class) formalizes 
Nelson Goodman’s notion of projectible predicates 

This strategy fails for two reasons:  

• uses a mathematical deductive argument to justify 
inductive inference 

• relies on empirically unverifiable probabilistic 
assumptions (infinite regress)



Back to Device Modeling

No universal procedure for completely characterizing 
the device behavior from finitely many measurements!

• Everything comes down to the choice of   

• E.g., it could be a “universal signal 
generator” with tunable parameters  

• Training data — generate i.i.d. samples 
 from a well-chosen probability 

measure , use each  to drive , collect 
measurements 

• How can we guarantee good coverage?

Nex

θ

θ1, θ2, …
ℙ θi Nex



A Better Option: The Material View
Two slogans of Norton: 

• all induction is local 

• no universal rules of induction 

Any given inductive argument is warranted by a 
network of background material facts that justify it 
(provisionally and locally). 



The Material Justification of Behavioral Modeling

• What are the relevant background facts? 

• In system identification settings, we know from our experience as engineers that 
many systems in use in signal processing or control admit linear time-invariant 
approximations under typical (e.g., small-signal) operating conditions. 

• In language modeling, we know from our experience (formalized by Shannon and 
Harris) that “anyone speaking a language possesses, implicitly, an enormous 
knowledge of the statistics of the language” (reliability of next-token prediction). 

• Assumptions of this type are inevitably local and provisional, and have to be 
checked and re-checked against experience.



Material Theory of Induction, Revisited



Model-Building as Theory-Building

• : core theory 

• : auxiliary theory 

• : auxiliary theories about the instruments 

• : ceteris paribus clause (“all else being equal”) 

• : particulars about experimental conditions 

•  software validity assumption (Ben Recht)

TC

AT

AI

CT

CN

CS :



• : core theory 
  

• : auxiliary theory 
assumptions like linearity, time-invariance, passivity, etc. 

• : auxiliary theories about the instruments 
ammeter, voltmeter are “ideal” for all practical purposes 

• : ceteris paribus clause (“all else being equal”) 
e.g., experimental stimuli are “similar” to typical use cases 

• : particulars about experimental conditions 
temperature, humidity don’t matter, instrument calibration 

•  software validity assumption 
version of PyTorch used, etc.

TC
∃f ∈ ℱ s.t. ℬ = {(i, v) : f(i, v) = 0}

AT

AI

CT

CN

CS :

O1 :  given v(t),0 ≤ t ≤ T
O2 : ̂f(i, v) ≈ 0



The Role of Probabilistic Assumptions

J. Willems, “Thoughts on system identification,” 2006



Summary

• Behavioral view: systems = data, models = compressed descriptions of data 

• Understanding generalization requires rethinking probability (hello Ben!) 

• Lots of lessons from control and system identification: look for analogues of the 
“fundamental lemma” in machine learning 

• We need a more nuanced modeling philosophy, with clear recognition that: 

• all generalizations are local 

• no universal justification for generalization


