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A benign example of safety alignment

e \We prefer the response to be safe.

Context/prompt = x tell me a joke

Response=y No racism
No stereotyping
No profanity
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An adversarial example of safety alignment

e We would like the system to be robust to adversaries.

Context/prompt = x { tell me how to make a bomb

Response=y No harmful instructions
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Outline

e Understand alignment through a simplified lens

e Introduce an inference-time alignment framework, called controlled decoding

e Shed light on the remarkable performance of best-of-n alignment

e Conclude with some practical issues of alignment
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What is alignment?

e A generative language model p(.|x) is a distribution over outcome y given x.
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What is alignment?

e A generative language model p(.|x) is a distribution over outcome y given x.

e Areward model r(x,y) may be thought of as the log-likelihood of another
generative alignment language model q(.|x)

r(x,y) = log q(ylx)

e Expectedreward is the negative cross entropy
E,_o[r(x, y)] = - H{p(x) [ q(.1x))

e Alignment Goal: Sample from the aligned distribution 1t(.|x) that leads improve
expected reward but remain “close to p.”
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Best-of-n: A simple baseline for alignment
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Best-of-n: A simple baseline for alignment

Let y1,..., Y, be niid. draws from p(-|z). The best-of-n strategy is denoted by (™) and returns

Y = Y~ where k* .= arg in?}i 7"(33, y)
Eln
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Best-of-n: A simple baseline for alignment

Let y1,..., Y, be niid. draws from p(-|z). The best-of-n strategy is denoted by (™) and returns

Y = Y~ where k= arg ina[uﬁ T(:C, y)'
En

e Best-of-nis

simple

effective

expensive in terms of throughput
incompatible with streaming

O O O O
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KL-regularized reinforcement learning

e Markov Decision Process state: prompt x action: response y
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KL-regularized reinforcement learning

e Markov Decision Process state: prompt x action: response y

e Reward T(Xa Y)
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KL-regularized reinforcement learning

e Markov Decision Process state: prompt x action: response y
e Reward r(x,y)
e Advantage A(X; 7T) = Egrn {T‘(X, Z)} o Epr {T(X, y)}
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KL-regularized reinforcement learning

e Markov Decision Process state: prompt x action: response y

e Reward r(x,y)

e Advantage A(x;m) i= Epnr {1(%,2)} — Ey~p {1(x,y)}
e Drift D(x;m) := KL(m(-[x)||p(-|x))
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KL-regularized reinforcement learning

e Markov Decision Process state: prompt x action: response y
e Reward r(x,y)
e Advantage A(x;m) i= Epnr {1(%,2)} — Ey~p {1(x,y)}
e Drift D(x;m) := KL(m(-[x)||p(-|x))
RL objective Jp(x;m) := A(x;7) — BD(x; )

Google

17



KL-regularized reinforcement learning

e Markov Decision Process state: prompt x action: response y
e Reward r(x,y)
e Advantage A(x; ) = Epr {7(%,2)} — Eyop {T(X,¥)}
e Drift D(x;m) := KL(m(-[x)||p(-|x))
RL objective Jp(x;m) = A(x;7) — BD(x; )
Linear in Tt Strongly convex in Tt
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RL objective could be solved in closed form

Theorem 1. The optimal policy for the RL objective is unique and is given by

m3(y1) o plylx)e ).

'RL with KL penalties is better viewed as Bayesian inference (Korbak, Tomasz et al., EMNLP 2022).
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https://arxiv.org/abs/2205.11275

RL objective could be solved in closed form

Theorem 1. The optimal policy for the RL objective is unique and is given by

m3(y1) o plylx)e ).

e At the sequence level, the solution is a tilted mismatched distribution?

T, (ylx) o< plylx) qlylx)™

'RL with KL penalties is better viewed as Bayesian inference (Korbak, Tomasz et al., EMNLP 2022).
2Mismatched Guesswork (Salamatian et al., Information Theory Workshop 2019).
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RL objective could be solved in closed form

Theorem 1. The optimal policy for the RL objective is unique and is given by

m3(y1) o plylx)e ).

e At the sequence level, the solution is a tilted mismatched distribution?
T, (ylx) o< plylx) qlylx)™

e largef— Ttﬁ(y|X) =~ p(y|x)
e SmallB=0 nﬁ(ylx) ~ 1if y = argmax q(y|x)

'RL with KL penalties is better viewed as Bayesian inference (Korbak, Tomasz et al., EMNLP 2022).
2Mismatched Guesswork (Salamatian et al., Information Theory Workshop 2019).
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Aligned family

Aligned family: {Ttﬂ}f,eﬁ2+

(7
Y

(0,1,0)

p = (0.50, 0.30, 0.20)
q=(0.22,0.11,0.67)

T, (2) o< p(2)
q(z)"”

"9
Google
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Aligned family

(0,1,0)

p = (0.50, 0.30, 0.20)

Aligned family: {Ttﬂ}f,eﬁ2+

KL contour: KL(Tt |l p) = cte q=(0.22,0.11,0.67)

Reward contour: H(mt || q) = cte

constant
KL contour

(7
Y
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Aligned family

(0,1,0)

p = (0.50, 0.30, 0.20)

Aligned family: {Ttﬂ}f,eﬁ2+

KL contour: KL(Tt |l p) = cte q=(0.22,0.11,0.67)

Reward contour: H(mt || q) = cte

constant
KL contour

Alignment leads to loss
of perplexity

p
4 %
°9) &

Google
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Where does the alignment distribution come from?

Context = x tell me a joke

No stereotyping
Response=y No profanity
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Where does the alignment distribution come from?

Context = x @ tell me a joke

No stereotyping
Response=y No profanity

e Reward may be trained on
o (x,Y, safe) tuples labeled for safety — similar to a classifier
o (x,y*, Yy, preferred) tuples depicting preference - using the Bradley Terry model
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Where does the alignment distribution come from?

Context = x @ tell me a joke

No stereotyping
Response=y No profanity

e Reward may be trained on
o (x,Y, safe) tuples labeled for safety — similar to a classifier
o (x,y*, Yy, preferred) tuples depicting preference - using the Bradley Terry model

e Reward doesn’t have to be trained/differentiable, e.g., response length.
Google
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RLHF on side-by-side (s x s) preference data

e Bradley Terry model

p(y1 <y2 | x) = o(r(z,y2) — r(x,91))

Google



RLHF on side-by-side (s x s) preference data

e Bradley Terry model
p(y1 < y2 | &) = o(r(z,y2) — (2, y1))
e Reward model optimization

I (1) =Ey+ y-yop [logp(y~ <y | 2)]
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RLHF on side-by-side (s x s) preference data
e Bradley Terry model

p(y1 < y2 | ) = o(r(z,y2) — r(z,y1))
e Reward model optimization

I (1) =Ey+ y-yop [logp(y~ <y | 2)]

e KL-regularized Reinforcement learning

max Ez~p|r(z,y)] — BKL(7||p)

T Yyn~m

Google



Many alignment methods

e Direct preference optimization (DPO)’

'Direct Preference Optimization: Your Language Model is Secretly a Reward Model (Rafailov et al., NeurIPS 2023).

Google
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Many alignment methods

e Direct preference optimization (DPO)’

log & (ﬂlogw ~ Plog %)1

e |dentity preference optimization (IPO)?

max Ez~p [2(p(y1 < y2 | 2))] — AKL(n|p)
Yo~

'Direct Preference Optimization: Your Language Model is Secretly a Reward Model (Rafailov et al., NeurlPS 2023).
2A General Theoretical Paradigm to Understand Learning from Human Preferences (Azar et al., AISTATS 2024).

Google
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Many alignment methods

e Direct preference optimization (DPO)’

log & (Blogw(y—ﬂx) ~ Plog %)1

e |dentity preference optimization (IPO)?

max Ez~p [2(p(y1 < y2 | 2))] — AKL(n|p)
Yo~

e Many morelll

'Direct Preference Optimization: Your Language Model is Secretly a Reward Model (Rafailov et al., NeurlPS 2023).
2A General Theoretical Paradigm to Understand Learning from Human Preferences (Azar et al., AISTATS 2024).

Google
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How do they differ?

e Deployment

o Training-time solution, e.g., DPO/PPO
o Inference-time solution, e.g., Best-of-n

Google

— widely used, easy to deploy
— easy to adapt, modular
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o Inference-time solution, e.g., Best-of-n

e Solver

o Supervised learning from preference data
o Policy optimization

Google

— widely used, easy to deploy
— easy to adapt, modular
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Google
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How do they differ?

e Deployment
o Training-time solution, e.g., DPO/PPO
o Inference-time solution, e.g., Best-of-n
e Solver
o Supervised learning from preference data
o Policy optimization
e Reward

o Human preferences vs Al feedback
o Explicit vs implicit

e Training
o  Online (via model rollout)
o Offline

Google

— widely used, easy to deploy
— easy to adapt, modular
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How do they differ?

Google

Deployment

(@)

(@)

Training-time solution, e.g., DPO/PPO
Inference-time solution, e.g., Best-of-n

Solver

(@)

(@)

Supervised learning from preference data
Policy optimization

Reward

(@)

(@)

Human preferences vs Al feedback
Explicit vs implicit

Training

(@)

(@)

Online (via model rollout)
Offline

— widely used, easy to deploy
— easy to adapt, modular

All methods roughly solve a
KL-regularized RL problem

38



The role of reverse KL regularizer in alignment
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The role of reverse KL regularizer in alignment

e Assume a logistic language model
e Supervised finetuning (SFT)

0% = arg mein L (6) where Lt (0) := E(z,4)~D, {A(0; ) — OTg(m, Y},
e KL-regularized RL

% X 1
Opilevel, s = I8 min Lyilevel,3(0)  where  Lyjievel(0) := Dxr(mg||mse) + — Lo (6),

B
e Multi-tasking SFT and reward optimization

; 1
a;knulti_task,ﬁ = argermn Lmulti—task,ﬂ (0) where Emulti-task (0) = Esft (9) + E‘Cro (6)
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The role of reverse KL regularizer in alignment

e Assume a logistic language model
e Supervised finetuning (SFT)

0% = arg mein L (6) where Lt (0) := E(z,4)~D, {A(0; ) — 9Tg(m, Y},

e KL-regularized RL

% X 1
Obilevel, 3 = I8 min Luilever,3(0)  where  Lyjievel(f) := Dkr(mo||mse) + Eﬁro(e),

e Multi-tasking SFT and reward optimization

; 1
anulti-task,ﬁ = argemm Lmulti—task,ﬁ (9) where ﬁmulti-task(e) = Esft (9) o+ B‘Cro (6)

Proposition 1. For all § € R, we have 0y;.,c1 5 = Ornuiti-task, -

A Group Fairness Framework for Post-Processing Everything (Tiffrea et al., ICML 2024).
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YAAM
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YAAM: Yet Another Alignment Method
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Token-wise KL-regularized reinforcement learning

e Markov Decision Process state: prompt + decoded prefix x, y* action: next tokenyy,

Google a4



Token-wise KL-regularized reinforcement learning

e Markov Decision Process state: prompt + decoded prefix x, y* action: next tokenyy,
0 EOS
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Token-wise KL-regularized reinforcement learning

e Markov Decision Process state: prompt + decoded prefix x, y* action: next tokenyy,
0 EOS
) Value V*([Xa yt]) = 21 12250+ ~D {ZR X y 2" }
>0
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Token-wise KL-regularized reinforcement learning

e Markov Decision Process state: prompt + decoded prefix x, y* action: next tokenyy,
0 EOS
e Value VA([%,91]) = Boyanp § Y R0 27
>0
e Advantage A(x, 9" )= B {V*([x, 9%, 2]) — V*((x,9'])}

Google 47



Token-wise KL-regularized reinforcement learning

Google

Markov Decision Process

Reward

Value

Advantage

Drift

state: prompt + decoded prefix x, y* action: next tokenyy,

¢ 0 . # EOS
R(pe,y]) = { ev)  wlres

Vr(x.y]) = B, 22,...NP{ZR x4, 2" }

>0

A([%, 4] 1):= Eonr {V*([x,9%, 2]) = V*(x, "))}

D([x,y');m) :== KL(m(:|[x, y"])lIp(|[x, y']))

48



Token-wise KL-regularized reinforcement learning

e Markov Decision Process

e Reward

e Value

e Advantage

e Dirift

state: prompt + decoded prefix x, y* action: next tokenyy,

t 0 + 7 EOS
Roo)={ ey lros

Vr(x.y]) = B, 22,...NP{ZR x4, 2" }

>0

A([%, 4] 1):= Eonr {V*([x,9%, 2]) = V*(x, "))}

D([x,y');m) :== KL(m(:|[x, y"])lIp(|[x, y']))

RL objective

Ja([x,y°];m) == A([x,y']; ) — BD([x,y"]; 7)

Google
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Token-wise KL-regularized reinforcement learning

e Markov Decision Process state: prompt + decoded prefix x, y* action: next tokenyy,
0 EOS
e Reward R([x,y']) == { r([x,v]) :ZZ i EOS
e Value V*([x,9"]) := Bz, 29,..~op ZR x,yt, 27
>0
e Advantage A%,y )= Bor {V* (%9, ) = V¥ (x5}
o Drift D([x,y];m) := KL(n(:|[x, y']) [p(-[[x, ¥]))
t1. — t7. 1.
RL objective Jﬂ([xa Yy ]7 7T) T A([X7 Y ]’ 7T) o BD([Xa Y ]’ 7T)
Linear in 1t Strongly convex in 1t

Google 50



Controlled decoding (CD)

Theorem 2. The optimal policy for the RL objective is unique and is given by

% (2|[x, y']) o p(z|[x, yt])er ¥ xv"2D),

Google Controlled decoding from language models (Mudgal, Lee et al., ICML 2024)
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https://arxiv.org/abs/2310.17022

Controlled decoding (CD)

Theorem 2. The optimal policy for the RL objective is unique and is given by

75 (21[x, 4']) o< p(2|[x, y'])es V(v 2D),

e Learn the value function:

‘C*(e) = EXNPxEyNwaE* (X, Y 0)7

where £*(x,y;0) = % Z (Vo ([x,y"]) — V*([X,yt]))2

te(lyl]

Google Controlled decoding from language models (Mudgal, Lee et al., ICML 2024) 52



https://arxiv.org/abs/2310.17022

CD-FUDGE

Google

Use an unbiased draw from the model as the target'

LF(0) = Exp lr(x,y;0), s.t. y ~p,

where /r(x,y;0) = % Z (Ve([X, y']) — r(lx, Y]))2

tellyl]

'Controlled Text Generation With Future Discriminators (Yang & Klein, NAACL 2021).
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CD-FUDGE

e Use an unbiased draw from the model as the target'

LF(0) = Ex~p Lr(x,y;0), s.t. y ~ p,

whete £(x,y:6) = > 3 (Va(lx,9']) — r([x,3]))’

tellyl]

Theorem 3.1 (informal). Under regularity assumptions, applying SGD on L converges to a sta-
tionary point of L*(0).

Google 'Controlled Text Generation With Future Discriminators (Yang & Klein, NAACL 2021).
2Controlled decoding from language models (Mudgal, Lee et al. ICML 2024).
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CD-Q

Google

Bellman identity

w1 oty — § Banp(llzg) V(X 9%, 2]), 3 # EOS
V*([x,¥']) —{ r([x, yt]), Yy = EOS

'Reinforcement Learning: An Introduction (Sutton & Barto,2018).
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CD-Q

e Bellman identity

" " E p |z V(X 2 + # EOS
([X,y]):{ ([x(glj[]) 1 (b0 2D, ZtiEOS

e Train the value function similarly to DQN

‘CQ (0) - EXpreQ (Xa y; 9)7
1

i \2
where £ (x,y";0) = 5 Z (Vo([x,41]) — 1)
te(lyl]
v = § 2ocy P,y Vo (x4 2l)  y: # EOS
(= v y; = EOS
Google 'Reinforcement Learning: An Introduction (Sutton & Barto,2018).

2Playing Atari with Deep Reinforcement Learning (Mnih et al.,2013).
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Token-wise control using CD

Google

Theorem 2. The optimal policy for the RL objective is unique and is given by

75 (2][%, 3']) o p(z|[x, y'])eB V" Bv's2D),

R Will this paper get accepted?

Iiked average
\ | disliked high
<, This paper will be
reviewed gy
LM
likelihood
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Token-wise control using CD

Google

Theorem 2. The optimal policy for the RL objective is unique and is given by

w5 (2l1x,y']) oc p(z|[x, y])er ¥ v,

R Will this paper get accepted?

liked average very high
" disliked i low average
<. This paper will be
hated very high very low average
LM sentiment aligned
likelihood prefix score score

58



Blockwise control using CD (best-of-n++)

e Draw K blocks of length M tokens

M 1id. M t
(et oo ™ 2100

e Accept the continuation with the
highest prefix score:

M= arg max Vo([X,yt,Z?g)])

M
{z(k) ke[n]

Google Controlled decoding from language models (Mudgal, Lee et al., ICML 2024)


https://arxiv.org/abs/2310.17022

Blockwise control using CD (best-of-n++)

e Draw K blocks of length M tokens
R Will this paper get accepted?

ii.d.
(8} M)
ke[n] . . .
will be liked by very high

. . . . will receive diverging reviews e
e Accept the continuation with the <, This paper

. . may be liked by

highest prefix score:
is not getting into el

M ._ t M

< = arg max Vo([x7 Y, Z(kz)]) sentiment
{ M prefix score
(k) J ke[n)

Google Controlled decoding from language models (Mudgal, Lee et al., ICML 2024) 60
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Blockwise control using CD (best-of-n++)

e Draw K blocks of length M tokens
R Will this paper get accepted?

M 1id. M t
(et oo ™ 2100

will be liked by very high
. . . . will receive diverging reviews e
e Accept the continuation with the <, This paper
- : may be liked b
highest prefix score: Y Y
is not getting into ey ey

2Mi=arg  max  Va([x,9", 2{k)))

sentiment

M fi

z prefix score
{ B) J ke

Advantages over best-of-n:

- Limits the user-facing latency to the decoding time of a single block.

Google| ~ Makes a large effective n practically feasible.
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How do we evaluate alignment methods?

e Human evaluations
e Auto-evals that are correlated with human judgement

Google
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How do we evaluate alignment methods?

0.85

desired operation point 1
* g ’ win-rate(r||p) := Ey~7rEz~p{1(r(-'Bay) > r(2,2)) + 51(7'(15’3’) =r(z,2))}
0.801

0.751

©
g
o

Win rate

o
o
o

KL(rt]|p)
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How do we evaluate alignment methods?

0.85
desired operation point 1
* . . win-rate(r||p) := EyrE.p{1(r(z,y) > r(z, 2)) + 51(r(m,y) = (2,20 }
0.801
0.75+
(0,1,0)
p = (0.50, 0.30, 0.20)
% 0.70 q=(0.22,0.11,0.67)
o
2065/ T, (2) - p(2) a2
constant
KL contour
0.60+
0.55; Alignment leads to loss
of perplexity
‘ “ S
050, 1 2 3 4 5 6 7 8 Yy o

KL(rt]|p)

Google 64



Estimating KL divergence

e We estimate KL divergence via aggregating the log-likelihood ratios between
the aligned model and the base model

D([x,y']; ) = KL(x (-[[x,y'DIp(|[x,3])

=" 7(2|x,4"]) log (ﬂzl[x, y')

= p(z|[x,y"])

is an unbiased estimate of

) Log-likelihood ratio
KL divergence

Google
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Estimating KL divergence

e We estimate KL divergence via aggregating the log-likelihood ratios between
the aligned model and the base model

D([x,y']; ) = KL(x (-[[x,y'DIp(|[x,3])

t Log-likelihood ratio
— Z 7(z|[x,y"]) log (7r(z| X, yt])) is an unbiased estimate of
ey p(z[[x,y*]) KL divergence

e We don't have the logits of best-of-n or blockwise CD.
How can we estimate KL divergence?

Google
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Analytical formula for KL divergence of best-of-n

e An analytical formula that has appeared many times in the literature™?

n claim, <=
KL(7.?) ||pyjz) == KLy, := log(n) — (n — 1)/n.

e This formula remarkably
o doesn’t depend on the prompt x or its distribution p_

o doesn't depend on the base policy Pyix

Google 'Measuring Goodhart’s law (Hilton & Gao,2022).
2Learning to summarize with human feedback (Stiennon et al.,Neur|PS 2020).
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Analytical formula for KL divergence of best-of-n

e An analytical formula that has appeared many times in the literature™?

n claim. ==
KL(7.?) ||pyjz) == KLy, := log(n) — (n — 1)/n.

e This formula remarkably
o doesn’t depend on the prompt x or its distribution p_

o doesn't depend on the base policy Pyix

e |[s this formula true?

Google 'Measuring Goodhart’s law (Hilton & Gao,2022).
2Learning to summarize with human feedback (Stiennon et al.,Neur|PS 2020).
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Analytical formula is wrong!

Example 1. Consider an unprompted model with x = () (no input) and binary output, y € {0, 1}. Let the two
outcomes be equiprobable, i.e., py|z(0) = py|(1) = 5. Further, let 7(0) = 0, and r(1) = 1, i.e., outcome 1

is more desirable than outcome 0. Here, we can compute " gl ") in closed form. Specifically, we can see that

1(/7|19)3( ) = and7r( )(1) = 1— 5. Thus,

KL(”mm”pylm) log(2) — A (2%)

Th tical t the best-of-n ali t policy (Beirami et al., arXi int 2024).
Google eoretical guarantees on the best-of-n alignment policy (Beirami et al., arXiv preprint 2024)
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Analytical formula is wrong!

Example 1. Consider an unprompted model with x = () (no input) and binary output, y € {0, 1}. Let the two

outcomes be equiprobable, i.e., py|z(0) = py|(1) = 5. Further, let 7(0) = 0, and r(1) = 1, i.e., outcome 1
(n)

is more desirable than outcome 0. Here, we can compute T gl in closed form. Specifically, we can see that

(n)( 0) = and7r( )(1) = 1— 5. Thus, 4.0

'y|‘1’ — Analytical formula (Eq. (5))
3.5 1 —— Proposed estimator (Eq. (28))

1 ® Exact (Eq. (6))
KL(7ry|m||py|m) log(2) — h <2—n> 3.0

2.5

2.0 4

15

KL (best-of-n || base)

1.0 A

0.5 A

0.0 T T——————————T .
100 10! 102

Th tical t the best-of-n ali t policy (Beirami et al., arXi int 2024).
Google eoretical guarantees on the best-of-n alignment policy (Beirami et al., arXiv preprint 2024)
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Guarantees on the analytical formula

Theorem 2. For any n € N and any x,

KL(n™||p) < KLy, = log(n) —

n—1

n

Analytical formula is an upper bound

o Lety~ (™. Then,lete, := p(y)

Google

o Theorem:The gapis smallif n.e <1
o Theorem:The gap is large if n.e > 1

"Theoretical guarantees on the best-of-n alignment policy (Beirami et al., arXiv preprint 2024).
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Guarantees on the analytical formula

Google

Theorem 2. For any n € N and any x,

KL(n™||p) < KLy, = log(n) —

n—1

n

Analytical formula is an upper bound
Let y ~ 7(™) . Then, let &,, := p(y)

o Theorem:The gapis smallif n.e <1
o Theorem:The gap is large if n.e > 1

More recently, Mroueh showed that this result is an instance of strong data

processing inequality?

"Theoretical guarantees on the best-of-n alignment policy (Beirami et al., arXiv preprint 2024).
2Information Theoretic Guarantees For Policy Alignment In Large Language Models (Mroueh., arXiv preprint 2024).

72


https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2406.05883

New estimator for KL divergence of best-of-n

Approximation 1. Let y ~ 7(™). Then, let &, := p(y). We propose the following estimator for the
KL divergence of the best-of-n policy and the base policy:

Ki(e,) = (1-¢,)" (logn +(n=1)log(1 ) = " 1>+(1—(1—€n)") lag (1 - (15,: 5")n) |
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New estimator for KL divergence of best-of-n

Approximation 1. Let y ~ 7(™). Then, let &, := p(y). We propose the following estimator for the
KL divergence of the best-of-n policy and the base policy:

Ki(e,) = (1-¢,)" (logn +(n—1)log(l—e,) — "= 1>+(1—(1—en)") lg (1 =i = 5")n) |

n En
10 4 — Analytical formula (Eq. (5)) 10 { — Analytical formula (Eq. (5))
—-—~ Alternate bound (Eq. (26)) —-—~ Alternate bound (Eq. (26))
N 8 - Proposed estimator (Eq. (28)) > g - Proposed estimator (Eq. (28))
@ ® Exact @ ® Exact
o Kol
c = 16
5 5
S g 4
| - |
¥4 ¥4
2 .
109 10! 10?2 10° 104 10° 10° 10! 102 10° 104 10°




Win-rate of best-of-n

1
win-rate(r|[p) := Ey~r Eznpil(r(2,y) > r(2,2)) + 51(r(2,y) = r(2, 2))}
Lemma 1. The win-rate for best-of-n policy is given by

. n 1 n - n n
win-rate(r)|p) = 1 = 3 Byp{ F(yl2)" + F~(ylo)"} < .

e Roughly the upper bound argument follows from
o  Draw (n+1) outcomes from the base model; and order them from the highest to lowest reward
o Randomly assign 1 of the outcomes to base model
o  Choose the best of the remaining n to be a draw from the best-of-n model.
o  Best-of-n wins against the reference model with probability n/(n+1).

e The upper bound would be exact if w/p 1 no two outcomes were identical
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Win-rate vs KL tradeoffs (helpfulness & harmlessness)

0.85

s desired operation point
0.80

0.75

Win rate
I
~
(e}

@
)
o)

0.60

0.55

0.50

KL(1t]|p)

Figure 4: Win rate vs. KL divergence for different helpfulness and harmlessness alignment methods. CD-Q
(blockwise) vastly outperforms RL techniques such as IPO & PPO.
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Win-rate vs KL tradeoff for best-of-n

LB e KL values <10 are
sufficient to reach a high

0.9 . .
win-rate against base
policy
o 08 . : :
= e Thisis the ideal setting
£ 5y ignoring noise in reward
= and generalization
0.6
0.5
0 1 2 <) 4 5 6 7 8

KL(rt[|p)
Google



Win-rate vs KL tradeoffs

P RM Size RM Type

' — 3M -—- Proxy
— 12M — Gold

12 — 25M  —— Gold (Fit)
— 42M

— 85M

1.0 300M
680M

® 1.2B
g 08
n
s
o

0.6

0.4

0.2

0.0

0 20 40 60 80 100
KL distance between RL tuned policy and initial policy

(b) RL
Google

Scaling Laws for Reward Model Overoptimization (Gao et al., ICML 2023).
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Win-rate vs KL tradeoffs

RM Size
1.4 — aM
— 12M
12 S
— 42M
— 85M
1.0 —— 300M
—— 680M . .
o — 128 Reward hacking regime
308 3B
n
= 0t g
B Is reward overoptimization a problem?
04 B/ /4
/4
0.2
0.0 ’
0 20 40 60 80 100

KL distance between RL tuned policy and initial policy

(b) RL
Google

Scaling Laws for Reward Model Overoptimization (Gao et al., ICML 2023).
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Win-rate vs KL tradeoffs (helpfulness & harmlessness)

o S e Best-of-nis better than

0.80 state-of-the-art RL methods

0.75 e Blockwise CD bridges the gap
678 between tokenwise control and
: - best-of-n

e Token-wise CD isa good

o contender for token-wise control

055 (on par with other methods)

0.50

KL(1t]|p)

Figure 4: Win rate vs. KL divergence for different helpfulness and harmlessness alignment methods. CD-Q
(blockwise) vastly outperforms RL techniques such as IPO & PPO.

Controlled decoding from language models (Mudgal, Lee et al., ICML 2024) 80
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Modularity of CD for the win!

2.0

~@- CD - FUDGE (blockwise) - positive length reward
1.8 —@ CD - FUDGE (blockwise) - neutral length reward

KL(rillp)

0.85

* CD - FUDGE (blockwise) - positive length reward
0.801 -@- CD - FUDGE (blockwise) - neutral length reward

0.75
go70
£0.65
0.60
0.55

0.50

4
KL(rllp)

Multi-objective alignment

Google Controlled decoding from language models (Mudgal, Lee et al., ICML 2024) 81
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Modularity of CD for the win!

~@- CD - FUDGE (blockwise) - positive length reward
1.8 —@ CD - FUDGE (blockwise) - neutral length reward

KL(rllp)

085 ~@- CD - FUDGE (blockwise) - positive length reward
0.801 -@ CD - FUDGE (blockwise) - neutral length reward
0.75

go70

£0.65
0.60
0.55

0.50

4
KL(nllp)

Multi-objective alignment
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Win rate
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-
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S O,
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KL(m|p)

generalization to a new model

Google Controlled decoding from language models (Mudgal, Lee et al., ICML 2024)
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Modularity of CD for the win!

~@- CD - FUDGE (blockwise) - positive length reward
1.8 —@ CD - FUDGE (blockwise) - neutral length reward

KL(rllp)

0.85

~@- CD - FUDGE (blockwise) - positive length reward
0.801 -@- CD - FUDGE (blockwise) - neutral length reward

0.75
go70
£0.65
0.60
0.55

0.50

4
KL(nllp)

Multi-objective alignment
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0.85

——  Best-ofN
—o— CD - Q (blockwise)
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Win rate
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-
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0.50
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generalization to a new model

Controlled decoding from language models (Mudgal, Lee et al., ICML 2024)

0.85
-@- DPO + CD-Q (blockwise)
@ CD - Q (blockwise)

DPO
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Win rate
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o
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Integrating CD and DPO
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Optimal reward-KL tradeoff

e Theorem: KL-regularized RL solution is optimal for reward-KL tradeoff

Jo(x;m) = A(x;m) — BD(x;m)

/ \
Epr {r(x,2)} — Eyp {r(x,¥)} KL (m(-[x)|p(-[x))
Linear in t Strongly convex in 1t

Google

'Asymptotics of Language Model Alignment (Yang et al., 2024).
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Optimal reward-KL tradeoff

e Theorem: KL-regularized RL solution is optimal for reward-KL tradeoff

Jo(x;m) = A(x;m) — BD(x;m)
— T

Epr {r(x,2)} — Eyp {r(x,¥)} KL (7 (- |x)]|p(-|x))
Linear in t Strongly convex in 1t
e Empirically, best-of-nis strikingly close o] /’——
to the optimal trade-off 2] e
s 041 ¢
—0.8 1 —@— Best-of-N
h— Optimal KL-regularized RL
0.0 OjS le 115 2?0 2j5 3.0
Google KLOp || p)

85
'Asymptotics of Language Model Alignment (Yang et al., 2024).
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Why does best-of-n work so well?

(0,1,0)

Y,= 0011020110

type of Y.
t(Y,) = (0.5,0.4,0.1)

e Let'srevisit the example
e The probability of type t is given by e ™K. (lP)

p = (0.50, 0.30, 0.20)
q =(0.22,0.11, 0.67)

constant
KL contour

(7

9

'Asymptotics of Language Model Alignment (Yang et al., 2024).

Google


https://arxiv.org

Why does best-of-n work so well?

(0,1,0)

Y, = 0011020110

type of Y.
t(Y.)= (0.5,0.4,0.1)

e Let'srevisit the example

e The probability of type tis given by e ™K-iP)
o Letn=eM then
o Lemma: Any type t in the KL ball of radius A
is sampled almost surely
o Lemma: No type t outside the KL ball of radius A
is sampled almost surely

p = (0.50, 0.30, 0.20)
q =(0.22,0.11, 0.67)

constant
KL contour

(7

’

9

'Asymptotics of Language Model Alignment (Yang et al., 2024).
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Why does best-of-n work so well?

e Let'srevisit the example

e The probability of type t is given by e ™K. (lP)

e lLetn=em then

o Lemma: Any type t in the KL ball of radius A

is sampled almost surely

o Lemma: No type t outside the KL ball of radius A

is sampled almost surely

Theorem 2. Let ¢ be the optimal solution to Definition 2,
and Ty be the distribution of the best-of-N, with N =
exp(mA). Under Assumption 1, we have that for all x,

lim D, (x(|z) |42 (|z)) = 0. )

m—oo M R

I

RL solution w/ KL constraint of A

Google

(0,1,0)

Y,= 0011020110

type of Y.
t(Y.)= (0.5,0.4,0.1)

p = (0.50, 0.30, 0.20)
q =(0.22,0.11, 0.67)

constant
KL contour

(7

’

9

'Asymptotics of Language Model Alignment (Yang et al., 2024).
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Can we distill best-of-n into a new model?
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Can we distill best-of-n into a new model?

e The PMF of best-of-n suggests a way

100
[Submitted on 8 Jul 2024]
Variational Best-of-N Alignment
90
Afra Amini, Tim Vieira, Ryan Cotterell T
i
[Submitted on 19 Jul 2024] E 80 -
. u . 5
BOND: Aligning LLMs with Best-of-N 2
Distillation S 70-
N — < BoNBoN
Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, o
Nino Vieillard, Alexandre Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen § DPO
Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk, Andrea Michi, Danila k=] 601 PPO
Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn, Matt g — vBoN
Hoffman, Nikola Momcheyv, Olivier Bachem 50
— BoN
T T T T
0 10 20 30

Dxx, (| mref) <
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Does alignment work in practice?
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Why is (safety) alignment hard?

max Ez~p|r(z,y)] — BKL(7||p)

Yy~

e Reward modeling
o  Reward models are noisy. Does reward ensembling help?'?
o  Train rewards from a handful of loss patterns.®

e Choosing the prompt set
o Does automated red teaming help uncover prompts that trigger the model?*
o Safety alignment is shallow, need to think about diverse training prompts.®

e Online vs offline
o  Offline methods (e.g., DPO) are not robust.?

e How to think about multi-lingual alignment?°

"Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking (Eisenstein et al., 2024).
2Robust Preference Optimization through Reward Model Distillation (Fisch et al., 2024).
3lmproving Few-shot Generalization of Safety Classifiers via Data Augmented Parameter-Efficient Fine-Tuning (Balashankar et al., 2024)
“Gradient-Based Language Model Red Teaming (Wichers et al., 2024).
Google 5Safety Alignment Should Be Made More Than Just a Few Tokens Deep (Qi et al., 2024).
®Reuse Your Rewards: Reward Model Transfer for Zero-Shot Cross-Lingual Alignment (Wu et al.,2024).


https://arxiv.org/abs/2312.09244
https://arxiv.org/abs/2405.19316
https://arxiv.org/abs/2310.16959
https://arxiv.org/abs/2401.16656
https://arxiv.org/abs/2406.05946
https://arxiv.org/abs/2310.17022

Safety alignment should be made deeper

—e— Llama-2-7B-Chat || Llama-2-7B

3
- ./‘/'——*___. 8 —+— Gemma-1.1-7B-IT || Gemma-7B
~ (]
o
L 6
A 50% D>
|
& (3]
v] >
=) a 4
v) o -®- Llama-2-7B (Base)
% =~ Llama-2-7B-Chat (Aligned) 4
£ 10% Gemma-7B (Base) 2
< 5 - Gemma-1.1-7B-IT (Aligned)
0 3 5 7 10 1 3 5 7 9 11 13 15 17 19
Number of Prefilled Harmful Tokens Token Positions

Figure 2: ASR vs. Number of Pre-  Figure 1: Per-token KL Divergence
filled Harmful Tokens, with y ~  between Aligned and Unaligned
mo(:|, y<k) on Harmful HEx-PHL Models on Harmful HEx-PHI.
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Safety Alignment Should Be Made More Than Just a Few Tokens Deep (Qi et al., 2024).

Prefilling attacks
and finetuning do
away safety
alignment
Alignment only
touches the first
few tokens of the
model
distribution
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Offline policy optimization beyond DPO

1.00
0.75
0.50
2
S 025
] Method
o
3 0.00 —e— DPO
= —0.25 -%- |PO
@~ d-DPO
—0.50 -4- dp-DPO
—— e-DPO
-0.75 -4- p-DPO

0.2 0.3 0.4 0.5 0.6 0.7 0.8
length bias (p)

e Explicit reward modeling through BT model is crucial
e Reward ensembling and pessimistic rewards help a lot!

Google

Robust Preference Optimization through Reward Model Distillation (Fisch et al., 2024).
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Further understanding DPO
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Further understanding DPO
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Further understanding DPO
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Takeaways (alignment recipe)

e Step 1. Perform Best-of-n and make sure it works as desired.
o Inspect a few responses and verify that the ranking induced by reward makes sense.
o Best-of-n essentially gives the best tradeoffs you can hope for so if best-of-n doesn’'t work for
your problem, no other fancy method wiill!
o Youd also be able to debug best-of-n much faster.

Google
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Takeaways (alignment recipe)

e Step 1. Perform Best-of-n and make sure it works as desired.

o Inspect a few responses and verify that the ranking induced by reward makes sense.

o Best-of-n essentially gives the best tradeoffs you can hope for so if best-of-n doesn’'t work for
your problem, no other fancy method wiill!

o Youd also be able to debug best-of-n much faster.

e Step 2: Only then train your favorite alignment method.
o Track KL(tt || p) throughout training

m KL>100 The results are unlikely to be any useful!
m KL>15 Inspect the outcomes for reward hacking!
m KL<8 You are probably OK!

Google

99



References & Acknowledgments

. Helping or Herding? '3
Controlled Decoding from Language Models REWARD MODEL ENSEMBLES MITIGATE BUT DO NOT
ELIMINATE REWARD HACKING

Sidharth Mudgal ! Jong Lee*! Harish Ganapathy' YaGuangLi' Tao Wang? Yanping Huang' . i1y . 2, 2,
Zhifeng Chen' Heng-Tze Cheng' Michael Collins' Trevor Strohman' Jilin Chen' Alex Beutel dacobElsensteln Chirag Nagpal Alekh Agarwat
Ahmad Beirami !
Ahmad Beirami? Alex D’Amour’ DJ Dvijotham' Adam Fisch!
Katherine Heller? Stephen Pfohl* Deepak Ramachandran? Peter Shaw!
Theoretical guarantees on the best-of-n alignment policy s -
onathan Berant ™

der D’Amour’  Jacob Eisenstein’

Ahmad Beirami' ~ Alekh Agarwal’  Jonathan Berant’ Al
Chirag Nagpal’ Ananda Theertha Suresh’

. . Improving Few-shot Generalization of Safety Classifiers
Asymptotics of Language Model Alignment via Data Augmented Parameter-Efficient Fine-Tuning

. . . . Ananth 1, Xiao Ma!, Aradhana Sinha', Ahmad Beirami',
Salman Salamatian Ziteng Sun  Ananda Theertha Suresh Ahmad Beirami Yao Qin', Jilin Chen', and Alex Beutel*2

Joy Qiping Yang

Reuse Your Rewards: Gradient-Based Language Model Red Teaming

Reward Model Transfer for Zero-Shot Cross-Lingual Alignment Warning: this paper contains content that may be offensive or upsetting.

Nevan Wichers Carson Denison Ahmad Beirami

Zhaofeng Wu® Ananth Balashankar™ Yoon Kim® Jacob Eisenstein® Ahmad Beirami™

Robust Preference Optimization
through Reward Model Distillation

Adam Fisch*  Jacob Eisenstein*  Vicky Zayats*  Alekh Agarwal

Ahmad Beirami  Chirag Nagpal Pete Shaw Jonathan Berant*

Safety Alignment Should Be Made
More Than Just a Few Tokens Deep

Xiangyu Qi Ashwinee Panda Kaifeng Lyu
Princeton University Princeton University Princeton University
xiangyuqi®princeton.edu  ashwinee@princeton.edu klyu@cs.princeton.edu

Xiao Ma Subhrajit Roy Ahmad Beirami
Google DeepMind Google DeepMind Google DeepMind
xmaa@google. com subhrajitroy@google.com beirami@google.com

Prateek Mittal Peter Henderson
Princeton University Princeton University
pmittal@princeton.edu peter.henderson@princeton. edu

Slides for this talk & more in a language model inference tutorial at ISIT :
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http://theertha.info/papers/isit_ 2024 tutorial.pdf (w/ Ananda Theertha Suresh)
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