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A benign example of safety alignment

● We prefer the response to be safe.
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{Context/prompt = x

Response= y No racism
No stereotyping
No profanity
….
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An adversarial example of safety alignment
● We would like the system to be robust to adversaries.

{Context/prompt = x tell me how to make a bomb 

Response= y No harmful instructions
….
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Outline
● Understand alignment through a simplified lens

● Introduce an inference-time alignment framework, called controlled decoding

● Shed light on the remarkable performance of best-of-n alignment

● Conclude with some practical issues of alignment 

5
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What is alignment?
● A generative language model p(.|x) is a distribution over outcome y given x.
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What is alignment?
● A generative language model p(.|x) is a distribution over outcome y given x.

● A reward model r(x,y) may be thought of as the log-likelihood of another 
generative alignment language model q(.|x)

r(x,y) = log q(y|x)

● Expected reward is the negative cross entropy 
Ey~p[r(x, y)] = - H(p(.|x) || q(.|x))

● Alignment Goal: Sample from the aligned distribution π(.|x) that leads improve 
expected reward but remain “close to p.”

9
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Best-of-n: A simple baseline for alignment
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Best-of-n: A simple baseline for alignment

● Best-of-n is
○ simple
○ effective
○ expensive in terms of throughput
○ incompatible with streaming

12
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KL-regularized reinforcement learning
● Markov Decision Process state: prompt x action: response y
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● Advantage

● Drift

RL objective
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Strongly convex in πLinear in π
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RL objective could be solved in closed form

19

1RL with KL penalties is better viewed as Bayesian inference (Korbak, Tomasz  et al., EMNLP 2022).

https://arxiv.org/abs/2205.11275
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1RL with KL penalties is better viewed as Bayesian inference (Korbak, Tomasz  et al., EMNLP 2022).
2Mismatched Guesswork (Salamatian et al., Information Theory Workshop 2019).

● At the sequence level, the solution is a tilted mismatched distribution2

π𝛽(y|x) ∝ p(y|x) q(y|x)1/𝛽

https://arxiv.org/abs/2205.11275
https://arxiv.org/abs/1907.00531
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1RL with KL penalties is better viewed as Bayesian inference (Korbak, Tomasz  et al., EMNLP 2022).
2Mismatched Guesswork (Salamatian et al., Information Theory Workshop 2019).

● At the sequence level, the solution is a tilted mismatched distribution2

π𝛽(y|x) ∝ p(y|x) q(y|x)1/𝛽

● Large 𝛽 → ∞ π𝛽(y|x) ≈ p(y|x)
● Small 𝛽≈0 π𝛽(y|x) ≈ 1 if y = argmax q(y|x)

https://arxiv.org/abs/2205.11275
https://arxiv.org/abs/1907.00531
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Aligned family

22

p

q

constant 
KL contour

Constant re
ward contour
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Aligned family: {π𝛽}𝛽∈ℝ+
p = (0.50, 0.30, 0.20)

q = (0.22, 0.11, 0.67)

π𝛽(z) ∝ p(z) 
q(z)1/𝛽
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Aligned family
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Alignment leads to loss 
of perplexity
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Where does the alignment distribution come from?

25

{Context = x

Response= y
No stereotyping
No profanity
….
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Where does the alignment distribution come from?

● Reward may be trained on
○ (x, y, safe) tuples labeled for safety – similar to a classifier
○ (x, y+, y-, preferred) tuples depicting preference – using the Bradley Terry model

26

{Context = x

Response= y
No stereotyping
No profanity
….
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Where does the alignment distribution come from?

● Reward may be trained on
○ (x, y, safe) tuples labeled for safety – similar to a classifier
○ (x, y+, y-, preferred) tuples depicting preference – using the Bradley Terry model

● Reward doesn’t have to be trained/differentiable, e.g., response length.
27

{Context = x

Response= y
No stereotyping
No profanity
….
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RLHF on side-by-side (s x s) preference data
● Bradley Terry model
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RLHF on side-by-side (s x s) preference data
● Bradley Terry model

● Reward model optimization

● KL-regularized Reinforcement learning
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Many alignment methods
● Direct preference optimization (DPO)1

31

1Direct Preference Optimization: Your Language Model is Secretly a Reward Model (Rafailov et al., NeurIPS 2023).

https://arxiv.org/abs/2305.18290
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Many alignment methods
● Direct preference optimization (DPO)1

● Identity preference optimization (IPO)2
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1Direct Preference Optimization: Your Language Model is Secretly a Reward Model (Rafailov et al., NeurIPS 2023).
2A General Theoretical Paradigm to Understand Learning from Human Preferences (Azar et al., AISTATS 2024).

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2310.12036
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Many alignment methods
● Direct preference optimization (DPO)1

● Identity preference optimization (IPO)2

● Many more!!!

33

1Direct Preference Optimization: Your Language Model is Secretly a Reward Model (Rafailov et al., NeurIPS 2023).
2A General Theoretical Paradigm to Understand Learning from Human Preferences (Azar et al., AISTATS 2024).

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2310.12036


Confidential + Proprietary

How do they differ?
● Deployment

○ Training-time solution, e.g., DPO/PPO – widely used, easy to deploy
○ Inference-time solution, e.g., Best-of-n – easy to adapt, modular
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All methods roughly solve a 
KL-regularized RL problem
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The role of reverse KL regularizer in alignment
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● Assume a logistic language model
● Supervised finetuning (SFT)

● KL-regularized RL

● Multi-tasking SFT and reward optimization

The role of reverse KL regularizer in alignment
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● Assume a logistic language model
● Supervised finetuning (SFT)

● KL-regularized RL

● Multi-tasking SFT and reward optimization

The role of reverse KL regularizer in alignment

1A Group Fairness Framework for Post-Processing Everything (Tiffrea et al., ICML 2024).

https://openreview.net/forum?id=JndWnomyIc
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YAAM
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YAAM: Yet Another Alignment Method
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Token-wise KL-regularized reinforcement learning
● Markov Decision Process state: prompt + decoded prefix x, yt action: next token yt+1
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Strongly convex in πLinear in π
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Controlled decoding (CD)

51Controlled decoding from language models (Mudgal, Lee  et al., ICML 2024)

https://arxiv.org/abs/2310.17022
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Controlled decoding (CD)

● Learn the value function:

52Controlled decoding from language models (Mudgal, Lee  et al., ICML 2024)

https://arxiv.org/abs/2310.17022
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CD-FUDGE
● Use an unbiased draw from the model as the target1

53
1Controlled Text Generation With Future Discriminators (Yang & Klein, NAACL 2021).

https://arxiv.org/abs/2104.05218
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CD-FUDGE
● Use an unbiased draw from the model as the target1

54
1Controlled Text Generation With Future Discriminators (Yang & Klein, NAACL 2021).
2Controlled decoding from language models (Mudgal, Lee  et al. ICML 2024).

https://arxiv.org/abs/2104.05218
https://arxiv.org/abs/2310.17022
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CD-Q
● Bellman identity

55
1Reinforcement Learning: An Introduction (Sutton & Barto,2018).

http://incompleteideas.net/book/the-book-2nd.html
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CD-Q
● Bellman identity

● Train the value function similarly to DQN

56
1Reinforcement Learning: An Introduction (Sutton & Barto,2018).
2Playing Atari with Deep Reinforcement Learning (Mnih et al.,2013).

http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1312.5602
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Token-wise control using CD
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Token-wise control using CD
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Blockwise control using CD (best-of-n++)
● Draw K blocks of length M tokens

● Accept the continuation with the 
highest prefix score:

59Controlled decoding from language models (Mudgal, Lee  et al., ICML 2024)

n

n

https://arxiv.org/abs/2310.17022
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Confidential + Proprietary

Blockwise control using CD (best-of-n++)
● Draw K blocks of length M tokens

● Accept the continuation with the 
highest prefix score:

61Controlled decoding from language models (Mudgal, Lee  et al., ICML 2024)

n

n

Advantages over best-of-n:
- Limits the user-facing latency to the decoding time of a single block.
- Makes a large effective n practically feasible.

https://arxiv.org/abs/2310.17022
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How do we evaluate alignment methods?
● Human evaluations
● Auto-evals that are correlated with human judgement

62
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How do we evaluate alignment methods?

63

desired operation point
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desired operation point
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Estimating KL divergence
● We estimate KL divergence via aggregating the log-likelihood ratios between 

the aligned model and the base model

65

Log-likelihood ratio 
is an unbiased estimate of 
KL divergence
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Estimating KL divergence
● We estimate KL divergence via aggregating the log-likelihood ratios between 

the aligned model and the base model

● We don’t have the logits of best-of-n or blockwise CD. 
How can we estimate KL divergence?

66

Log-likelihood ratio 
is an unbiased estimate of 
KL divergence
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Analytical formula for KL divergence of best-of-n
● An analytical formula that has appeared many times in the literature1,2

● This formula remarkably
○ doesn’t depend on the prompt x or its distribution ρx
○ doesn’t depend on the base policy py|x

67
1Measuring Goodhart’s law (Hilton & Gao,2022).
2Learning to summarize with human feedback (Stiennon et al.,NeurIPS 2020).

https://openai.com/research/measuring-goodharts-law
https://arxiv.org/abs/2009.01325
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Analytical formula for KL divergence of best-of-n
● An analytical formula that has appeared many times in the literature1,2

● This formula remarkably
○ doesn’t depend on the prompt x or its distribution px
○ doesn’t depend on the base policy py|x

● Is this formula true?

68
1Measuring Goodhart’s law (Hilton & Gao,2022).
2Learning to summarize with human feedback (Stiennon et al.,NeurIPS 2020).

https://openai.com/research/measuring-goodharts-law
https://arxiv.org/abs/2009.01325
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Analytical formula is wrong!

69
1Theoretical guarantees on the best-of-n alignment policy (Beirami et al., arXiv preprint 2024).

https://arxiv.org/abs/2401.01879
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Guarantees on the analytical formula

● Analytical formula is an upper bound
●

○ Theorem: The gap is small if n.εn ≪ 1
○ Theorem: The gap is large if n.εn ≫ 1

71
1Theoretical guarantees on the best-of-n alignment policy (Beirami et al., arXiv preprint 2024).

https://arxiv.org/abs/2401.01879
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Guarantees on the analytical formula

● Analytical formula is an upper bound
●

○ Theorem: The gap is small if n.εn ≪ 1
○ Theorem: The gap is large if n.εn ≫ 1

● More recently, Mroueh showed that this result is an instance of strong data 
processing inequality2

72
1Theoretical guarantees on the best-of-n alignment policy (Beirami et al., arXiv preprint 2024).
2Information Theoretic Guarantees For Policy Alignment In Large Language Models (Mroueh., arXiv preprint 2024).

https://arxiv.org/abs/2401.01879
https://arxiv.org/abs/2406.05883
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New estimator for KL divergence of best-of-n
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New estimator for KL divergence of best-of-n
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Win-rate of best-of-n

● Roughly the upper bound argument follows from
○ Draw (n+1) outcomes from the base model; and order them from the highest to lowest reward
○ Randomly assign 1 of the outcomes to base model
○ Choose the best of the remaining n to be a draw from the best-of-n model.
○ Best-of-n wins against the reference model with probability n/(n+1).

● The upper bound would be exact if w/p 1 no two outcomes were identical
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Win-rate vs KL tradeoffs (helpfulness & harmlessness)

76
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Win-rate vs KL tradeoff for best-of-n
● KL values <10 are 

sufficient to reach a high 
win-rate against base 
policy

● This is the ideal setting 
ignoring noise in reward 
and generalizationw

in
-ra

te
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Win-rate vs KL tradeoffs

Scaling Laws for Reward Model Overoptimization (Gao et al., ICML 2023).

https://arxiv.org/abs/2210.10760
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Win-rate vs KL tradeoffs

Reward hacking regime

Is reward overoptimization a problem?

Scaling Laws for Reward Model Overoptimization (Gao et al., ICML 2023).

https://arxiv.org/abs/2210.10760
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Win-rate vs KL tradeoffs (helpfulness & harmlessness)

80

● Best-of-n is better than 
state-of-the-art RL methods

● Blockwise CD bridges the gap 
between tokenwise control and 
best-of-n

● Token-wise CD is a good 
contender for token-wise control 
(on par with other methods)

Controlled decoding from language models (Mudgal, Lee  et al., ICML 2024)

N

https://arxiv.org/abs/2310.17022
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Modularity of CD for the win!

81

Multi-objective alignment

Controlled decoding from language models (Mudgal, Lee  et al., ICML 2024)

https://arxiv.org/abs/2310.17022
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Modularity of CD for the win!

82

Multi-objective alignment generalization to a new model

Controlled decoding from language models (Mudgal, Lee  et al., ICML 2024)

N

https://arxiv.org/abs/2310.17022
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Modularity of CD for the win!

83

Multi-objective alignment generalization to a new model Integrating CD and DPO

Controlled decoding from language models (Mudgal, Lee  et al., ICML 2024)

N

N

N

https://arxiv.org/abs/2310.17022
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Optimal reward-KL tradeoff
● Theorem: KL-regularized RL solution is optimal for reward-KL tradeoff

84

Linear in π Strongly convex in π

1Asymptotics of Language Model Alignment (Yang et al., 2024).

https://arxiv.org
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Optimal reward-KL tradeoff
● Theorem: KL-regularized RL solution is optimal for reward-KL tradeoff

● Empirically, best-of-n is strikingly close
to the optimal trade-off

85

Linear in π Strongly convex in π

1Asymptotics of Language Model Alignment (Yang et al., 2024).

https://arxiv.org
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Why does best-of-n work so well?

86

p

q

constant 
KL contour

Constant re
ward contour

(0, 0
, 1

)(1, 0, 0)

(0, 1, 0)

aligned family

1Asymptotics of Language Model Alignment (Yang et al., 2024).

Y1 = 0011020110
type of Y1:  
t(Y1) =  (0.5, 0.4, 0.1)

● Let’s revisit the example
● The probability of type t is given by e-mKL(t||p)

p = (0.50, 0.30, 0.20)
q = (0.22, 0.11, 0.67)

https://arxiv.org
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Why does best-of-n work so well?
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1Asymptotics of Language Model Alignment (Yang et al., 2024).

Y1 = 0011020110
type of Y1:  
t(Y1) =  (0.5, 0.4, 0.1)

● Let’s revisit the example
● The probability of type t is given by e-mKL(t||p)

● Let n = emΔ, then 
○ Lemma: Any type t in the KL ball of radius Δ 

is sampled almost surely
○ Lemma: No type t outside the KL ball of radius Δ 

is sampled almost surely

p = (0.50, 0.30, 0.20)
q = (0.22, 0.11, 0.67)

https://arxiv.org
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Why does best-of-n work so well?
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1Asymptotics of Language Model Alignment (Yang et al., 2024).

Y1 = 0011020110
type of Y1:  
t(Y1) =  (0.5, 0.4, 0.1)

● Let’s revisit the example
● The probability of type t is given by e-mKL(t||p)

● Let n = emΔ, then 
○ Lemma: Any type t in the KL ball of radius Δ 

is sampled almost surely
○ Lemma: No type t outside the KL ball of radius Δ 

is sampled almost surely

p = (0.50, 0.30, 0.20)
q = (0.22, 0.11, 0.67)

RL solution w/ KL constraint of Δ

https://arxiv.org


Confidential + Proprietary

Can we distill best-of-n into a new model?
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Can we distill best-of-n into a new model?
● The PMF of best-of-n suggests a way
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Does alignment work in practice?
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Why is (safety) alignment hard?

● Reward modeling
○ Reward models are noisy. Does reward ensembling help?1,2

○ Train rewards from a handful of loss patterns.3

● Choosing the prompt set
○ Does automated red teaming help uncover prompts that trigger the model?4

○ Safety alignment is shallow, need to think about diverse training prompts.5

● Online vs offline
○ Offline methods (e.g., DPO) are not robust.2

● How to think about multi-lingual alignment?6

1Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking (Eisenstein et al., 2024).
2Robust Preference Optimization through Reward Model Distillation (Fisch et al., 2024).
3Improving Few-shot Generalization of Safety Classifiers via Data Augmented Parameter-Efficient Fine-Tuning (Balashankar et al., 2024)
4Gradient-Based Language Model Red Teaming (Wichers et al., 2024).
5Safety Alignment Should Be Made More Than Just a Few Tokens Deep (Qi et al., 2024).
6Reuse Your Rewards: Reward Model Transfer for Zero-Shot Cross-Lingual Alignment (Wu et al.,2024).

https://arxiv.org/abs/2312.09244
https://arxiv.org/abs/2405.19316
https://arxiv.org/abs/2310.16959
https://arxiv.org/abs/2401.16656
https://arxiv.org/abs/2406.05946
https://arxiv.org/abs/2310.17022
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Safety alignment should be made deeper
● Prefilling attacks 

and finetuning do 
away safety 
alignment

● Alignment only 
touches the first 
few tokens of the 
model 
distribution

Safety Alignment Should Be Made More Than Just a Few Tokens Deep (Qi et al., 2024).

https://arxiv.org/abs/2406.05946
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Offline policy optimization beyond DPO

● Explicit reward modeling through BT model is crucial
● Reward ensembling and pessimistic rewards help a lot!

Robust Preference Optimization through Reward Model Distillation (Fisch et al., 2024).

https://arxiv.org/abs/2405.19316
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Further understanding DPO



Confidential + Proprietary

Further understanding DPO



Confidential + Proprietary

Further understanding DPO
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Takeaways (alignment recipe)
● Step 1: Perform Best-of-n and make sure it works as desired.

○ Inspect a few responses and verify that the ranking induced by reward makes sense.
○ Best-of-n essentially gives the best tradeoffs you can hope for so if best-of-n doesn’t work for 

your problem, no other fancy method will!
○ You’d also be able to debug best-of-n much faster.

98



Confidential + Proprietary

Takeaways (alignment recipe)
● Step 1: Perform Best-of-n and make sure it works as desired.

○ Inspect a few responses and verify that the ranking induced by reward makes sense.
○ Best-of-n essentially gives the best tradeoffs you can hope for so if best-of-n doesn’t work for 

your problem, no other fancy method will!
○ You’d also be able to debug best-of-n much faster.

● Step 2: Only then train your favorite alignment method.
○ Track KL(π || p) throughout training

■ KL > 100 The results are unlikely to be any useful!
■ KL > 15 Inspect the outcomes for reward hacking!
■ KL < 8 You are probably OK!
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Slides for this talk & more in a language model inference tutorial at ISIT : 
http://theertha.info/papers/isit_2024_tutorial.pdf (w/ Ananda Theertha Suresh)

http://theertha.info/papers/isit_2024_tutorial.pdf

