
Almost Optimal Sublinear Additive Spanners

Based on joint work with Tianyi Zhang (Tel Aviv University)

Zihan Tan

Spanners are (almost)-optimal distance oracles

given G, pre-process
given u,v, report dist(u,v)

size - accuracy tradeoff

by no(1) factor

Spanners

Given G, a spanner H is a subgraph of G,
s.t. for every pair u,v in G:

distG(u,v) ≤ distH(u,v) ≤ f(distG(u,v))

f(d) = 5 · d (multiplicative)

f(d) = d + 2 (additive)

Spanners

Given G, a spanner H is a subgraph of G,
s.t. for every pair u,v in G:

distG(u,v) ≤ distH(u,v) ≤ f(distG(u,v))

f(d) = 5 · d (multiplicative)

f(d) = d + 2 (additive)

distG(u,v) = 4

distH(u,v) = 6 ≤ 4 + 2

Spanners

Given G, a spanner H is a subgraph of G,
s.t. for every pair u,v in G:

distG(u,v) ≤ distH(u,v) ≤ f(distG(u,v))

f(d) = (2k - 1) · d

f(d) = d + c

E(H) = O(n(1+1/k)) [Althofer-Das-Dobkin-Joseph-Soares 93]

tight under Erdos Girth Conjecture

E(H) = O(n1.5)
[ADDJS 93]

c = 2

E(H) = Õ(n1.4)
[Chechik 13]

c = 4

E(H) = O(n4/3)c = 6
[Baswana-Kavitha-Mehlhorn-Pettie 05]

E(H) = O(n4/3-ε)c = nΩ(1)

[Abboud-Bodwin 16]

Sublinear Additive Spanners

Given G, a spanner H is a subgraph of G,
s.t. for every pair u,v in G:

distG(u,v) ≤ distH(u,v) ≤ f(distG(u,v))

f(d) = 5 · d (multiplicative)

f(d) = d + 2 (additive)

f(d) = d + O(d0.5) (sublinear)

f(d) = (1 + ε) d + β (mixed)

f(d) = d + O(d1-1/k)

[Pettie 09]
O

✓
n
1+ (3/4)k�2

7�2·(3/4)k�2

◆
E(H) =

E(H) = O(n1+1/k)
[Thorup-Zwick 06]

Our Result: E(H) = O

✓
n
1+ 1

2k+1�1
+o(1)

◆

⌦

✓
n
1+ 1

2k+1�1
�o(1)

◆
E(H) =

[Abboud-Bodwin-Pettie 18]
holds for any data structure

Linear-size Additive Spanners

Question: E(H) = O(n), f(d) = d + g(n), how small can g(n) be?

n1/22 n9/16

[Abboud-Bodwin 16] [Pettie 09]

n0.429

[Bodwin-Williams 15,16]

n1/11

[Huang-Pettie 18]
[Lu 19]

n1/10.5

[Lu-Williams-Wein-Xu 18]

n1/7

[Bodwin-Hoppenworth 22]

Lower Bounds Upper Bounds

Our Result: O(n0.403)

?

n3/17

[Bodwin-Hoppenworth-Williams-Wein-Xu 24]

Warm-up: f(d) = d + O(d0.5), E(H) = O(n8/7)

Separately deal with pairs at distance d=1,2,4,…

Simplifying Assumption 1:
disjoint diameter-d0.5 clusters

Step 1: BFS trees in clusters

⇒ only need to settle center pairs

R = d0.5

for C,C’: sufficient to add any “almost shortest” between any pair v∈C, v’∈C’

Warm-up: f(d) = d + O(d0.5), E(H) = O(n8/7)

Step 1: BFS trees ⇒ only need to settle center pairs (at distance ≃ d)
R = d0.5

Simplifying Assumption 2:
each length-d shortest path
goes through ≃ d0.5 clusters.

If all |C| ≤ n3/7 (small),
total +6 spanner size ≤ n4/7 · (n3/7)4/3 = n8/7 ⇒ only need to handle large clusters

Step 2: +6 spanner in clusters
(with size |C|4/3)

+6

+6

Warm-up: f(d) = d + O(d0.5), E(H) = O(n8/7)

Step 1: BFS trees in clusters
R = d0.5Step 2: +6 spanner in small clusters

≤ n4/7 large clusters (size > n3/7)

“demand pair”

“demand pair”

X
Y

Z

If some cluster on the X-W shortest path was
already settled with both X and W: do nothing!

Wa new demand pair ⇒ settled with a new cluster

demand pair ≤ n4/7

“(Y,X), (Y,W) settled”

“(Z,X), (Z,Y) settled”

“(Y,X), (Y,W) settled”

Warm-up: f(d) = d + O(d0.5), E(H) = O(n8/7)

Step 1: BFS trees in clusters
R = d0.5Step 2: +6 spanner in small clusters

≤ n4/7 large clusters (size > n3/7)

“demand pair”

“demand pair”

X
Y

Z

If some cluster on the X-W shortest path was
already settled with both X and W: do nothing!

Wa new demand pair ⇒ settled with a new cluster

demand pair ≤ n4/7

“(Z,X), (Z,Y) settled”

[Kavitha 17] Graph G, pairs 𝒫, +6 pairwise spanner of size n·|𝒫|1/4

⇒ total size of all +6 pairwise spanners: ∑|C|·(n4/7)1/4 ≤ n·(n4/7)1/4 = n8/7

Warm-up: f(d) = d + O(d0.5), E(H) = O(n8/7)
Step 1: BFS trees in clusters

Step 2: +6 spanner in small clusters R = d0.5

Step 3: handle large centers by
· going over large center pairs
· adding “demand pairs”
· marking “settled”
· building +6 pairwise spanner

(w.r.t “demand pairs”, using [Kavitha 17])

Path
Buying

General Case: f(d)=d+O(d1-1/k), E(H)=O

✓
n
1+ 1

2k+1�1
+o(1)

◆

R = d1-1/k

Step 1: BFS trees in clusters

Step 2,3: +6 pairwise spanner in clusters

For an s-t shortest path of length ≃ d:
of clusters it goes through: d1/k

for each cluster, the entrance-exit stretch:

total stretch:

�
d

k�1
k

� k�2
k�1 = d

k�2
k

d
k�2
k · d 1

k = d
k�1
k

For d + O(d1-1/k) stretch, we need a
d + O(d1-1/(k-1)) pairwise spanner

Our Result: Given G, 𝒫, d + O(d1-1/(k-1))
pairwise spanner of size O

�
n · |P|

1
2k
�

Roadmap

d+O(d1-1/k), size O

✓
n
1+ 1

2k+1�1
+o(1)

◆

[Kavitha 17] d+O(d1-1/(2-1)) pairwise, size n·|𝒫|1/4

1. Clustering with diameter R = d1-1/k

d+O(d1-1/2), size n8/7

2. Path Buying

d+O(d1-1/(3-1)) pairwise, size n·|𝒫|1/8

d+O(d1-1/(k-1)) pairwise, size n·|𝒫|1/2^k

d+O(d1-1/3), size n16/15

. . .

Advanced PB

Advanced PB

Advanced PB

Basic PB

Basic PB

Basic PB

Clustering (Simplifying Assumptions)

1. For any R, graph = disjoint clusters of diameter R.
2. Each length-d shortest path goes through ≃ d/R clusters.

[Bodwin-Williams 16]* Given G, R, compute a collection of balls in G,
s.t. (i) each ball has diameter ≃ R;

(ii) balls are almost disjoint (total size is n1+o(1));
(iii) can partition every shortest path into ≃ d/R segments, each

contained in a different ball.

Summary & Future Directions

• f(d) = d + O(d1-1/k) sublinear additive spanner, size
• almost optimal: ≃ lower bound in [ABP18] for all data structures
• Spanners are (almost)-optimal distance oracles

• removing no(1) term? error bound for linear-size additive spanner?

O

✓
n
1+ 1

2k+1�1
+o(1)

◆

Thanks for Listening!

