Almost Optimal Sublinear Additive Spanners

Zihan Tan

Based on joint work with Tianyi Zhang (Tel Aviv University)

Given G, a spanner H is a subgraph of G, s.t. for every pair u,v in G:

 $dist_{G}(u,v) \leq dist_{H}(u,v) \leq f(dist_{G}(u,v))$

f(d) = 5 · d	(multiplicative)
f(d) = d + 2	(additive)

Given G, a spanner H is a subgraph of G, s.t. for every pair u,v in G:

 $dist_{G}(u,v) \leq dist_{H}(u,v) \leq f(dist_{G}(u,v))$

$f(d) = 5 \cdot d$	(multiplicative)
f(d) = d + 2	(additive)

Spanners

Given G, a spanner H is a subgraph of G, s.t. for every pair u,v in G:

 $dist_{G}(u,v) \leq dist_{H}(u,v) \leq f(dist_{G}(u,v))$

$$f(d) = (2k - 1) \cdot d$$

E(H) = O(n^(1+1/k)) [Althofer-Das-Dobkin-Joseph-Soares 93] tight under Erdos Girth Conjecture f(d) = d + c

c = 2
$$E(H) = O(n^{1.5})$$

[ADDJS 93]

$$E = 4$$
 $E(H) = \tilde{O}(n^{1.4})$
[Chechik 13]

$$c = 6$$
 $E(H) = O(n^{4/3})$

[Baswana-Kavitha-Mehlhorn-Pettie 05]

$$c = n^{\Omega(1)}$$
 E(H) = O(n^{4/3-\varepsilon})
[Abboud-Bodwin 16]

Sublinear Additive Spanners

Given G, a spanner H is a subgraph of G, s.t. for every pair u,v in G:

 $dist_{G}(u,v) \leq dist_{H}(u,v) \leq f(dist_{G}(u,v))$

f(d) = 5 · d	(multiplicative)
f(d) = d + 2	(additive)
$f(d) = d + O(d^{0.5})$	(sublinear)
f(d) = (1 + ε) d + β	(mixed)

 $f(d) = d + O(d^{1-1/k})$

 $E(H) = O(n^{1+1/k})$ [Thorup-Zwick 06]

$$\mathsf{E}(\mathsf{H}) = O\left(n^{1 + \frac{(3/4)^{k-2}}{7 - 2 \cdot (3/4)^{k-2}}}\right)$$
[Pettie 09]

$$E(H) = \Omega\left(n^{1 + \frac{1}{2^{k+1} - 1} - o(1)}\right)$$

[Abboud-Bodwin-Pettie 18]

holds for any data structure

Our Result: E(H) = $O\left(n^{1+\frac{1}{2^{k+1}-1}+o(1)}\right)$

Linear-size Additive Spanners

Question: E(H) = O(n), f(d) = d + g(n), how small can g(n) be?

Separately deal with pairs at distance d=1,2,4,...

Simplifying Assumption 1: disjoint diameter-d^{0.5} clusters

Step 1: BFS trees in clusters

 \Rightarrow only need to settle center pairs

for C,C': sufficient to add any "almost shortest" between any pair v∈C, v'∈C'

Step 1: BFS trees \Rightarrow only need to settle center pairs (at distance \simeq d)

Simplifying Assumption 2: each length-d shortest path goes through $\simeq d^{0.5}$ clusters.

Step 2: +6 spanner in clusters (with size |C|^{4/3})

If all $|C| \le n^{3/7}$ (small), total +6 spanner size $\le n^{4/7} \cdot (n^{3/7})^{4/3} = n^{8/7}$

 \Rightarrow only need to handle large clusters

[Kavitha 17] Graph G, pairs \mathcal{P} , +6 pairwise spanner of size $n \cdot |\mathcal{P}|^{1/4}$

 \Rightarrow total size of all +6 pairwise spanners: $\sum |C| \cdot (n^{4/7})^{1/4} \le n \cdot (n^{4/7})^{1/4} = n^{8/7}$

If some cluster on the X-W shortest path was already settled with both X and W: do nothing!

a new demand pair \Rightarrow settled with a new cluster

demand pair $\leq n^{4/7}$

Step 1: BFS trees in clusters

- Step 2: +6 spanner in small clusters
- Step 3: handle large centers by
- Path Buying
- going over large center pairs
 adding "demand pairs"
- marking "settled"

building +6 pairwise spanner
 (w.r.t "demand pairs", using [Kavitha 17])

General Case: $f(d)=d+O(d^{1-1/k}), E(H)=O(n^{1+\frac{1}{2^{k+1}-1}+o(1)})$

Step 1: BFS trees in clusters

Step 2,3: +6 pairwise spanner in clusters ↓

For $d + O(d^{1-1/k})$ stretch, we need a $d + O(d^{1-1/(k-1)})$ pairwise spanner

For an s-t shortest path of length ≃ d: # of clusters it goes through: d^{1/k} for each cluster, the entrance-exit stretch:

$$\left(d^{\frac{k-1}{k}}\right)^{\frac{k-2}{k-1}} = d^{\frac{k-2}{k}}$$

total stretch:

$$d^{\frac{k-2}{k}} \cdot d^{\frac{1}{k}} = d^{\frac{k-1}{k}}$$

Roadmap

- 1. Clustering with diameter $R = d^{1-1/k}$
- 2. Path Buying

Clustering (Simplifying Assumptions)

- 1. For any R, graph = disjoint clusters of diameter R.
- 2. Each length-d shortest path goes through \simeq d/R clusters.

[Bodwin-Williams 16]* Given G, R, compute a collection of balls in G, s.t. (i) each ball has diameter ≃ R; (ii) balls are almost disjoint (total size is n^{1+o(1)}); (iii) can partition every shortest path into ≃ d/R segments, each contained in a different ball.

Summary & Future Directions

- f(d) = d + O(d^{1-1/k}) sublinear additive spanner, size $O\left(n^{1+\frac{1}{2^{k+1}-1}+o(1)}\right)$
- almost optimal: \simeq lower bound in [ABP18] for all data structures
- Spanners are (almost)-optimal distance oracles
- removing $n^{o(1)}$ term? error bound for linear-size additive spanner?

