Cut-Preserving Vertex Sparsifiers for Planar and Quasi-Bipartite Graphs

Yu Chen

Joint work with Zihan Tan (Rutgers)

Cut Sparsifier

- Given a graph G , a cut sparsifer G' is a sparse subgraph that (approximately) preserves all cut values in G .
- Importance Sampling:
	- Sample edge e with probability p_e that depends on the importance of e .
	- If e gets sampled, reweight e to $1/p_e$.

Cut Sparsifier

- Given a graph G , a cut sparsifer G' is a sparse subgraph that (approximately) preserves all cut values in G .
- Any graph has a quality- $(1 + \varepsilon)$ cut sparsifier with $O(n/\varepsilon^2)$ edges. [BSS12]
- What if n is very large and only k vertices are important?

Terminal Cut

• Given a graph G and a set of terminals T , a terminal cut is a partition of the terminals $(S, T - S)$, whose size is defined to be size of the minimum cut that partition S and $T - S$.

• Given a graph G and a set of terminals T, a vertex cut sparsifer G' is a small graph that (approximately) preserves all terminal cut values in *.*

Vertex Cut Sparsifier

Without Steiner Nodes

• Given a graph G and k terminals, there is a quality- $O\left(\frac{\log k}{\log \log k}\right)$ $\frac{\log k}{\log \log k}$ cut sparsifier without Steiner nodes. [Moitra09, CLLM10]

• Lower bound
$$
\Omega\left(\frac{\sqrt{\log k}}{\log \log k}\right)
$$
 [MM10, CLLM10]

• How many Steiner nodes do we need to achieve a very good ratio?

- Given a graph G and k terminals, there is a quality-1 cut sparsifier with 2^{2^k} vertices. [HKNR98, KR14]
- If an edge is not cut by any terminal cut, then increasing the weight of this edge will not change any terminal cut size.
- If two vertices are on the same side for every terminal cut, then we can contract them.

- Given a graph G and k terminals, there is a quality-1 cut sparsifier with 2^{2^k} vertices. [HKNR98, KR14]
- For any vertex v , define $\pi^v: 2^T \to \{0,1\}$, where $\pi^v(S) = 1$ if v is on the same side as S in the terminal cut $(S, T - S)$, 0 otherwise.
- For any two vertex u, v , if $\pi^u = \pi^v$, then we can contract them.

• 2^k terminal cuts, 2^{2^k} possible vectors (profile). Contraction-based

Contraction Based Cut Sparsifier

- Given a graph G and k terminals, there is a quality-1 cut sparsifier with 2^{2k} vertices. [HKNR98, KR14] 2 \boldsymbol{k} $k/2$
- For any vertex v , define $\pi^v: 2^T \to \{0,1\}$, where $\pi^v(S) = 1$ if v is on the same side as S in the terminal cut $(S, T - S)$, 0 otherwise.
- There exist graph such that the vertices have $2^{2^{\Omega(k)}}$ different profiles. [KPZ17]

- Given a graph G and k terminals, there is a quality-1 cut sparsifier with 2^{2k} vertices. [HKNR98, KR14] 2 \boldsymbol{k} $k/2$
- There exist graphs such that any contracted-based quality-1 cut sparsifier has $2^{2^{\Omega(k)}}$ vertices. [KPZ17]
- There exist graphs such that any quality-1 cut sparsifier has $2^{\Omega(k)}$ vertices. [KPZ17]

- Given a graph G and k terminals, there is a quality-1 cut sparsifier with 2^{2k} vertices. [HKNR98, KR14] 2 \boldsymbol{k} $k/2$
- There exist graphs such that any contracted-based quality-1 cut sparsifier has $2^{2^{\Omega(k)}}$ vertices. [KPZ17]
- There exist planar graphs such that any quality-1 cut sparsifier has $2^{\Omega(k)}$ vertices. [KPZ17]

Can we use importance sampling?

• What if we consider quality- $(1 + \varepsilon)$ cut sparsifier?

Quasi-Bipartite Graph

- In a quasi-bipartite graph, there is no edges between nonterminal vertices.
- The profile of each vertex is independent.
- Sample vertices depend on its importance.
- $\tilde{O}(k/\varepsilon^2)$ size quality- $(1 + \varepsilon)$ cut sparsifier. [JLLS 23]

Quality-1 Cut Sparsifier for Quasi-Bipartite Graphs

Perfect Cut Sparsifier for Quasi-Bipartite Graph

- For any vertex v , define $\pi^v: 2^T \to \{0,1\}$, where $\pi^v(S) = 1$ if v is on the same side as S in the terminal cut $(S, T - S)$, 0 otherwise.
- Lemma: In a Quasi-Bipartite Graph, only $2^{O(k^2 \log k)}$ profiles are possible.
- View π^{ν} as a set of terminal cuts. All possible profile $\Pi(G)$ is a set family.
- Lemma: VC -dimension of $\Pi(G)$ is $O(k \log k)$.

Shattering Sets and VC-dimension

- A set family F shatters a set U if for any $U' \subseteq U$, there is a set $F \in$ $\mathcal F$ such that $F \cap U = U'$.
- VC-dimension of $\cal F$ is defined as the size of maximum U such that $\mathcal F$ shatters a set U .
- Sauer-Shelah Lemma: $|\mathcal{F}| \leq n^{VC(\mathcal{F})}$. 2^k $O(k \log k)$ $20(k^2 \log k)$

• For any vertex v , define $\pi^v: 2^T \to \{0,1\}$, where $\pi^v(S) = 1$ if v is on the same side as S in the terminal cut $(S, T - S)$, 0 otherwise.

- For any vertex v , define $\pi^v: 2^T \to \{0,1\}$, where $\pi^v(S) = 1$ if v is on the same side as S in the terminal cut $(S, T - S)$, 0 otherwise.
- Define $w_p(S)$ as the total weight of edges between v and S .
- $\pi^{\nu}(S) = 1$ iff $w_{\nu}(S) > w_{\nu}(T)/2$.

• $\pi^{\nu}(S) = 1$ iff $w_{\nu}(S) > w_{\nu}(T)/2$.

$$
w_{v}(S_1) + w_{v}(S_2) = w_{v}(S_3) + w_{v}(S_4)
$$

It is not possible that $\pi^{\nu}(S_1) = \pi^{\nu}(S_2) = 1$ and $\pi^{\nu}(S_3) = \pi^{\nu}(S_4) = 0$

 Π cannot shatter $\{S_1, S_2, S_3, S_4\}$

- If two set families S_1 , S_2 satisfy:
	- $|S_1| = |S_2|$
	- $\sum_{S \in \mathcal{S}_1} S = \sum_{S \in \mathcal{S}_2} S$
- Then $\sum_{S \in \mathcal{S}_1} w_v(S) = \sum_{S \in \mathcal{S}_2} w_v(S)$
- It is not possible that $\pi^v(S) = 1$ for all $S \in S_1$ and $\pi^v(S) = 0$ for all $S \in S_2$
- Π cannot shatter $S_1 \cup S_2$.

- If Π shatters S , then for all $S' \subseteq S$ such that $|S'| = |S|/2$, $\sum_{S\in S'} S$ are different from each other.
- There are $\binom{|\mathcal{S}|}{|\mathcal{S}|/2}$ such subsets,
- There are at most $|{\cal S}|^k$ possible values of $\sum_{S\in {\cal S}'} S$.
- \cdot $\binom{|S|}{|S|/2} \leq |S|^k$
- $|S| = O(k \log k)$

Quality- $(1 + \varepsilon)$ Cut Sparsifier for Quasi-Bipartite Graphs

Imaginal Vertex

- Each vertex v will randomly choose an imaginal vertex v' .
- The number of possible imaginal vertices is small.
- We call the profile of v' as the virtual profile of v .
- Vertices with the same virtual profile will be contracted together.

Idea

- The contribution of a vertex v to a terminal cut S will change only when $\pi^v(S) \neq \pi^{v'}(S)$.
- In expectation, the contribution of ν to each terminal cut will go up by a factor of $(1 + \varepsilon)$.
- We then prove concentration for the size of each terminal cut.

Choosing Imaginal Vertex

- We randomly choose $\Theta(1/\varepsilon^2)$ terminal, and the probabilities are proportional to the edge weights.
- The imaginal vertex v' connects to the chosen terminals, the weights of the edges to each terminal are the same and the total weight equals $w_p(T)$.

Choosing Imaginal Vertex

- We randomly choose $\Theta(1/\varepsilon^2)$ terminal, and the probabilities are proportional to the edge weights.
- The imaginal vertex v' connects to the chosen terminals, the weights of the edges to each terminal are the same and the total weight equals $w_p(T)$.
- If $w_p(S)$ far away from $w_p(T S)$, the probability of $\pi^{\nu}(S) \neq \pi^{\nu'}(S)$ is very small.
- If $w_p(S)$ is close to $w_p(T S)$, then the contribution of v does not change a lot even if $\pi^v(S) \neq \pi^{v'}(S)$

Concentration

- Terminal cut size = sum of the contribution of all vertices.
- Difficulty: very few vertices contribute most of the weight.
- If a vertex contributes at least $\Omega(1/k\epsilon^2)$ fraction of some terminal cut size, we say the vertex is important, and does not choose imaginal vertex.
- **Lemma:** the number of important vertices is polynomial.

Important Vertex

• Important cut: for any pair of terminals (t_1, t_2) , we say the minimal terminal cut that separates t_1 and t_2 as important cut.

Suppose $\min\{w_v(S), w_v(T-S)\} = \alpha \cdot size(S)$ t_2

Exist $t_1 \in S$, $t_2 \notin S$, $w_v(t_1)$, $w_v(t_2) \geq \frac{\alpha}{k} \cdot size(S)$

Important Vertex

• Important cut: for any pair of terminals (t_1, t_2) , we say the minimal terminal cut that separates t_1 and t_2 as important cut.

Suppose $min{w_v(S), w_v(T - S)} = \alpha \cdot size(S)$

Exist $t_1 \in S$, $t_2 \notin S$, $w_v(t_1)$, $w_v(t_2) \geq \frac{\alpha}{k} \cdot size(S)$

Let S' be the minimum terminal cut separates t_1 and t_2

 $size(S') \leq size(S)$

$$
\min\{w_v(S'), w_v(T - S')\} = \frac{\alpha}{k} \cdot size(S')
$$

Important Vertex

• Important cut: for any pair of terminals (t_1, t_2) , we say the minimal terminal cut that separates t_1 and t_2 as important cut.

Suppose $min{w_v(S), w_v(T - S)} = \alpha \cdot size(S)$

Exist $t_1 \in S$, $t_2 \notin S$, $w_v(t_1)$, $w_v(t_2) \geq \frac{\alpha}{k} \cdot size(S)$

Let S' be the minimum terminal cut separates t_1 and t_2

 $size(S') \leq size(S)$

 $min{w_v(S'), w_v(T - S')}$ = α $\frac{a}{k} \cdot size(S')$

Lemma: Any important vertex contributions at least $\Omega(1/k^2 \varepsilon^2)$ fraction of the size of some important cut.

Future Direction

- What about quality- $(1 + \varepsilon)$ cut sparsifier for general graph?
	- Can it be polynomial size like Planar graph and Quasi-Bipartite graph?
	- Or can we proof an exponential lower bound?

Thanks for Listening!