Cut-Preserving Vertex Sparsifiers for Planar and Quasi-Bipartite Graphs

Yu Chen

Joint work with Zihan Tan (Rutgers)

Cut Sparsifier

- Given a graph G, a cut sparsifer G' is a sparse subgraph that (approximately) preserves all cut values in G.
- Importance Sampling:
 - Sample edge e with probability p_e that depends on the importance of e.
 - If e gets sampled, reweight e to $1/p_e$.

Cut Sparsifier

- Given a graph G, a cut sparsifer G' is a sparse subgraph that (approximately) preserves all cut values in G.
- Any graph has a quality- $(1 + \varepsilon)$ cut sparsifier with $O(n/\varepsilon^2)$ edges. [BSS12]
- What if n is very large and only k vertices are important?

Terminal Cut

• Given a graph G and a set of terminals T, a terminal cut is a partition of the terminals (S, T - S), whose size is defined to be size of the minimum cut that partition S and T - S.

• Given a graph G and a set of terminals T, a vertex cut sparsifer G' is a small graph that (approximately) preserves all terminal cut values in G.

Vertex Cut Sparsifier

Without Steiner Nodes

• Given a graph *G* and *k* terminals, there is a quality- $O\left(\frac{\log k}{\log \log k}\right)$ cut sparsifier without Steiner nodes. [Moitra09, CLLM10]

• Lower bound
$$\Omega\left(\frac{\sqrt{\log k}}{\log \log k}\right)$$
. [MM10, CLLM10]

• How many Steiner nodes do we need to achieve a very good ratio?

- Given a graph G and k terminals, there is a quality-1 cut sparsifier with 2^{2^k} vertices. [HKNR98, KR14]
- If an edge is not cut by any terminal cut, then increasing the weight of this edge will not change any terminal cut size.
- If two vertices are on the same side for every terminal cut, then we can contract them.

- Given a graph G and k terminals, there is a quality-1 cut sparsifier with 2^{2^k} vertices. [HKNR98, KR14]
- For any vertex v, define $\pi^{v}: 2^{T} \to \{0,1\}$, where $\pi^{v}(S) = 1$ if v is on the same side as S in the terminal cut (S, T S), 0 otherwise.
- For any two vertex u, v, if $\pi^u = \pi^v$, then we can contract them.

2^k terminal cuts, 2^{2^k} possible vectors (profile).

Contraction Based Cut Sparsifier

- Given a graph *G* and *k* terminals, there is a quality-1 cut sparsifier with $\frac{2^{2^k}}{2^{\binom{k}{k/2}}}$ vertices. [HKNR98, KR14]
- For any vertex v, define $\pi^{v}: 2^{T} \to \{0,1\}$, where $\pi^{v}(S) = 1$ if v is on the same side as S in the terminal cut (S, T S), 0 otherwise.
- There exist graph such that the vertices have $2^{2^{\Omega(k)}}$ different profiles. [KPZ17]

- Given a graph *G* and *k* terminals, there is a quality-1 cut sparsifier with $\frac{2^{2^k}}{2^{\binom{k}{k/2}}}$ vertices. [HKNR98, KR14]
- There exist graphs such that any contracted-based quality-1 cut sparsifier has $2^{2^{\Omega(k)}}$ vertices. [KPZ17]
- There exist graphs such that any quality-1 cut sparsifier has $2^{\Omega(k)}$ vertices. [KPZ17]

- Given a graph *G* and *k* terminals, there is a quality-1 cut sparsifier with $\frac{2^{2^k}}{2^{\binom{k}{k/2}}}$ vertices. [HKNR98, KR14]
- There exist graphs such that any contracted-based quality-1 cut sparsifier has $2^{2^{\Omega(k)}}$ vertices. [KPZ17]
- There exist planar graphs such that any quality-1 cut sparsifier has $2^{\Omega(k)}$ vertices. [KPZ17]

Can we use importance sampling?

• What if we consider quality- $(1 + \varepsilon)$ cut sparsifier?

Quasi-Bipartite Graph

- In a quasi-bipartite graph, there is no edges between nonterminal vertices.
- The profile of each vertex is independent.
- Sample vertices depend on its importance.
- $\tilde{O}(k/\epsilon^2)$ size quality- $(1 + \epsilon)$ cut sparsifier. [JLLS 23]

Graph Type	Quality	Size	Contraction-Based?	Work
General	1	$2^{2^{k}}$	Yes	[HKNR98,KR14]
General	1	$2^{2^{\Omega(k)}}$	Yes	[KPZ17]
General	1	$2^{\Omega(k)}$	No	[KPZ17,KR14]
Planar	1	$2^{O(k)}$	No	[KR13, KR17]
Planar	1	$2^{\Omega(k)}$	No	[KPZ17]
Quasi-Bipartite	1+ <i>ε</i>	$\widetilde{O}(k/\varepsilon^2)$	No	[JLLS23]

Graph Type	Quality	Size	Contraction-Based?	Work
General	1	$2^{2^{k}}$	Yes	[HKNR98,KR14]
General	1	$2^{2^{\Omega(k)}}$	Yes	[KPZ17]
General	1	$2^{\Omega(k)}$	No	[KPZ17,KR14]
Planar	1	$2^{O(k)}$	No	[KR13, KR17]
Planar	1	$2^{\Omega(k)}$	No	[KPZ17]
Planar	1+ <i>ɛ</i>	$O(k \cdot Poly(\log k / \varepsilon))$	No	This work
Quasi-Bipartite	<u>1</u> + <i>ε</i>	$\widetilde{O}(k/\varepsilon^2)$	No	[JLLS23]

Graph Type	Quality	Size	Contraction-Based?	Work
General	1	$2^{2^{k}}$	Yes	[HKNR98,KR14]
General	1	$2^{2^{\Omega(k)}}$	Yes	[KPZ17]
General	1	$2^{\Omega(k)}$	No	[KPZ17,KR14]
Planar	1	$2^{O(k)}$	No	[KR13, KR17]
Planar	1	$2^{\Omega(k)}$	No	[KPZ17]
Planar	1+ <i>ɛ</i>	$O(k \cdot Poly(\log k / \varepsilon))$	No	This work
Quasi-Bipartite	1	2^{k^2}	No	[DKV24]
Quasi-Bipartite	1	$2^{O(k^2 \log k)}$	Yes	This work
Quasi-Bipartite	1+ <i>ε</i>	$\widetilde{O}(k/\varepsilon^2)$	No	[JLLS23]

Graph Type	Quality	Size	Contraction-Based?	Work
General	1	$2^{2^{k}}$	Yes	[HKNR98,KR14]
General	1	$2^{2^{\Omega(k)}}$	Yes	[KPZ17]
General	1	$2^{\Omega(k)}$	No	[KPZ17,KR14]
Planar	1	$2^{O(k)}$	No	[KR13, KR17]
Planar	1	$2^{\Omega(k)}$	No	[KPZ17]
Planar	<u>1+ε</u>	$O(k \cdot Poly(\log k / \varepsilon))$	No	This work
Quasi-Bipartite	1	2^{k^2}	No	[DKV24]
Quasi-Bipartite	1	$2^{O(k^2 \log k)}$	Yes	This work
Quasi-Bipartite	1+ <i>ε</i>	$\widetilde{O}(k/\varepsilon^2)$	No	[JLLS23]
Quasi-Bipartite	<u>1+ε</u>	$k^{\mathrm{O}(1/arepsilon^2)}$, $k^{\widetilde{\Omega}(1/arepsilon)}$	Yes	This work

Graph Type	Quality	Size	Contraction-Based?	Work
General	1	$2^{2^{k}}$	Yes	[HKNR98,KR14]
General	1	$2^{2^{\Omega(k)}}$	Yes	[KPZ17]
General	1	$2^{\Omega(k)}$	No	[KPZ17,KR14]
Planar	1	$2^{O(k)}$	No	[KR13, KR17]
Planar	1	$2^{\Omega(k)}$	No	[KPZ17]
Planar	<u>1+ε</u>	$O(k \cdot Poly(\log k / \varepsilon))$	No	This work
Quasi-Bipartite	1	2^{k^2}	No	[DKV24]
Quasi-Bipartite	1	$2^{O(k^2 \log k)}$	Yes	This work
Quasi-Bipartite	1+ <i>ε</i>	$\widetilde{O}(k/\varepsilon^2)$	No	[JLLS23]
Quasi-Bipartite	<u>1+ε</u>	$k^{\mathrm{O}(1/arepsilon^2)}$, $k^{\widetilde{\Omega}(1/arepsilon)}$	Yes	This work

Quality-1 Cut Sparsifier for Quasi-Bipartite Graphs

Perfect Cut Sparsifier for Quasi-Bipartite Graph

- For any vertex v, define $\pi^{v}: 2^{T} \to \{0,1\}$, where $\pi^{v}(S) = 1$ if v is on the same side as S in the terminal cut (S, T S), 0 otherwise.
- Lemma: In a Quasi-Bipartite Graph, only $2^{O(k^2 \log k)}$ profiles are possible.
- View π^{ν} as a set of terminal cuts. All possible profile $\Pi(G)$ is a set family.
- Lemma: VC-dimension of $\Pi(G)$ is $O(k \log k)$.

Shattering Sets and VC-dimension

- A set family \mathcal{F} shatters a set U if for any $U' \subseteq U$, there is a set $F \in \mathcal{F}$ such that $F \cap U = U'$.
- VC-dimension of \mathcal{F} is defined as the size of maximum U such that \mathcal{F} shatters a set U.
- Sauer-Shelah Lemma: $|\mathcal{F}| \leq n^{VC(\mathcal{F})}$. 2^{k} $O(k \log k)$ $2^{O(k^{2} \log k)}$

• For any vertex v, define $\pi^{v}: 2^{T} \to \{0,1\}$, where $\pi^{v}(S) = 1$ if v is on the same side as S in the terminal cut (S, T - S), 0 otherwise.

- For any vertex v, define $\pi^{v}: 2^{T} \to \{0,1\}$, where $\pi^{v}(S) = 1$ if v is on the same side as S in the terminal cut (S, T S), 0 otherwise.
- Define $w_{\nu}(S)$ as the total weight of edges between ν and S.
- $\pi^{\nu}(S) = 1$ iff $w_{\nu}(S) > w_{\nu}(T)/2$.

• $\pi^{\nu}(S) = 1$ iff $w_{\nu}(S) > w_{\nu}(T)/2$.

 $w_{v}(S_{1}) + w_{v}(S_{2}) = w_{v}(S_{3}) + w_{v}(S_{4})$

It is not possible that $\pi^{\nu}(S_1) = \pi^{\nu}(S_2) = 1$ and $\pi^{\nu}(S_3) = \pi^{\nu}(S_4) = 0$

 Π cannot shatter $\{S_1, S_2, S_3, S_4\}$

- If two set families S_1 , S_2 satisfy:
 - $\bullet |\mathcal{S}_1| = |\mathcal{S}_2|.$
 - $\sum_{S \in S_1} S = \sum_{S \in S_2} S$
- Then $\sum_{S \in S_1} w_v(S) = \sum_{S \in S_2} w_v(S)$
- It is not possible that $\pi^{\nu}(S) = 1$ for all $S \in S_1$ and $\pi^{\nu}(S) = 0$ for all $S \in S_2$
- Π cannot shatter $S_1 \cup S_2$.

- If Π shatters S, then for all $S' \subseteq S$ such that |S'| = |S|/2, $\sum_{S \in S'} S$ are different from each other.
- There are $\binom{|\mathcal{S}|}{|\mathcal{S}|/2}$ such subsets,
- There are at most $|\mathcal{S}|^k$ possible values of $\sum_{S \in \mathcal{S}'} S$.
- $\bullet \begin{pmatrix} |\mathcal{S}| \\ |\mathcal{S}|/2 \end{pmatrix} \leq |\mathcal{S}|^k$
- $|\mathcal{S}| = O(k \log k)$

Quality- $(1 + \varepsilon)$ Cut Sparsifier for Quasi-Bipartite Graphs

Imaginal Vertex

- Each vertex \boldsymbol{v} will randomly choose an imaginal vertex \boldsymbol{v}' .
- The number of possible imaginal vertices is small.
- We call the profile of v' as the virtual profile of v.
- Vertices with the same virtual profile will be contracted together.

Idea

- The contribution of a vertex v to a terminal cut S will change only when $\pi^{v}(S) \neq \pi^{v'}(S)$.
- In expectation, the contribution of v to each terminal cut will go up by a factor of $(1 + \varepsilon)$.
- We then prove concentration for the size of each terminal cut.

Choosing Imaginal Vertex

- We randomly choose $\Theta(1/\epsilon^2)$ terminal, and the probabilities are proportional to the edge weights.
- The imaginal vertex v' connects to the chosen terminals, the weights of the edges to each terminal are the same and the total weight equals $w_v(T)$.

Choosing Imaginal Vertex

- We randomly choose $\Theta(1/\epsilon^2)$ terminal, and the probabilities are proportional to the edge weights.
- The imaginal vertex v' connects to the chosen terminals, the weights of the edges to each terminal are the same and the total weight equals $w_v(T)$.
- If $w_v(S)$ far away from $w_v(T S)$, the probability of $\pi^v(S) \neq \pi^{v'}(S)$ is very small.
- If $w_v(S)$ is close to $w_v(T-S)$, then the contribution of v does not change a lot even if $\pi^v(S) \neq \pi^{v'}(S)$

Concentration

- Terminal cut size = sum of the contribution of all vertices.
- Difficulty: very few vertices contribute most of the weight.
- If a vertex contributes at least $\Omega(1/k\epsilon^2)$ fraction of some terminal cut size, we say the vertex is important, and does not choose imaginal vertex.
- Lemma: the number of important vertices is polynomial.

Important Vertex

• Important cut: for any pair of terminals (t_1, t_2) , we say the minimal terminal cut that separates t_1 and t_2 as important cut.

Suppose $\min\{w_v(S), w_v(T-S)\} = \alpha \cdot size(S)$

Exist $t_1 \in S$, $t_2 \notin S$, $w_v(t_1)$, $w_v(t_2) \ge \frac{\alpha}{k} \cdot size(S)$

Important Vertex

• Important cut: for any pair of terminals (t_1, t_2) , we say the minimal terminal cut that separates t_1 and t_2 as important cut.

Suppose $\min\{w_v(S), w_v(T-S)\} = \alpha \cdot size(S)$

Exist $t_1 \in S$, $t_2 \notin S$, $w_v(t_1)$, $w_v(t_2) \ge \frac{\alpha}{k} \cdot size(S)$

Let S' be the minimum terminal cut separates t_1 and t_2

 $size(S') \leq size(S)$

$$\min\{w_{v}(S'), w_{v}(T-S')\} = \frac{\alpha}{k} \cdot size(S')$$

Important Vertex

• Important cut: for any pair of terminals (t_1, t_2) , we say the minimal terminal cut that separates t_1 and t_2 as important cut.

Suppose $\min\{w_v(S), w_v(T-S)\} = \alpha \cdot size(S)$

Exist $t_1 \in S$, $t_2 \notin S$, $w_v(t_1)$, $w_v(t_2) \ge \frac{\alpha}{k} \cdot size(S)$

Let S' be the minimum terminal cut separates t_1 and t_2

 $size(S') \leq size(S)$

$$\min\{w_{\nu}(S'), w_{\nu}(T-S')\} = \frac{\alpha}{k} \cdot size(S')$$

Lemma: Any important vertex contributions at least $\Omega(1/k^2\varepsilon^2)$ fraction of the size of some important cut.

Future Direction

- What about quality- $(1 + \varepsilon)$ cut sparsifier for general graph?
 - Can it be polynomial size like Planar graph and Quasi-Bipartite graph?
 - Or can we proof an exponential lower bound?

Thanks for Listening!