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High-Dimensional Distributions in Practice

▶ model data with complex relationships

◦ text
◦ images
◦ signals
◦ molecular structure

▶ high-dimensional sampling is a key part of

◦ software testing
◦ scientific simulations
◦ generative modeling
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High-Dimensional Distributions: Key Challenges

Sampling from high-dimensional distributions:

§ hard for most real-world problems
◦ subgraph sampling
◦ sampling strings from grammars

▶ easy to get wrong
◦ developers use ad-hoc methods

◦ for e.g., most MCMC is run with heuristically chosen parameters [G04]
◦ failures are silent

▶ a question every developer has: is my algorithm correct?
◦ is the output distribution Q of an algorithm close to the intended target P?

Goals

Given distance metric d(·, ·), and parameters ε < η, determine whether
distributions P and Q are close:

(Goal 1) Decision: d(P,Q) < ε v.s. d(P,Q) > η

(Goal 2) Estimation: d(P,Q) upto ±ε (In focus today)
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Outline

□ A motivating instance

□ Formalizing the problem

□ The estimation problem

□ Ongoing work
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Motivating Instance

A developer writes a buggy program SHUFFLE-1 to shuffle an array A of length n.
How can we detect the bug?

Shuffle-1(A,n)

for j in 1,2,...,n

r ∼ sample([1,2,...,n])

swap A[r] and A[j]

return A

Fisher-Yates(A,n)

for j in 1,2,...,n

r ∼ sample([j,j+1,...,n])

swap A[r] and A[j]

return A
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Approach 1 - Blackbox Access

A developer writes a buggy program SHUFFLE-1 to shuffle an array A of length n.
How can we detect the bug?

Shuffle-1(A,n)

for j in 1,2,...,n

r ∼ sample([1,2,...,n])

swap A[r] and A[j]

return A

The blackbox approach:

▶ method - execute program multiple times, outputs are samples from distribution

◦ if program correct - uniform distribution on permutations of A
◦ if program not correct - output far from uniform

▶ what we observe

◦ for n = 4, dTV (Uniform, Shuffle-1) ≈ 0.06, i.e. far from uniform
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How can we detect the bug?

Shuffle-1(A,n)

for j in 1,2,...,n

r ∼ sample([1,2,...,n])

swap A[r] and A[j]

return A

The blackbox approach:
▶ method - execute program multiple times, outputs are samples from distribution

◦ if program correct - uniform distribution on permutations of A
◦ if program not correct - output far from uniform

▶ what we observe

◦ for n = 4, dTV (Uniform, Shuffle-1) ≈ 0.06, i.e. far from uniform

Drawback:
▶ high sample complexity: at least

√
n! = 2Ω(n) samples needed
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Approach 2 - Whitebox Access

A developer writes a program SHUFFLE-1 to shuffle an array A of length n.
How can we detect the bug?

Shuffle-1(A,n)

for j in 1,2,...,n

r ∼ sample([1,2,...,n])

swap A[r] and A[j]

return A

Fisher-Yates(A,n)

for j in 1,2,...,n

r ∼ sample([j,j+1,...,n])

swap A[r] and A[j]

return A

The whitebox approach:

▶ method - formal analysis of the code

▶ observation - bug because the #of shuffles(n!) does not divide #executions(nn)

Drawback:

▶ computationally intractable: for high-dimensional (n >> 1) programs, method is
intractable

◦ #P-hard to count #executions
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Approach 3 - Greybox Access

high computational complexity

Blackbox Whitebox

Greybox

high sample complexity
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Approach 3 - Greybox Access

high computational complexity

Blackbox WhiteboxGreybox

high sample complexity

Greybox approach (Our Contribution)

© more powerful, yet computationally feasible queries

© rich set of queries that adapt to underlying distributions

© scales to high-dimensional distributions
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Distance - Total Variation

dTV (P,Q) =
∑

σ∈{0,1}n
max(P(σ)−Q(σ), 0)

P Q

=dTV (P,Q)

Support

P
ro
b
a
b
il
it
y

Input P

Output

Input Q

Output

▶ Fundamental metric across computer
science

◦ Approximation algo.
◦ Learning

▶ Operational meaning:

◦ program A uses a sample from P
◦ output of A is a distribution
◦ if we replace P with Q, the

probability of Bad event in the
output of A increases at most by
dTV (P,Q)
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Conditioning: The Magic Ingredient behind Graybox Approach

Conditioning access

Given a distribution Q, we can

▶ Specify a set T ⊆ {0, 1}n

▶ Draw samples according to the distribution QT , i.e.

QT (σ) =
Q(σ)∑

σ∈T Q(σ)

σ ̸∈ T

σ ∈ T
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Conditioning: The Magic Ingredient behind Graybox Approach

Conditioning access

Given a distribution Q, we can

▶ Specify a set T ⊆ {0, 1}n

▶ Draw samples according to the distribution QT , i.e.

QT (σ) =
Q(σ)∑

σ∈T Q(σ)

▶ Arbitrary sets T , well studied but unrealistic. Requires 2n bits to specify.

▶ Restricted conditional variants of T can be implemented.

◦ Pair : |T | = 2
◦ Subcube : T = 10 ∗ ∗ ≜ {1000, 1001, 1010, 1011}

σ ̸∈ T

σ ∈ T

σ ̸∈ T

σ1 ∈ Tσ2 ∈ T

σ ̸∈ T

σ ∈ T
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Problem Statement - Distance Estimation

▶ estimation: How far is P from Q ?

▶ input:

◦ distributions P,Q
◦ tolerance: 0 < ε < 1

▶ output:

◦ return α s.t. Pr [α ∈ dTV (P,Q)± ε] > 2/3

▶ query model:

▶ conditional sampling
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Outline

✓□ A motivating instance

✓□ Formalizing the problem

□ Attacking the estimation problem

□ Ongoing work
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Background

Agenda

Design practical algorithms to take in a pair of distributions P and Q, and a tolerance
parameter ε, return α ∈ dTV (P,Q)± ε

What was known?

◦ Θ(2n/n) samples in the blackbox sampling model [VV13,17]

◦ Non-tolerant equivalence testing is in Θ(log(n)) in COND [CRS15,
CFGM16,CCK23]

◦ polylog(n) query equivalence tests in restricted variants of COND [BC18, N21,
BCSV23]

◦ Ω(log(n)) lower bound for COND

◦ Ω(n/ log(n)) lower bound for SUBCOND

What was open?

◦ no poly(n) query algorithm for TV distance estimation in COND

Our contribution

◦ first polynomial query distance estimator in COND

◦ O(n3/ε5) queries (equivalence) [KMP]

◦ O(n2/ε4) queries (identity) [BCPSS]
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Subcube Conditioning

Description

Given a distribution Q, we draw samples according to QT (σ) =
Q(σ)∑

σ∈T Q(σ)

▶ T is subcube, i.e. set of points with first m dimensions fixed to a string ρ

▶ Formally, m ≤ n, ρ ∈ {0, 1}m≤n, T := {σ|σ[1,m] = ρ}
▶ For example, ρ = 10, yields T = 10 ∗ ∗ ≜ {1000, 1001, 1010, 1011}
▶ A natural model for

◦ databases, cryptography, and approximate sampling

σ ̸∈ T

σ ∈ T
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The Distance Estimator

INPUT:

▶ Distributions P, Q
▶ Tolerance ε

OUTPUT:

▶ α, such that Pr[dTV (P,Q)− ε ≤ α ≤ dTV (P,Q) + ε] ≥ 2/3

ALGORITHM:

Step 1: Draw samples (σ1, σ2, . . . σm) ∼ P, where m = Θ
(

1
ε2

)
Step 2: Find Q(σi )

Step 3: Find P(σi )

Step 4: Return 1
m

∑
i∈[m]

max (0, 1−Q(σi )/P(σi ))
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The Distance Estimator

INPUT:

▶ Distributions P, Q
▶ Tolerance ε

OUTPUT:

▶ α, such that Pr[dTV (P,Q)− ε ≤ α ≤ dTV (P,Q) + ε] ≥ 2/3

ALGORITHM:

Step 1: Draw samples (σ1, σ2, . . . σm) ∼ P, where m = Θ
(

1
ε2

)
Step 2: Find Q(σi ) [no algo. known]

Step 3: Find P(σi ) [O(n5) query algo. [CR14]]

Step 4: Return 1
m

∑
i∈[m]

max (0, 1−Q(σi )/P(σi ))

Agenda

Estimate Q(σ) and P(σ) using subcube conditional samples, faster than O(n5)

15/ 21



The Distance Estimator: Estimating P(σ) in O(n2)

INPUT:

▶ Distribution P
▶ Tolerance ε

▶ Sample σ ∼ P

OUTPUT: P(σ)
1+ε

≤ p ≤ P(σ)(1 + ε)

1 Let k = 4n/ε2

2 For 0 ≤ i ≤ n − 1 [Stopping Rule, DKLR’00]

a. conditioning on subcube σ[1, i ], sample from Pσ[1,i ] until you see σ[i + 1]
at least k times

b. ri = # of samples drawn in step (a)

3 Return p =
∏n−1

i=0 k/ri
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The Distance Estimator: Visualized

▶ Distribution P over {0, 1}4, and a sample 1001 sampled from P
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The Distance Estimator: Visualized

▶ Distribution P over {0, 1}4, and a sample 1001 sampled from P

▶ Let P(10|1) : Probability of 10, conditioned on 1.
Chain rule: P(1001) = P(1|·)× P(10|1)× P(100|10)× P(1001|100)
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Challenges

▶ Challenge 1

◦ estimating each marginal P(x |y) (upto an O(1) factor) requires ∝ 1
P(x|y)

queries, where P(x |y) can be arbitrarily small,
◦ there are n of these marginals, total complexity –

n∑ 1

P(x |y)

▶ Solution :- we prove σ ∼ P =⇒ in expectation all marginals are large i.e., Θ(1)

Complexity O(n2)

▶ Challenge 2

◦ sample σ ∼ P, estimate Q(σ)
◦ σ can have arbitrarily small marginals in Q, even in expectation

▶ Solution :- we show that for every D there exists a distribution D′ such that

◦ dTV (D,D′) ≤ ε/10
◦ all marginals are large, i.e. D′(y |x) ∈ Ω(ε/n)
◦ D′ is easy to construct and sample from

▶ Finally - estimate dTV (P,Q′) upto ±8ε/10 Complexity O(n3)
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Open Questions

Ongoing work

Q1 What is the query complexity of estimating TV distance?

◦ In SUBCOND : O(n3) , Ω(n/ log(n)) bound
◦ In COND : O(n3) , Ω(log(n)) bound

The road to practicality

Q2 Scaling our estimator to verify properties of large distributions

◦ How far is a quantized model from the original?
◦ How far is a current checkpoint from the desired distribution?
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Practical Implications

▶ Tests are in use to verify correctness of combinatorial samplers

▶ Bugs discovered in several samplers that were in use [CM, MPC, PM,
BCCMSS,KMP]

▶ Insights used for designing better sampling algorithms [GSCM, SGCM]
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Conclusion

▶ Graybox sampling strikes a happy medium between computational intractable
whitebox sampling, and statistically intractable blackbox

▶ Main takeaway:

◦ theoretical insights useful in practical testing problems.
◦ rich collection of practice inspired models left to be explored.
◦ tight analysis, constants and instance optimality critical in practice

▶ Check our tools out at: https://github.com/meelgroup/barbarik

THANK YOU!
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