Towards Practical Distribution Testing

Yash Pote, National University of Singapore

Kuldeep S. Meel Gunjan Kumar Sayantan Sen

R. Bhattacharyya S. Chakraborty Uddalok Sarkar

High-Dimensional Distributions in Practice

- \blacktriangleright model data with complex relationships
	- text
	- images
	- signals
	- molecular structure

- software testing
- scientific simulations
- generative modeling

High-Dimensional Distributions: Key Challenges

Sampling from high-dimensional distributions:

- § hard for most real-world problems
	- subgraph sampling
	- sampling strings from grammars
- ▶ easy to get wrong
	- developers use ad-hoc methods

◦ for e.g., most MCMC is run with heuristically chosen parameters [G04]

◦ failures are silent

▶ a question every developer has: is my algorithm correct?

 \circ is the output distribution Q of an algorithm close to the intended target P?

High-Dimensional Distributions: Key Challenges

Sampling from high-dimensional distributions:

- § hard for most real-world problems
	- subgraph sampling
	- sampling strings from grammars
- ▶ easy to get wrong
	- developers use ad-hoc methods
		- for e.g., most MCMC is run with heuristically chosen parameters [G04]
	- failures are silent

▶ a question every developer has: is my algorithm correct?

 \circ is the output distribution Q of an algorithm close to the intended target P?

Goals

Given distance metric $d(\cdot, \cdot)$, and parameters $\varepsilon < \eta$, determine whether distributions $\mathcal P$ and $\mathcal Q$ are close:

(Goal 1) Decision: $d(P, Q) < \varepsilon$ v.s. $d(P, Q) > \eta$

(Goal 2) Estimation: $d(P, Q)$ upto $\pm \varepsilon$ (In focus today)

Outline

□ A motivating instance

 \square Formalizing the problem

□ The estimation problem

□ Ongoing work

Outline

□ A motivating instance

 \square Formalizing the problem

□ The estimation problem

□ Ongoing work

Motivating Instance

A developer writes a buggy program SHUFFLE-1 to shuffle an array A of length n. How can we detect the bug?

```
SHUFFLE-1(A, n)for j in 1, 2, \ldots, nr \sim sample([1,2,...,n])
   swap A[r] and A[j]
return A
```

```
Fisher-Yates(A,n)
for j in 1,2,...,n
  r \sim sample([j,j+1,...,n])
  swap A[r] and A[j]
return A
```
Approach 1 - Blackbox Access

A developer writes a buggy program SHUFFLE-1 to shuffle an array A of length n. How can we detect the bug?

The blackbox approach:

▶ method - execute program multiple times, outputs are samples from distribution

- if program correct uniform distribution on permutations of A
- if program not correct output far from uniform
- ▶ what we observe

◦ for $n = 4$, d_{TV} (Uniform, Shuffle-1) ≈ 0.06, i.e. far from uniform

Approach 1 - Blackbox Access

A developer writes a buggy program SHUFFLE-1 to shuffle an array A of length n. How can we detect the bug?

The blackbox approach:

▶ method - execute program multiple times, outputs are samples from distribution

- if program correct uniform distribution on permutations of A
- if program not correct output far from uniform
- \blacktriangleright what we observe

◦ for $n = 4$, d_{TV} (Uniform, Shuffle-1) ≈ 0.06, i.e. far from uniform

Drawback:

 \blacktriangleright high sample complexity: at least $\sqrt{n!} = 2^{\Omega(n)}$ samples needed

Approach 2 - Whitebox Access

A developer writes a program SHUFFLE-1 to shuffle an array A of length n. How can we detect the bug?

```
SHUFFLE-1(A, n)for j in 1,2,...,n
   r \sim sample([1,2,...,n])
   swap A[r] and A[i]return A
```

```
Fisher-Yates(A,n)
for j in 1, 2, \ldots, nr \sim sample([j,j+1,...,n])
   swap A[r] and A[i]return A
```
The whitebox approach:

- ▶ method formal analysis of the code
- betwhere observation bug because the #of shuffles(n!) does not divide #executions(nⁿ)

Approach 2 - Whitebox Access

A developer writes a program SHUFFLE-1 to shuffle an array A of length n. How can we detect the bug?

```
SHUFFLE-1(A, n)for j in 1,2,...,n
   r \sim sample([1,2,...,n])
   swap A[r] and A[i]return A
```

```
Fisher-Yates(A,n)
for j in 1, 2, \ldots, nr \sim sample([j,j+1,...,n])
   swap A[r] and A[i]return A
```
The whitebox approach:

- \triangleright method formal analysis of the code
- betwhere observation bug because the #of shuffles(n!) does not divide #executions(nⁿ)

Drawback:

- **E** computationally intractable: for high-dimensional $(n \geq 1)$ programs, method is intractable
	- #P-hard to count #executions

Approach 3 - Greybox Access

Approach 3 - Greybox Access

Greybox approach (Our Contribution)

- © more powerful, yet computationally feasible queries
- © rich set of queries that adapt to underlying distributions
- © scales to high-dimensional distributions

Outline

✓□ A motivating instance

 \square Formalizing the problem

□ The estimation problem

□ Ongoing work

Distance - Total Variation

$$
d_{TV}(\mathcal{P}, \mathcal{Q}) = \sum_{\sigma \in \{0,1\}^n} \max(\mathcal{P}(\sigma) - \mathcal{Q}(\sigma), 0)
$$

- Fundamental metric across computer science
	- Approximation algo.
	- Learning
- Operational meaning:
	- \circ program A uses a sample from $\mathcal P$
	- \circ output of A is a distribution
	- \circ if we replace $\mathcal P$ with $\mathcal Q$, the probability of Bad event in the output of A increases at most by $d_{TV}(\mathcal{P}, \mathcal{Q})$

Conditioning: The Magic Ingredient behind Graybox Approach

Conditioning access

Given a distribution Q , we can

- ▶ Specify a set $T \subseteq \{0,1\}^n$
- \blacktriangleright Draw samples according to the distribution \mathcal{Q}_T , i.e.

$$
\mathcal{Q}_\mathcal{T}(\sigma) = \frac{\mathcal{Q}(\sigma)}{\sum_{\sigma \in \mathcal{T}} \mathcal{Q}(\sigma)}
$$

Conditioning: The Magic Ingredient behind Graybox Approach

Conditioning access

Given a distribution Q , we can

- ▶ Specify a set $T \subseteq \{0,1\}^n$
- \blacktriangleright Draw samples according to the distribution \mathcal{Q}_T , i.e.

$$
\mathcal{Q}_\mathcal{T}(\sigma) = \frac{\mathcal{Q}(\sigma)}{\sum_{\sigma \in \mathcal{T}} \mathcal{Q}(\sigma)}
$$

- \blacktriangleright Arbitrary sets T, well studied but unrealistic. Requires 2ⁿ bits to specify.
- \blacktriangleright Restricted conditional variants of T can be implemented.
	- \circ Pair : $|T| = 2$
	- Subcube : T = 10 ∗ ∗ ≜ {1000, 1001, 1010, 1011}

Problem Statement - Distance Estimation

 \triangleright estimation: How far is $\mathcal P$ from $\mathcal Q$?

 \blacktriangleright input:

- distributions P,Q
- o tolerance: $0 < \varepsilon < 1$

 \blacktriangleright output:

```
ο return \alpha s.t. Pr [\alpha \in d_{TV}(\mathcal{P}, \mathcal{Q}) \pm \varepsilon] > 2/3
```
▶ query model:

 \blacktriangleright conditional sampling

Outline

 $\sqrt{ }$ A motivating instance

 \Box Formalizing the problem

 \Box Attacking the estimation problem

□ Ongoing work

Background

Agenda

Design practical algorithms to take in a pair of distributions $\mathcal P$ and $\mathcal Q$, and a tolerance parameter ε , return $\alpha \in d_{TV}(\mathcal{P}, \mathcal{Q}) \pm \varepsilon$

Background

Agenda

Design practical algorithms to take in a pair of distributions P and Q , and a tolerance parameter ε , return $\alpha \in d_{TV}(\mathcal{P}, \mathcal{Q}) \pm \varepsilon$

What was known?

- \circ $\Theta(2^n/n)$ samples in the blackbox sampling model [VV13,17]
- \circ Non-tolerant equivalence testing is in $\Theta(\log(n))$ in COND [CRS15, CFGM16,CCK23]
- \circ polylog(n) query equivalence tests in restricted variants of COND [BC18, N21, BCSV23]
- \circ Ω(log(n)) lower bound for COND
- \circ $\Omega(n/\log(n))$ lower bound for SUBCOND

What was open?

 \circ no poly(n) query algorithm for TV distance estimation in COND

Our contribution

- first polynomial query distance estimator in COND
- $\circ \ \mathcal{O}(n^3/\varepsilon^5)$ queries (equivalence) $[\mathrm{KMP}]$
- \circ $\mathcal{O}(n^2/\varepsilon^4)$ queries (identity) [BCPSS]

Subcube Conditioning

Description

Given a distribution Q , we draw samples according to $Q_T(\sigma) = \frac{Q(\sigma)}{\sum_{\sigma \in T} Q(\sigma)}$

- \triangleright T is subcube, i.e. set of points with first m dimensions fixed to a string ρ
- **►** Formally, $m \le n$, $\rho \in \{0, 1\}^{m \le n}$, $T := \{\sigma | \sigma[1, m] = \rho\}$
- ▶ For example, $\rho = 10$, yields $T = 10** \triangleq \{1000, 1001, 1010, 1011\}$
- ▶ A natural model for
	- databases, cryptography, and approximate sampling

The Distance Estimator

INPUT:

- \blacktriangleright Distributions \mathcal{P}, \mathcal{Q}
- \blacktriangleright Tolerance ε

OUTPUT:

 \triangleright α , such that Pr[d_{TV}(P, Q) – $\varepsilon \leq \alpha \leq d_{TV}(P, Q) + \varepsilon$] ≥ 2/3

The Distance Estimator

INPUT:

- \triangleright Distributions \mathcal{P} , Q
- \blacktriangleright Tolerance ε

OUTPUT:

 \triangleright α , such that Pr[d_{TV}(\mathcal{P}, \mathcal{Q}) – $\varepsilon \leq \alpha \leq d_{TV}(\mathcal{P}, \mathcal{Q}) + \varepsilon$] $\geq 2/3$

ALGORITHM:

Step 1: Draw samples $(\sigma_1, \sigma_2, \ldots \sigma_m) \sim \mathcal{P}$, where $m = \Theta\left(\frac{1}{\varepsilon^2}\right)$

Step 2: Find $\mathcal{Q}(\sigma_i)$

Step 3: Find $\mathcal{P}(\sigma_i)$

Step 4: Return $\frac{1}{m}\sum\limits_{i\in[m]} \max\left(0,1-\mathcal{Q}(\sigma_i)/\mathcal{P}(\sigma_i)\right)$

The Distance Estimator

INPUT:

- \blacktriangleright Distributions \mathcal{P}, \mathcal{Q}
- ▶ Tolerance ε

OUTPUT:

 \triangleright α , such that Pr[d_{TV}(\mathcal{P}, \mathcal{Q}) – $\varepsilon < \alpha < d_{TV}(\mathcal{P}, \mathcal{Q}) + \varepsilon$] > 2/3

ALGORITHM:

- Step 1: Draw samples $(\sigma_1, \sigma_2, \ldots \sigma_m) \sim \mathcal{P}$, where $m = \Theta\left(\frac{1}{\varepsilon^2}\right)$
- Step 2: Find $\mathcal{Q}(\sigma_i)$ [no algo. known] Step 3: Find $\mathcal{P}(\sigma_i)$ $⁵$) query algo. [CR14]]</sup>

Step 4: Return
$$
\frac{1}{m} \sum_{i \in [m]} \max(0, 1 - \mathcal{Q}(\sigma_i)/\mathcal{P}(\sigma_i))
$$

Agenda

Estimate $\mathcal{Q}(\sigma)$ and $\mathcal{P}(\sigma)$ using subcube conditional samples, faster than $O(n^5)$

The Distance Estimator: Estimating $\mathcal{P}(\sigma)$ in $O(n^2)$

INPUT:

- \blacktriangleright Distribution $\mathcal P$
- \blacktriangleright Tolerance ε
- ▶ Sample σ ∼ P

OUTPUT: $\frac{\mathcal{P}(\sigma)}{1+\varepsilon} \leq p \leq \mathcal{P}(\sigma)(1+\varepsilon)$

- 1 Let $k = 4n/\varepsilon^2$
- 2 For $0 \le i \le n 1$ [Stopping Rule, DKLR'00]
	- a. conditioning on subcube $\sigma[1, i]$, sample from ${\mathcal P}_{\sigma[1,i]}$ until you see $\sigma[i+1]$ at least k times
	- b. $r_i = #$ of samples drawn in step (a)
- 3 Return $p = \prod_{i=0}^{n-1} k/r_i$

- \blacktriangleright Distribution P over $\{0,1\}^4$, and a sample 1001 sampled from P
- \blacktriangleright Let $\mathcal{P}(10|1)$: Probability of 10, conditioned on 1. Chain rule: $\mathcal{P}(1001) = \mathcal{P}(1|\cdot) \times \mathcal{P}(10|1) \times \mathcal{P}(100|10) \times \mathcal{P}(1001|100)$

- \blacktriangleright Challenge 1
	- \circ estimating each marginal $\mathcal{P}({x}|{y})$ (upto an $\mathsf{O}(1)$ factor) requires $\propto \frac{1}{\mathcal{P}({x}|{y})}$ queries, where $\mathcal{P}(x|y)$ can be arbitrarily small,
	- \circ there are n of these marginals, total complexity -

$$
\sum_{n=1}^{n} \frac{1}{\mathcal{P}(x|y)}
$$

- \blacktriangleright Challenge 1
	- \circ estimating each marginal $\mathcal{P}({x}|{y})$ (upto an $\mathsf{O}(1)$ factor) requires $\propto \frac{1}{\mathcal{P}({x}|{y})}$ queries, where $\mathcal{P}(x|y)$ can be arbitrarily small,
	- \circ there are n of these marginals, total complexity -

$$
\sum_{i=1}^{n} \frac{1}{\mathcal{P}(x|y)}
$$

► Solution :- we prove $\sigma \sim \mathcal{P} \implies$ in expectation all marginals are large i.e., $\Theta(1)$

Complexity $\mathcal{O}(n^2)$

- \blacktriangleright Challenge 1
	- \circ estimating each marginal $\mathcal{P}({x}|{y})$ (upto an $\mathsf{O}(1)$ factor) requires $\propto \frac{1}{\mathcal{P}({x}|{y})}$ queries, where $\mathcal{P}(x|y)$ can be arbitrarily small,
	- \circ there are *n* of these marginals, total complexity –

$$
\sum_{j}^{n} \frac{1}{\mathcal{P}(x|y)}
$$

► Solution :- we prove $\sigma \sim \mathcal{P} \implies$ in expectation all marginals are large i.e., $\Theta(1)$

Complexity $\mathcal{O}(n^2)$

▶ Challenge 2

- ο sample $σ \sim P$, estimate $Q(σ)$
- \circ σ can have arbitrarily small marginals in \mathcal{Q} , even in expectation

- \blacktriangleright Challenge 1
	- \circ estimating each marginal $\mathcal{P}({x}|{y})$ (upto an $\mathsf{O}(1)$ factor) requires $\propto \frac{1}{\mathcal{P}({x}|{y})}$ queries, where $\mathcal{P}(x|y)$ can be arbitrarily small,
	- \circ there are *n* of these marginals, total complexity –

$$
\sum_{j}^{n} \frac{1}{\mathcal{P}(x|y)}
$$

► Solution :- we prove $\sigma \sim \mathcal{P} \implies$ in expectation all marginals are large i.e., $\Theta(1)$

Complexity $\mathcal{O}(n^2)$

▶ Challenge 2

ο sample $σ \sim P$, estimate $Q(σ)$

 \circ σ can have arbitrarily small marginals in \mathcal{Q} , even in expectation

▶ Solution :- we show that for every D there exists a distribution D' such that

- \circ $d_{\mathcal{TV}}(\mathcal{D}, \mathcal{D}') \leq \varepsilon/10$
- ο all marginals are large, i.e. $\mathcal{D}'(y|x) \in \Omega(\varepsilon/n)$
- \circ \mathcal{D}' is easy to construct and sample from
- ▶ Finally estimate $d_{TV}(\mathcal{P}, \mathcal{Q}')$ upto $\pm 8\varepsilon/10$

) upto $\pm 8\varepsilon/10$ Complexity $\mathcal{O}(n^3)$

Open Questions

Ongoing work

Q1 What is the query complexity of estimating TV distance?

- \circ In SUBCOND : $\mathcal{O}(n^3)$, $\Omega(n/\log(n))$ bound
- \circ In COND : $\mathcal{O}(n^3)$, $\Omega(\log(n))$ bound

The road to practicality

Q2 Scaling our estimator to verify properties of large distributions

- How far is a quantized model from the original?
- How far is a current checkpoint from the desired distribution?

Practical Implications

- ▶ Tests are in use to verify correctness of combinatorial samplers
- ▶ Bugs discovered in several samplers that were in use [CM, MPC, PM, BCCMSS,KMP]
- ▶ Insights used for designing better sampling algorithms [GSCM, SGCM]

Conclusion

▶ Graybox sampling strikes a happy medium between computational intractable whitebox sampling, and statistically intractable blackbox

▶ Main takeaway:

- theoretical insights useful in practical testing problems.
- rich collection of practice inspired models left to be explored.
- tight analysis, constants and instance optimality critical in practice
- ▶ Check our tools out at: <https://github.com/meelgroup/barbarik>

Conclusion

▶ Graybox sampling strikes a happy medium between computational intractable whitebox sampling, and statistically intractable blackbox

▶ Main takeaway:

- theoretical insights useful in practical testing problems.
- rich collection of practice inspired models left to be explored.
- tight analysis, constants and instance optimality critical in practice

▶ Check our tools out at: <https://github.com/meelgroup/barbarik>

THANK YOU!