Towards Practical Distribution Testing

Yash Pote, National University of Singapore

Kuldeep S. Meel

Gunjan Kumar

Sayantan Sen

R. Bhattacharyya

S. Chakraborty

Uddalok Sarkar

High-Dimensional Distributions in Practice

- model data with complex relationships
 - text
 - images
 - signals
 - molecular structure

- high-dimensional sampling is a key part of
 - $\circ~$ software testing
 - \circ scientific simulations
 - o generative modeling

High-Dimensional Distributions: Key Challenges

Sampling from high-dimensional distributions:

- © hard for most real-world problems
 - $\circ \ \text{subgraph sampling}$
 - sampling strings from grammars
- easy to get wrong
 - developers use ad-hoc methods
 - for e.g., most MCMC is run with heuristically chosen parameters [G04]
 - o failures are silent

a question every developer has: is my algorithm correct?

 \circ is the output distribution Q of an algorithm close to the intended target \mathcal{P} ?

High-Dimensional Distributions: Key Challenges

Sampling from high-dimensional distributions:

- © hard for most real-world problems
 - subgraph sampling
 - sampling strings from grammars
- easy to get wrong
 - developers use ad-hoc methods
 - for e.g., most MCMC is run with heuristically chosen parameters [G04]
 - failures are silent

a question every developer has: is my algorithm correct?

• is the output distribution Q of an algorithm close to the intended target \mathcal{P} ?

Goals

Given distance metric $d(\cdot, \cdot)$, and parameters $\varepsilon < \eta$, determine whether distributions \mathcal{P} and \mathcal{Q} are close:

(Goal 1) Decision: $d(\mathcal{P}, \mathcal{Q}) < \varepsilon$ v.s. $d(\mathcal{P}, \mathcal{Q}) > \eta$

(Goal 2) Estimation: $d(\mathcal{P}, \mathcal{Q})$ upto $\pm \varepsilon$

(In focus today)

Outline

 \Box A motivating instance

 \Box Formalizing the problem

 $\hfill\square$ The estimation problem

 \Box Ongoing work

Outline

\Box A motivating instance

 $\hfill\square$ Formalizing the problem

 $\hfill\square$ The estimation problem

□ Ongoing work

Motivating Instance

A developer writes a buggy program $\rm SHUFFLE-1$ to shuffle an array A of length n. How can we detect the bug?

```
SHUFFLE-1(A,n)
for j in 1,2,...,n
r \sim sample([1,2,...,n])
swap A[r] and A[j]
return A
```

```
FISHER-YATES(A,n)
for j in 1,2,...,n
r \sim sample([j,j+1,...,n])
swap A[r] and A[j]
return A
```

Approach 1 - Blackbox Access

A developer writes a buggy program $\rm SHUFFLE-1$ to shuffle an array A of length n. How can we detect the bug?

The blackbox approach:

method - execute program multiple times, outputs are samples from distribution

- o if program correct uniform distribution on permutations of A
- $\circ\,$ if program not correct output far from uniform
- what we observe

• for n = 4, d_{TV} (Uniform, Shuffle-1) ≈ 0.06 , i.e. far from uniform

Approach 1 - Blackbox Access

A developer writes a buggy program $\rm SHUFFLE-1$ to shuffle an array A of length n. How can we detect the bug?

The blackbox approach:

method - execute program multiple times, outputs are samples from distribution

- $\circ\,$ if program correct uniform distribution on permutations of A
- o if program not correct output far from uniform
- what we observe

• for n = 4, d_{TV} (Uniform, Shuffle-1) ≈ 0.06 , i.e. far from uniform

Drawback:

• high sample complexity: at least $\sqrt{n!} = 2^{\Omega(n)}$ samples needed

Approach 2 - Whitebox Access

A developer writes a program $\rm SHUFFLE-1$ to shuffle an array A of length n. How can we detect the bug?

```
\begin{array}{l} \mbox{Shuffle-1(A,n)} \\ \mbox{for } j \mbox{ in } 1,2,\ldots,n \\ \mbox{ } r \ \sim \mbox{ sample}([1,2,\ldots,n]) \\ \mbox{ } swap \ \mbox{A[r]} \mbox{ and } \ \mbox{A[j]} \\ \mbox{return } \mbox{A} \end{array}
```

```
\label{eq:fisher-Yates(A,n)} for j in 1,2,\ldots,n \\ r \sim sample([j,j+1,\ldots,n]) \\ swap A[r] and A[j] \\ return A
```

The whitebox approach:

- method formal analysis of the code
- observation bug because the #of shuffles(n!) does not divide #executions (n^n)

Approach 2 - Whitebox Access

A developer writes a program $\rm SHUFFLE-1$ to shuffle an array A of length n. How can we detect the bug?

```
\begin{array}{l} \mbox{Shuffle-1(A,n)} \\ \mbox{for } j \mbox{ in } 1,2,\ldots,n \\ \mbox{ } r \ \sim \mbox{ sample}([1,2,\ldots,n]) \\ \mbox{ } swap \ A[r] \mbox{ and } A[j] \\ \mbox{return } A \end{array}
```

```
FISHER-YATES(A,n)
for j in 1,2,...,n
r \sim sample([j,j+1,...,n])
swap A[r] and A[j]
return A
```

The whitebox approach:

- method formal analysis of the code
- observation bug because the #of shuffles(n!) does not divide #executions(nⁿ)

Drawback:

- computationally intractable: for high-dimensional (n >> 1) programs, method is intractable
 - #P-hard to count #executions

Approach 3 - Greybox Access

Approach 3 - Greybox Access

Greybox approach

(Our Contribution)

- © more powerful, yet computationally feasible queries
- $\ensuremath{\textcircled{}}$ rich set of queries that adapt to underlying distributions
- $\ensuremath{\textcircled{}}$ scales to high-dimensional distributions

Outline

 \square A motivating instance

 \Box Formalizing the problem

 $\hfill\square$ The estimation problem

 \Box Ongoing work

Distance - Total Variation

$$d_{TV}(\mathcal{P},\mathcal{Q}) = \sum_{\sigma \in \{0,1\}^n} \max(\mathcal{P}(\sigma) - \mathcal{Q}(\sigma), 0)$$

- Fundamental metric across computer science
 - Approximation algo.
 - Learning
- Operational meaning:
 - \circ program \mathcal{A} uses a sample from \mathcal{P}
 - $\circ~$ output of ${\cal A}$ is a distribution
 - if we replace \mathcal{P} with \mathcal{Q} , the probability of Bad event in the output of \mathcal{A} increases at most by $d_{TV}(\mathcal{P}, \mathcal{Q})$

Conditioning: The Magic Ingredient behind Graybox Approach

Conditioning access

Given a distribution Q, we can

- Specify a set $T \subseteq \{0,1\}^n$
- **b** Draw samples according to the distribution Q_T , i.e.

$$\mathcal{Q}_{\mathcal{T}}(\sigma) = \frac{\mathcal{Q}(\sigma)}{\sum_{\sigma \in \mathcal{T}} \mathcal{Q}(\sigma)}$$

Conditioning: The Magic Ingredient behind Graybox Approach

Conditioning access

Given a distribution Q, we can

- Specify a set $T \subseteq \{0,1\}^n$
- Draw samples according to the distribution Q_T , i.e.

$$\mathcal{Q}_{\mathcal{T}}(\sigma) = \frac{\mathcal{Q}(\sigma)}{\sum_{\sigma \in \mathcal{T}} \mathcal{Q}(\sigma)}$$

- Arbitrary sets T, well studied but unrealistic. Requires 2^n bits to specify.
- Restricted conditional variants of T can be implemented.
 - Pair : |T| = 2
 - ∘ Subcube : $T = 10 * * \triangleq \{1000, 1001, 1010, 1011\}$

Problem Statement - Distance Estimation

• estimation: How far is \mathcal{P} from \mathcal{Q} ?

input:

- $\circ\,$ distributions \mathcal{P},\mathcal{Q}
- \circ tolerance: $0 < \varepsilon < 1$

output:

```
◦ return \alpha s.t. \Pr[\alpha \in d_{TV}(\mathcal{P}, \mathcal{Q}) \pm \varepsilon] > 2/3
```

query model:

conditional sampling

Outline

 \square A motivating instance

 \checkmark Formalizing the problem

Attacking the estimation problem

□ Ongoing work

Background

Agenda

Design practical algorithms to take in a pair of distributions \mathcal{P} and \mathcal{Q} , and a tolerance parameter ε , return $\alpha \in d_{TV}(\mathcal{P}, \mathcal{Q}) \pm \varepsilon$

Background

Agenda

Design practical algorithms to take in a pair of distributions \mathcal{P} and \mathcal{Q} , and a tolerance parameter ε , return $\alpha \in d_{TV}(\mathcal{P}, \mathcal{Q}) \pm \varepsilon$

What was known?

- $\Theta(2^n/n)$ samples in the blackbox sampling model [VV13,17]
- Non-tolerant equivalence testing is in Θ(log(n)) in COND [CRS15, CFGM16,CCK23]
- *polylog(n)* query equivalence tests in restricted variants of COND [BC18, N21, BCSV23]
- $\Omega(\log(n))$ lower bound for COND
- $\Omega(n/\log(n))$ lower bound for SUBCOND

What was open?

 \circ no poly(n) query algorithm for TV distance estimation in COND

Our contribution

- o first polynomial query distance estimator in COND
- $\mathcal{O}(n^3/\varepsilon^5)$ queries (equivalence) [KMP]
- $\mathcal{O}(n^2/\varepsilon^4)$ queries (identity) [BCPSS]

Subcube Conditioning

Description

Given a distribution Q, we draw samples according to $Q_T(\sigma) = \frac{Q(\sigma)}{\sum_{\sigma \in T} Q(\sigma)}$

- T is subcube, i.e. set of points with first m dimensions fixed to a string ρ
- Formally, $m \le n$, $\rho \in \{0,1\}^{m \le n}$, $T := \{\sigma | \sigma[1,m] = \rho\}$
- For example, $\rho = 10$, yields $T = 10 * * \triangleq \{1000, 1001, 1010, 1011\}$
- A natural model for
 - o databases, cryptography, and approximate sampling

The Distance Estimator

INPUT:

- ▶ Distributions \mathcal{P} , \mathcal{Q}
- Tolerance ε

OUTPUT:

• α , such that $\Pr[d_{TV}(\mathcal{P}, \mathcal{Q}) - \varepsilon \leq \alpha \leq d_{TV}(\mathcal{P}, \mathcal{Q}) + \varepsilon] \geq 2/3$

The Distance Estimator

INPUT:

- Distributions *P*, *Q*
- Tolerance ε

OUTPUT:

• α , such that $\Pr[d_{TV}(\mathcal{P}, \mathcal{Q}) - \varepsilon \leq \alpha \leq d_{TV}(\mathcal{P}, \mathcal{Q}) + \varepsilon] \geq 2/3$

ALGORITHM:

Step 1: Draw samples $(\sigma_1, \sigma_2, \dots, \sigma_m) \sim \mathcal{P}$, where $m = \Theta\left(\frac{1}{\varepsilon^2}\right)$

Step 2: Find $Q(\sigma_i)$

Step 3: Find $\mathcal{P}(\sigma_i)$

Step 4: Return $\frac{1}{m} \sum_{i \in [m]} \max(0, 1 - \mathcal{Q}(\sigma_i) / \mathcal{P}(\sigma_i))$

The Distance Estimator

INPUT:

- Distributions *P*, *Q*
- Tolerance ε

OUTPUT:

• α , such that $\Pr[d_{TV}(\mathcal{P}, \mathcal{Q}) - \varepsilon \leq \alpha \leq d_{TV}(\mathcal{P}, \mathcal{Q}) + \varepsilon] \geq 2/3$

ALGORITHM:

- Step 1: Draw samples $(\sigma_1, \sigma_2, \dots, \sigma_m) \sim \mathcal{P}$, where $m = \Theta\left(\frac{1}{\varepsilon^2}\right)$
- Step 2: Find $\mathcal{Q}(\sigma_i)$ [no algo. known]Step 3: Find $\mathcal{P}(\sigma_i)$ $[\mathcal{O}(n^5)$ query algo. [CR14]]

Step 4: Return
$$\frac{1}{m} \sum_{i \in [m]} \max(0, 1 - \mathcal{Q}(\sigma_i) / \mathcal{P}(\sigma_i))$$

Agenda

Estimate $\mathcal{Q}(\sigma)$ and $\mathcal{P}(\sigma)$ using subcube conditional samples, faster than $O(n^5)$

The Distance Estimator: Estimating $\mathcal{P}(\sigma)$ in $O(n^2)$

INPUT:

- Distribution *P*
- Tolerance ε
- Sample $\sigma \sim \mathcal{P}$

OUTPUT: $\frac{\mathcal{P}(\sigma)}{1+\varepsilon} \leq p \leq \mathcal{P}(\sigma)(1+\varepsilon)$

- 1 Let $k = 4n/\varepsilon^2$
- 2 For $0 \le i \le n-1$ [Stopping Rule, DKLR'00]
 - a. conditioning on subcube $\sigma[1,i],$ sample from $\mathcal{P}_{\sigma[1,i]}$ until you see $\sigma[i+1]$ at least k times
 - b. $r_i = \#$ of samples drawn in step (a)
- 3 Return $p = \prod_{i=0}^{n-1} k/r_i$

 \blacktriangleright Distribution ${\cal P}$ over $\{0,1\}^4,$ and a sample 1001 sampled from ${\cal P}$

- Distribution \mathcal{P} over $\{0,1\}^4$, and a sample 1001 sampled from \mathcal{P}
- Let $\mathcal{P}(10|1)$: Probability of 10, conditioned on 1. Chain rule: $\mathcal{P}(1001) = \mathcal{P}(1|\cdot) \times \mathcal{P}(10|1) \times \mathcal{P}(100|10) \times \mathcal{P}(1001|100)$

▶ Distribution \mathcal{P} over $\{0,1\}^4$, and a sample 1001 sampled from \mathcal{P}

▶ Distribution \mathcal{P} over $\{0,1\}^4$, and a sample 1001 sampled from \mathcal{P}

▶ Distribution \mathcal{P} over $\{0,1\}^4$, and a sample 1001 sampled from \mathcal{P}

- ▶ Distribution \mathcal{P} over $\{0,1\}^4$, and a sample 1001 sampled from \mathcal{P}
- Let $\mathcal{P}(10|1)$: Probability of 10, conditioned on 1. Chain rule: $\mathcal{P}(1001) = \boxed{\mathcal{P}(1|\cdot) \times \mathcal{P}(10|1) \times \mathcal{P}(100|10) \times \mathcal{P}(1001|100)}$

- Challenge 1
 - estimating each marginal $\mathcal{P}(x|y)$ (upto an O(1) factor) requires $\propto \frac{1}{\mathcal{P}(x|y)}$ queries, where $\mathcal{P}(x|y)$ can be arbitrarily small,
 - \circ there are *n* of these marginals, total complexity –

$$\sum^{n} \frac{1}{\mathcal{P}(x|y)}$$

- Challenge 1
 - estimating each marginal $\mathcal{P}(x|y)$ (upto an O(1) factor) requires $\propto \frac{1}{\mathcal{P}(x|y)}$ queries, where $\mathcal{P}(x|y)$ can be arbitrarily small,
 - \circ there are *n* of these marginals, total complexity –

$$\sum^{n} \frac{1}{\mathcal{P}(x|y)}$$

Solution :- we prove $\sigma \sim \mathcal{P} \implies$ in expectation all marginals are large i.e., $\Theta(1)$

Complexity $\mathcal{O}(n^2)$

- Challenge 1
 - estimating each marginal $\mathcal{P}(x|y)$ (upto an O(1) factor) requires $\propto \frac{1}{\mathcal{P}(x|y)}$ queries, where $\mathcal{P}(x|y)$ can be arbitrarily small,
 - \circ there are *n* of these marginals, total complexity –

$$\sum^{n} \frac{1}{\mathcal{P}(x|y)}$$

Solution :- we prove $\sigma \sim \mathcal{P} \implies$ in expectation all marginals are large i.e., $\Theta(1)$

Complexity $\mathcal{O}(n^2)$

Challenge 2

- sample $\sigma \sim \mathcal{P}$, estimate $\mathcal{Q}(\sigma)$
- $\circ \sigma$ can have arbitrarily small marginals in Q, even in expectation

- Challenge 1
 - estimating each marginal $\mathcal{P}(x|y)$ (upto an O(1) factor) requires $\propto \frac{1}{\mathcal{P}(x|y)}$ queries, where $\mathcal{P}(x|y)$ can be arbitrarily small,
 - \circ there are *n* of these marginals, total complexity –

$$\sum^{n} \frac{1}{\mathcal{P}(x|y)}$$

Solution :- we prove $\sigma \sim \mathcal{P} \implies$ in expectation all marginals are large i.e., $\Theta(1)$

Complexity $\mathcal{O}(n^2)$

Challenge 2

• sample $\sigma \sim \mathcal{P}$, estimate $\mathcal{Q}(\sigma)$

 $\circ~\sigma$ can have arbitrarily small marginals in ${\cal Q}$, even in expectation

 \blacktriangleright Solution :- we show that for every ${\cal D}$ there exists a distribution ${\cal D}'$ such that

- $\circ d_{TV}(\mathcal{D}, \mathcal{D}') \leq \varepsilon/10$
- \circ all marginals are large, i.e. $\mathcal{D}'(y|x) \in \Omega(\varepsilon/n)$
- $\circ \ \mathcal{D}'$ is easy to construct and sample from
- Finally estimate $d_{TV}(\mathcal{P}, \mathcal{Q}')$ upto $\pm 8\varepsilon/10$

Complexity $\mathcal{O}(n^3)$

Open Questions

Ongoing work

Q1 What is the query complexity of estimating TV distance?

- \circ In SUBCOND : $\mathcal{O}(n^3)$, $\Omega(n/\log(n))$ bound
- \circ In COND : $\mathcal{O}(n^3)$, $\Omega(\log(n))$ bound

The road to practicality

Q2 Scaling our estimator to verify properties of large distributions

- How far is a quantized model from the original?
- $\circ\,$ How far is a current checkpoint from the desired distribution?

Practical Implications

- Tests are in use to verify correctness of combinatorial samplers
- Bugs discovered in several samplers that were in use [CM, MPC, PM, BCCMSS,KMP]
- Insights used for designing better sampling algorithms [GSCM, SGCM]

Conclusion

 Graybox sampling strikes a happy medium between computational intractable whitebox sampling, and statistically intractable blackbox

Main takeaway:

- o theoretical insights useful in practical testing problems.
- o rich collection of practice inspired models left to be explored.
- o tight analysis, constants and instance optimality critical in practice

Check our tools out at: https://github.com/meelgroup/barbarik

Conclusion

 Graybox sampling strikes a happy medium between computational intractable whitebox sampling, and statistically intractable blackbox

Main takeaway:

- o theoretical insights useful in practical testing problems.
- o rich collection of practice inspired models left to be explored.
- $\circ\,$ tight analysis, constants and instance optimality critical in practice

Check our tools out at: https://github.com/meelgroup/barbarik

THANK YOU!