Parallel Algorithms for Local Problems in Sparse Graphs

Jara Uitto, Aalto University

The Plan

- MPC intro
 - LOCAL VS MPC
 - Locality Barrier
- Known Techniques
 - Sparsification and round compression
- New Techniques
 - Total space
 - Careful exponentiation

Massively Parallel Computing (MPC)

graph with n nodes and m edges

Massively Parallel Computing (MPC) Model

MPC vs Message Passing

LOCAL Message Passing

Local algorithms communicate along the edges of the input graph

MPC vs Message Passing

LOCAL: Map $N^T(v)$ to the output of v

Design pattern in MPC: Graph Exponentiation

Collect the *T*-hop neighborhoods in $O(\log T)$ rounds.

Simulate the LOCAL algorithm.

Node u_3 informs its 1-hop neighbors of its 1-hop topology.

Everyone learns their 2-hop neighborhood (construct G^2). Next, communicate 2-hop topology to neighbors in G^2

- By iterating the process, each node v can learn its i-hop neighborhood Nⁱ(v) in O(log i) MPC rounds.
- We require that $N^{i}(v)$ fits local memory; $|N^{i}(v)| \leq n^{\delta}$

MPC vs Message Passing

Design pattern: Graph Exponentiation

Collect the *T*-hop neighborhoods in $O(\log T)$ rounds.

Simulate the LOCAL algorithm.

$(\Delta + 1)$ -coloring

LOCAL: poly log log *n* rounds [GG'23]

MPC: $O(\log \log \log n)$ rounds [CDP'21]

In some cases, can do even better: Independent sets of size $\Omega(n/\Delta)$ [KKSS'20, CPD'21]:

```
LOCAL: \Omega(\log^* n)
MPC: O(1)
```


MIS and Maximal Matching

Maximal Matching

Maximal Independent Set

The Plan

- MPC intro
 - LOCAL VS MPC
 - Locality Barrier
- Known Techniques
 - Sparsification and round compression
- New Techniques
 - Total space
 - Careful exponentiation

Round Compression and Sparsification

 $O(\sqrt{\log \Delta} \cdot \log \log \Delta)$ rounds in total. Degree $d = 2^{\sqrt{\log \Delta}}$ and $d^{\sqrt{\log \Delta}} \le \Delta \le S$

Round Compression and Sparsification

MIS Sparsification Simplified (a lot):

- 1. Consider Ghaffari's algorithm that runs in $T = O(\log \Delta)$ rounds.
- 2. Simulate the algorithm on a sparse (low degree) subgraph for $\Omega(\sqrt{\log \Delta})$ rounds.
- 3. Repeat $O(\sqrt{\log \Delta})$ times.

 $O(\sqrt{\log \Delta} \cdot \log \log \Delta)$ rounds in total. Seems like a fundamental barrier

Black box application of exponentiation.

Shattering

MIS Sparsification Simplified (a lot): After $O(\sqrt{\log \Delta})$ iterations, the graph *shatters* into $O(\log n)$ sized components.

Post-shattering in MPC: gather the small components and simulate LOCAL.

The Plan

- MPC intro
 - LOCAL VS MPC
 - Locality Barrier
- Known Techniques
 - Sparsification and round compression
- New Techniques
 - Total space
 - Careful exponentiation

What to Do?

Locally Checkable Problems:

Almost all approaches rely, to some extent, on black-box exponentiation.

If each node gathers its t-hop neighborhood of size B, we need $O(B \cdot n)$ total space.

How to change the game?

Limit total space to linear?

MIS:

Smarter use of the sparsified graph?

What to Do?

At the least:

Come up with new ideas and algorithms.

Probably:

Learn ways to collect local data fast

The Plan

- MPC intro
 - LOCAL VS MPC
 - Locality Barrier
- Known Techniques
 - Sparsification and round compression

• New Techniques

- Total space
- Careful exponentiation

LCLs in the "Tiny" Regime

Theorem [CKP'19]:

Any LCL with deterministic locality $o(\log n)$ can be solved with a canonical (LOCAL) algorithm in $O(\log^* n)$ rounds.

Need a distance-k coloring

Get it through coloring of G^k in $O(\log^* n)$ rounds of LOCAL

Locally Checkable Labeling (LCL):

- 1. Solution can be checked locally
- 2. Constant degree graphs

Linial's Algorithm:

In one round, turn a *c*-coloring into $O(\Delta^2 \log c)$ -coloring.

Coloring Pseudo-Forests

Coloring of G^k

Since Δ and k are constants, can focus on 3-coloring pseudo-forests. Linial: enough to look at $O(\log^* n)$ ancestors.

Important: Focus on MPC issues.

A tempting approach: Gather $O(\log^* n)$ -neighborhood

Requires $\Omega(n \log^* n)$ total space!

Coloring a Directed Pseudo-Forest

Careful Exploration

Run just one round of Linial's - Turn log *n* bit IDs into log log *n* bit colors

Collect a vector of size $O(\log \log n \cdot \log^* n) = O(\log n)$ bits

Total space: O(n) words.

Issue:

Need to store $O(\log^* n)$ machine addresses of $\Omega(\log n)$ bits.

Coloring a Directed Pseudo-Forest

Careful Exploration

Run just one round of Linial's - Turn IDs into log log *n* -bit colors

Collect a vector of size $O(\log \log n \cdot \log^* n) = O(\log n)$ bits

Only store the address of farthest machine, $O(\log n)$ bits.

Total space: O(n) words.

LCLs in the "Tiny" Regime

Chicken vs Egg

Is there a difference between (?)

- 1. First creating a smart subgraph and doing naïve exponentiation
- Smart exponentiation on the 2. input graph

0

