Parallel Algorithms for Local Problems in Sparse Graphs

Jara Uitto, Aalto University

The Plan

- MPC intro
	- LOCAL VS MPC
	- Locality Barrier
- Known Techniques
	- Sparsification and round compression
- New Techniques
	- Total space
	- Careful exponentiation

Massively Parallel Computing (MPC)

graph with nodes and edges

Massively Parallel Computing (MPC) Model

MPC vs Message Passing

LOCAL Message Passing

Local algorithms communicate along the edges of the input graph

MPC vs Message Passing

LOCAL: Map $N^T(v)$ to the output of v **Design pattern in MPC: Graph Exponentiation**

Collect the T -hop neighborhoods in $O(\log T)$ **rounds.**

Simulate the LOCAL algorithm.

Node u_3 informs its 1-hop neighbors of its 1-hop topology.

Everyone learns their 2-hop neighborhood (construct G^2). Next, communicate 2-hop topology to neighbors in G^2

- By iterating the process, each node v can learn its i -hop neighborhood $N^i(v)$ in $O(\log i)$ MPC rounds.
- We require that $N^i(\nu)$ fits local memory; $|N^i(\nu)| \leq n^{\delta}$

MPC vs Message Passing

Design pattern: Graph Exponentiation

Collect the T **-hop neighborhoods in** $O(\log T)$ **rounds.**

Simulate the LOCAL algorithm.

$(\Delta + 1)$ -coloring

LOCAL: poly $\log \log n$ rounds [GG'23]

MPC: $O(\log \log \log n)$ rounds [CDP'21]

In some cases, can do even better: Independent sets of size $\Omega(n/\Delta)$ [KKSS'20, CPD'21]:

LOCAL: $\Omega(\log^* n)$ **MPC:** $O(1)$

MIS and Maximal Matching

Maximal Matching

Maximal Independent Set

The Plan

- MPC intro
	- LOCAL VS MPC
	- Locality Barrier
- Known Techniques
	- Sparsification and round compression
- New Techniques
	- Total space
	- Careful exponentiation

Round Compression and Sparsification

Round Compression and Sparsification

MIS Sparsification Simplified (a lot):

- 1. Consider Ghaffari's algorithm that runs in $T = O(\log \Delta)$ rounds.
- 2. Simulate the algorithm on a sparse (low degree) subgraph for $\Omega(\sqrt{\log \Delta})$ rounds.
- 3. Repeat $O(\sqrt{\log \Delta})$ times.

 $O(\sqrt{\log \Delta \cdot \log \log \Delta})$ rounds in total.

Seems like a fundamental barrier

Black box application of exponentiation.

Shattering

MIS Sparsification Simplified (a lot): After $O(\sqrt{\log \Delta})$ iterations, the graph *shatters* into $O(\log n)$ sized components.

Post-shattering in MPC: gather the small components and simulate LOCAL.

The Plan

- MPC intro
	- LOCAL VS MPC
	- Locality Barrier
- Known Techniques
	- Sparsification and round compression
- New Techniques
	- Total space
	- Careful exponentiation

What to Do?

Locally Checkable Problems:

Almost all approaches rely, to some extent, on black-box exponentiation.

If each node gathers its t -hop neighborhood of size B , we need $O(B \cdot n)$ total space.

How to change the game?

Limit total space to linear?

MIS:

Smarter use of the sparsified graph?

What to Do?

At the least:

Come up with new ideas and algorithms.

Probably:

Learn ways to collect local data fast

The Plan

- MPC intro
	- LOCAL VS MPC
	- Locality Barrier
- Known Techniques
	- Sparsification and round compression

• New Techniques

- Total space
- Careful exponentiation

LCLs in the "Tiny" Regime

Theorem [CKP'19]:

Any LCL with deterministic locality $o(\log n)$ can be solved with a canonical (LOCAL) algorithm in $O(log^* n)$ rounds.

Need a distance- k coloring

Get it through coloring of $G^{\bm{k}}$ in $O(log^* n)$ rounds of LOCAL

Locally Checkable Labeling (LCL):

- Solution can be checked locally
- 2. Constant degree graphs

Linial's Algorithm:

In one round, turn a c -coloring into $O(\Delta^2 \log c)$ -coloring.

Coloring Pseudo-Forests

Coloring of

Since Δ and k are constants, can focus on 3-coloring pseudo-forests. Linial: enough to look at $O(\log^* n)$ ancestors.

> **Important:** Focus on MPC issues.

A tempting approach: Gather $O(log^* n)$ -neighborhood

Requires $\Omega(n \log^* n)$ total space!

Coloring a Directed Pseudo-Forest

Careful Exploration

Run just one round of Linial's - Turn $\log n$ bit IDs into $\log \log n$ bit colors

```
Collect a vector of size O(\log \log n \cdot\log^* n) = O(\log n) <mark>bits</mark>
```
Total space: $O(n)$ words.

Issue:

Need to store $O(log^* n)$ machine addresses of $\Omega(\log n)$ bits.

Coloring a Directed Pseudo-Forest

Careful Exploration

Run just one round of Linial's - Turn IDs into $\log \log n$ -bit colors

Collect a vector of size $O(\log \log n \cdot$ $\log^* n) = O(\log n)$ <mark>bits</mark>

Only store the address of farthest machine, $O(\log n)$ bits.

Total space: $O(n)$ words.

LCLs in the "Tiny" Regime

Chicken vs Egg

Is there a difference between (?)

- 1. First creating a smart subgraph and doing naïve exponentiation
- 2. Smart exponentiation on the input graph

