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The Plan

• MPC intro
• LOCAL VS MPC

• Locality Barrier

• Known Techniques
• Sparsification and round compression

• New Techniques
• Total space

• Careful exponentiation



graph with 𝒏 nodes and 𝒎 edges

Massively Parallel Computing (MPC)



Massively Parallel Computing (MPC) Model
[Karloff, Suri, Vassilvitskii SODA’10]

𝑴 machines
𝑺 memory per machine
Total space 𝑴 ⋅ 𝑺

Low-space: 

𝑺 = 𝑶 𝒏𝜹 , 𝟎 ≤ 𝜹 < 𝟏 

No machine ever sees all the nodes!

Linear space: 
𝑺 = ෩𝑶 𝒏
A sketch fits onto a single machine



MPC vs Message Passing

LOCAL Message Passing 
Local algorithms 
communicate along the 
edges of the input graph



Design pattern in MPC: Graph Exponentiation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇  
rounds.

Simulate the LOCAL algorithm.

MPC vs Message Passing

LOCAL:
Map 𝑁𝑇(𝑣) to the output of 𝑣



Graph Exponentiation

Node 𝑢3 informs its 1-hop 
neighbors of its 1-hop topology.



Graph Exponentiation



Graph Exponentiation

Everyone learns their 2-hop neighborhood (construct 𝐺2).
Next, communicate 2-hop topology to neighbors in 𝐺2



Graph Exponentiation

• By iterating the process, each node 𝑣 can learn its 𝑖-hop 
neighborhood 𝑁𝑖(𝑣) in 𝑂(log 𝑖) MPC rounds.

• We require that 𝑁𝑖(𝑣) fits local memory; |𝑁𝑖 𝑣 | ≤ 𝑛𝛿



Design pattern: Graph Exponentiation

Collect the 𝑇-hop neighborhoods in 𝑶 log 𝑇  
rounds.

Simulate the LOCAL algorithm.

MPC vs Message Passing

Δ + 1 -coloring

LOCAL: poly log log 𝑛 rounds [GG’23]

MPC: 𝑂 log log log 𝑛  rounds [CDP’21]

In some cases, can do even better:
Independent sets of size Ω 𝑛/Δ  [KKSS’20, CPD’21]:

LOCAL: Ω(log∗ 𝑛) 
MPC: 𝑂 1



Locality Barrier

Local Algorithm
Runtime 𝑇 𝑛

Locality Barrier
Θ log 𝑇 𝑛

Beyond
o log 𝑇 𝑛

Exponentiation gets 
stuck here!

MIS and Maximal 
Matching?

Approximation



MIS and Maximal Matching

Maximal Matching

Maximal Independent Set

LOCAL [Gh’16]: O log Δ  

MPC [GU’19]: ෨𝑂 log Δ

Locality barrier: Θ log log Δ

??



The Plan

• MPC intro
• LOCAL VS MPC

• Locality Barrier

• Known Techniques
• Sparsification and round compression

• New Techniques
• Total space

• Careful exponentiation



Round Compression and Sparsification

MIS Sparsification Simplified (a lot):
1. Consider Ghaffari’s algorithm that runs in 

𝑇 = 𝑂 log Δ  rounds.
2. Simulate the algorithm on a sparse (low 

degree) subgraph for Ω log Δ  rounds.

3. Repeat 𝑂 log Δ  times.

Degree 𝑑 = 2 log Δ 

and 𝑑 log Δ ≤ Δ ≤ 𝑆

𝑂( log Δ ⋅ log log Δ) 

rounds in total.



Round Compression and Sparsification

MIS Sparsification Simplified (a lot):
1. Consider Ghaffari’s algorithm that runs in 

𝑇 = 𝑂 log Δ  rounds.
2. Simulate the algorithm on a sparse (low 

degree) subgraph for Ω log Δ  rounds.

3. Repeat 𝑂 log Δ  times.

Seems like a 
fundamental 
barrier

Black box 
application of 
exponentiation.

𝑂( log Δ ⋅ log log Δ) 

rounds in total.



Shattering

MIS Sparsification Simplified (a lot):

After 𝑂 log Δ  iterations, the graph 

shatters into 𝑂 log 𝑛  sized components.

Post-shattering in MPC: gather the small 
components and simulate LOCAL. Black box 

application of 
exponentiation.
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What to Do?

How to change the game?

Limit total space to linear?

Locally Checkable Problems:
Almost all approaches rely, to some 
extent, on black-box exponentiation.

If each node gathers its 𝑡-hop 
neighborhood of size 𝐵, we need 
𝑂 𝐵 ⋅ 𝑛  total space.

MIS:

Smarter use of the 
sparsified graph?



What to Do?

At the least:
Come up with new ideas and algorithms. 

Probably:
Learn ways to collect local data fast
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LCLs in the “Tiny” Regime

Theorem [CKP’19]:

Any LCL with deterministic locality 
𝑜 log 𝑛  can be solved with a canonical 
(LOCAL) algorithm in 𝑂 log∗ 𝑛  rounds.

Need a distance-𝑘 coloring

Get it through coloring of 𝐺𝑘 
in 𝑂 log∗ 𝑛  rounds of LOCAL

Locally Checkable Labeling (LCL):
1. Solution can be checked locally
2. Constant degree graphs

Linial’s Algorithm:
In one round, turn a 𝑐-coloring 
into 𝑂 Δ2 log 𝑐 -coloring.



Coloring Pseudo-Forests

Coloring of 𝑮𝒌

Since Δ and 𝑘 are constants, can 
focus on 3-coloring pseudo-forests.
Linial: enough to look at 𝑂 log∗ 𝑛  
ancestors.

Important: Focus on MPC 
issues.

A tempting approach:
Gather 𝑂 log∗ 𝑛 -neighborhood

Requires Ω 𝑛 log∗ 𝑛  total space!



Coloring a Directed Pseudo-Forest
Careful Exploration

Run just one round of Linial’s
 - Turn log 𝑛 bit IDs into log log 𝑛 bit 
colors

Collect a vector of size 𝑂(
)

log log 𝑛 ⋅
log∗ 𝑛 = 𝑂(log 𝑛) bits

Total space: 𝑂 𝑛  words.

Issue:
Need to store 𝑂(log∗ 𝑛) machine 
addresses of Ω log 𝑛  bits.



Coloring a Directed Pseudo-Forest

Careful Exploration

Run just one round of Linial’s
 - Turn IDs into log log 𝑛 -bit colors

Collect a vector of size 𝑂(
)

log log 𝑛 ⋅
log∗ 𝑛 = 𝑂(log 𝑛) bits

Only store the address of farthest 
machine, 𝑂(log 𝑛) bits.

Total space: 𝑂 𝑛  words.



LCLs in the “Tiny” Regime

Theorem [BBFLMOU’20]

For any LCL 𝑃 with locality 𝑜(log 𝑛), there is an MPC 
algorithm that solves 𝑃 in 𝑂(log log∗ 𝑛) rounds. 

Nice property:
Optimal in terms of 
memory parameters.

Nice property:
Runtime potentially 
optimal. 

Nice property:
Goes beyond naïve 
exponentiation.



Chicken vs Egg

Is there a difference between (?)
1. First creating a smart subgraph 

and doing naïve exponentiation

2. Smart exponentiation on the 
input graph
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