Parallel Algorithms for Local
Problems in Sparse Graphs

Jara Uitto, Aalto University

b - b

i
w| ][] [

b i

] [~ [®] [\




The Plan

* MPC intro
* LOCAL VS MPC
* Locality Barrier

* Known Techniques
 Sparsification and round compression

* New Techniques
* Total space
e Careful exponentiation
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Massively Parallel Computing (MPC)

graph with n nodes and m edges



Massively Parallel Computing (MPC) Model
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[Karloff, Suri, Vassilvitskii SODA’10]

M machines
S memory per machine
Total space M - S

Linear space:
S =0(n)
A sketch fits onto a single machine

Low-space:
Ss=0(n%),0<6<1
No machine ever sees all the nodes!




MPC vs Message Passing

LOCAL Message Passing
Local algorithms
communicate along the
edges of the input graph




MPC vs Message Passing

Design pattern in MPC: Graph Exponentiation

Collect the T-hop neighborhoods in O(log T)
rounds.

Simulate the LOCAL algorithm.

LOCAL:
Map N7 (v) to the output of v




Graph Exponentiation

Node u5 informs its 1-hop
neighbors of its 1-hop topology.
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Graph Exponentiation
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Graph Exponentiation
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Everyone learns their 2-hop neighborhood (construct G?).
Next, communicate 2-hop topology to neighbors in G?




Graph Exponentiation
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* By iterating the process, each node v can learn its i-hop
neighborhood N*'(v) in O(logi) MPC rounds.

* We require that N!(v) fits local memory; [N'(v)| < n®




MPC vs Message Passing

Design pattern: Graph Exponentiation

Collect the T-hop neighborhoods in O(log T)
rounds.

Simulate the LOCAL algorithm.

(A + 1)-coloring In some cases, can do even better:
Independent sets of size (n/A) [KKSS'20, CPD’21]:

LOCAL: polyloglogn rounds [GG’23]
LOCAL: (Q(log™n)
MPC: O (logloglogn) rounds [CDP’21] MPC:  0(1)




Locality Barrier

Local Algorithm

Exponentiation gets
stuck here!

Locality Barrier

Runtime T'(n)

" 0(ogT(n))

|

Beyond
o(logT(n))

Y

MIS and Maximal
Matching?

Approximation




MIS and Maximal Matching

LOCAL [Gh’16]:  O(log A) m

N Maximal Matching
MPC [GU’'19]:  O(,/logA)

27 ey Yo

Locality barrier: ©(loglogA)

Maximal Independent Set



The Plan

* Known Techniques
 Sparsification and round compression

* New Techniques
* Total space
e Careful exponentiation
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Round Compression and Sparsification

MIS Sparsification Simplified (a lot):
1. Consider Ghaffari’s algorithm that runs in

T = O(log A) rounds.
_ 94/log A
2. Simulate the algorithm on a sparse (low | | Degree d =2V

degree) subgraph for Q(w/log A) rounds. and dVl)eA < A< S

3. Repeat 0(,/10g A) times.

O(y/logA - loglogA)

rounds in total.




Round Compression and Sparsification

MIS Sparsification Simplified (a lot):

1. Consider Ghaffari’s algorithm that runs in
T = O0(log A) rounds.

2. Simulate the algorithm on a sparse (low

degree) subgraph for Q(,/log A) rounds.

3. Repeat 0(,/10g A) times.

N

Seems like a
fundamental
barrier

O(y/logA - loglogA)

rounds in total.

Black box
application of
exponentiation.




Shattering

MIS Sparsification Simplified (a lot):

After 0(,/10g A) iterations, the graph
shatters into O (log n) sized components.

Post-shattering in MPC: gather the small

components and simulate LOCAL. '\\ Black box

application of
exponentiation.




The Plan

* New Techniques
* Total space
e Careful exponentiation
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What to Do?

Locally Checkable Problems: How to change the game?
Almost all approaches rely, to some

extent, on black-box exponentiation. Limit total space to linear?
If each node gathers its t-hop ‘
neighborhood of size B, we need MIS:

O(B - n) total space.

Smarter use of the
sparsified graph?




What to Do?

At the least:
Come up with new ideas and algorithms.

Probably:
Learn ways to collect local data fast




The Plan

* New Techniques

e Careful exponentiation
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LCLs in the “Tiny” Regime

Theorem [CKP’19]: Locally Checkable Labeling (LCL):
1. Solution can be checked locally
Any LCL with deterministic locality 2. Constant degree graphs

o(logn) can be solved with a canonical
(LOCAL) algorithm in O(log* n) rounds.

I

Need a distance-k coloring

Get it through coloring of G*
in O(log™ n) rounds of LOCAL




Coloring Pseudo-Forests A tempting approach:
Gather O(log* n)-neighborhood

COlOring Of Gk O_dc)—_}Hs_——ggw—&O“———Jo-—D e

Since A and k are constants, can
focus on 3-coloring pseudo-forests.
enough to look at O(log™ n)

Requires (0(n log* n) total space!

ancestors. g—0—30———30——0——0> = =
ey (P22 —re

Important: Focus on MPC e
issues. W




Coloring a Directed Pseudo-Forest

Careful Exploration
Run just one round of Linial’s
- Turn logn bit IDs into log log n bit

colors

Collect a vector of size O(loglogn -
log*n) = 0(logn) bits

Total space: O(n) words.

Issue:
Need to store O(log™ nn) machine
addresses of Q1(log n) bits.




Coloring a Directed Pseudo-Forest

Careful Exploration

Run just one round of Linial’s
- Turn IDs into log log n -bit colors

Collect a vector of size O(loglogn -

log™n) = O(logn) bits

Only store the address of farthest
machine, O (log n) bits.

Total space: O (n) words.
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LCLs in the “Tiny” Regime

Theorem [BBFLMOU’20]

For any LCL P with locality o(logn), there is an MPC
algorithm that solves P in O(loglog™ n) rounds.

el e

Nice property: Nice property: Nice property:
Optimal in terms of Goes beyond naive Runtime potentially
memory parameters. exponentiation. optimal. .




Chicken vs Egg

Is there a difference between (?)
1. First creating a smart subgraph
and doing naive exponentiation

2. Smart exponentiation on the
input graph
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