Property Testing with Incomplete or Manipulated Inputs

Sofya Raskhodnikova

Based on joint works with:

Iden

Kalemaj

Omri Ben-Eliezer

Esty Kelman

Nithin Varma

Goal: Fundamental Understanding of Sublinear Computation

Can we make our computations robust to adversarial online data manipulations (specifically, erasures or corruptions)?

Typical access to data

• The erasures are performed **adversarially** and **online**, in response to actions of the algorithm

Worst-case analysis circumvents the need to model complex situations

• Oracle knows the description of the algorithm, but not its random coins

Online corruption oracle is defined analogously, but it modifies the characters instead of erasing them.

Motivating scenarios

- Individuals request that their data be removed from a dataset
	- They are prompted to restrict access to their data after noticing an inquiry into their or other's data (online)
	- General Data Protection Regulation (GDPR) stipulates that data subjects can withdraw previously given consent whenever they want, and their decision must be honored.
- In a criminal investigation / fraud detection setting, a suspect reacts by erasing data after some of their records are pulled by authorities
- In legal setting, an entity is served a subpoena; they can destroy related evidence not involved in the subpoena
- In online services, data (such a routes provided by GPS) can change in a complicated way in response to actions of the user

Property testing

Two objects are at distance ε = they differ in an ε fraction of places

Property testing: offline modifications models

Two objects are at distance ε = they differ in an ε fraction of places

Property testing: offline modifications models

Two objects are at distance ε = they differ in an ε fraction of places

Plan: Results in the online-erasures model

- Classical properties that exhibit the extremes in terms of the query complexity
- Separations between the models
- A more nuanced version of the online model
- Connection to Maker-Breaker games

Results in the online erasure model: the extremes

• Some properties can be tested with the *same* query complexity as in the standard model (for constant erasure budget t)

[Kalemaj Raskhodnikova Varma 22, Minzer Zheng 24, Ben-Eliezer Kelman Meir Raskhodnikova 24]:

- linearity of functions and, more generally, low degree (being of degree at most d)
	- pinning down dependence on t in the query complexity is tricky
- Some properties are *impossible* to test, even for $t = 1$ [Kalemaj Raskhodnikova Varma 22]:
	- sortedness and the Lipschitz property of arrays
- Even the simplest tests (i.e., those that sample uniformly and independently at random) cannot necessarily be made resilient to online erasures, even with some loss in query complexity
- The structure of violations to the property plays a role in determining testability

Linearity testing

A function $f: \{0,1\}^n \rightarrow \{0,1\}$ is linear

- if $f(x) = \sum_{S \subseteq [n]} x[i]$ for some set S of coordinates.
- Equivalently, if $f(x) + f(y) = f(x + y)$ for all x, y in domain.

Standard Model Online-Erasures Model [Blum Luby Rubinfeld 93, Bellare Coppersmith Hastad Kiwi Sudan '96] Θ 1 $\mathcal{E}_{\mathcal{E}}$ queries [Kalemaj Raskhodnikova Varma 22, Ben-Eliezer Kelman Meir Raskhodnikova 24] Θ 1 $\mathcal{E}_{\mathcal{E}}$ $+ \log t$ queries BLR Tester: • Sample $x, y \sim \{0, 1\}^n$ u.i.r. • Query f on x , y , and $x + y$ Reject if $f(x) + f(y) \neq f(x + y)$. Thm. If $f: \{0,1\}^n \rightarrow \{0,1\}$ is ε -far from linear then an $\Omega(\varepsilon)$ fraction of pairs (x, y) violate linearity. Issue with standard linearity tester: Query x. Receive $f(x)$. Query y. Receive $f(y)$. Oracle erases $x + y$. Thm. If $f: \{0,1\}^n \rightarrow \{0,1\}$ is ε -far from linear then, for all even k , an $\Omega(k\varepsilon)$ fraction of k-tuples $(x_1, x_2, ..., x_k)$ violate linearity. $f(x_1) + \cdots + f(x_k)$ ≠ $f(x_1 + \cdots + x_k)$ More options for the algorithm!

computations

are over \mathbb{F}_2

1. Query
$$
k = \Theta\left(\frac{1}{\epsilon} + \log t\right)
$$
 points $x_1, \ldots, x_k \in \{0, 1\}^n$ u.i.r.

2. Sample a uniformly random $S \subset [k]$ of even size

3. Query
$$
y = \sum_{i \in S} x_i
$$

4. Reject if $\sum_{i \in S} f(x_i) \neq f(y)$ (and all points are non-erased)

Example: erasure budget $t = 2$ $k = 4$

 $\Theta(2^k)$ options for the last query with our structural theorem instead of $\Theta(k^2)$ with BLR

 \mathcal{X}_{2} x_1 $\mathcal{X}_{\mathcal{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{A}}}}}}}$ χ_3

Query a reserve of k points

Takeaways from the analysis of linearity tester

Structural theorem

If $f: \{0,1\}^d \rightarrow \{0,1\}$ is ε -far from linear then, for all even k , an $\Omega(k\varepsilon)$ fraction of k-tuples $(x_1, x_2, ..., x_k)$ violate linearity.

$$
f(x_1) + \dots + f(x_k)
$$

$$
\neq
$$

$$
f(x_1 + \dots + x_k)
$$

- Proved via Fourier analysis
- Gives a new optimal linearity tester in the standard model:

Query a k-tuple $(x_1, ..., x_k)$, where $k = \Theta$ 1 ϵ *and even, and check if it violates linearity*

Non-erasure lemma

The tester is unlikely to query an erased point.

- Intuition for the proof: there are many options for the last query.
- This lemma allows us to show that our linearity tester is online-corruption-resilient

Theorem

 t is the erasure budget

 χ_{2}

 $x_1 + x_2 + x_3$

 x_1 , $\left(-\frac{x_1}{1} - \frac{x_3}{1} \right)$, x_3

 $x_1 + x_2$

Every online-erasure-resilient linearity tester must make $\Omega(\log t)$ queries.

Proof idea (can be made formal via Yao's minimax principle adapted to our setting):

- Oracle \mathcal{O} : erase t sums of previous queries of the tester (in some specific order)
- If tester makes $q < log_2 t$ queries, oracle can erase all their ($< 2^q$) sums
- Tester only sees function values on linearly independent vectors from $\{0,1\}^n$.
- The view of the tester is the same whether the input is a random linear function or a random function
- A random function is far from linear.

Question: Could we have used only pair queries in the tester, like in BLR?

Answer: Then the dependence on t would be at best t , by a similar argument

Low-degree testing

 \sim \sim

A function $f: \{0,1\}^n \to \{0,1\}$ has degree at most d if it can be expressed as a polynomial of degree at most d in variables $x[1], ..., x[n]$.

 $x_1 + x_2 + x_3$

Impossibility of testing sortedness

• An array $f: [n] \to \mathbb{N}$ is sorted if $f(x) \leq f(y)$ for all $x < y$.

- This array is $\frac{1}{2}$ 2 -far from sorted, but an online tester will see no violations
- Here all violations are disjoint
- In linearity and low-degree, violations overlap with each other

Plan: Results in the online-erasures model

- \checkmark Classical properties that exhibit the extremes in terms of the query complexity
	- linearity, low-degree, sortedness
- Separations between the models
- A more nuanced version of the online model
- Connection to Maker-Breaker games

Comparison: Relationships between offline testing models

Containments are strict:

- [Fischer Fortnow 05]: standard vs. tolerant
- [Dixit Raskhodnikova Thakurta Varma 16]: standard vs. erasure-resilient [Ben-Eliezer Fischer Levi Rothblum 20]: improvements in the gap
- [Raskhodnikova Ron-Zewi Varma 19]: erasure-resilient vs. tolerant

Sortedness is testable with offline erasures, but not with online erasures.

Is the online-erasures model strictly harder?

Answer: **No**, there is a **query separation** in the other direction.

Theorem on query separation

For every $\alpha \in (0,1)$ and $t \in \mathbb{N}$, there exists a property P on n-bit strings such that

- $-$ P is **online**-erasure-resiliently testable (with t erasures per query) with a constant number of queries.
- $-$ Every **offline**-erasure-resilient tester for $\mathcal P$ that works with α fraction of corruptions needs $\widetilde{\Omega}\left(\frac{n}{t}\right)$ \boldsymbol{t} queries.

[Kelman Linder Raskhodnikova]

Online testers we saw use more randomness than offline testers for the same property.

Is it intrinsic?

Answer: **Yes**, there is a **randomness separation**

In the offline models, only a logarithmic number of random bits is needed: [Goldreich Sheffet 10] Any randomized oracle machine that solves a promise problem on input in $[k]^n$ can be simulated using $\log n + \log \log k + O(1)$ random bits.

Theorem on randomness separation

For every $\alpha \in (0,1)$ and $t \in \mathbb{N}$, there exists a property P which is

- testable with the same query complexity in the online and offline models
- $O(log n)$ random bits are sufficient **offline**, but $\Omega(n^c \log(t+1))$ random bits are needed **online** (for some constant c)

Plan: Results in the online-erasures model

- \checkmark Classical properties that exhibit the extremes in terms of the query complexity
	- linearity, low-degree, sortedness
- \checkmark Separations between the models
	- query separation and randomness separation
- A more nuanced version of the online model
- Connection to Maker-Breaker games

More nuanced version of the online erasure model Meir Raskhodnikova 24] [Ben-Eliezer Kelman

• Overcomes the impossibility results in [Kalemaj Raskhodnikova Varma 22]

Considers

- *batch queries* (with erasures performed only between the batches)
- rates of erasure less than 1 (e.g., every other query)
- different types of adversarial strategies:

fixed-rate (as in [KRV22]) vs. *budget-managing* (the adversary can postpone erasures arbitrarily)

Phase transitions for local properties

A property P of sequences $f: [n] \to \mathbb{R}$ is local if there exists a family $\boldsymbol{\mathcal{F}}$ of forbidden pairs $(a,b)\in\mathbb{R}^2$ such that $f \in \mathcal{P} \Leftrightarrow \forall i \in [n-1] \forall (a, b) \in \mathcal{F}$: $(f(i), f(i+1)) \neq (a, b)$

Examples

- Sortedness: $\mathcal{F} = \{(a, b) : a > b\}$
- Lipschitz: $\mathcal{F} = \{(a, b) : |a b| > 1\}$

[Ben-Eliezer 19], generalizing previous work:

All local properties are testable with O log εn $\mathcal{E}_{\mathcal{E}}$ queries in the standard model.

Phase transitions for local properties

A property P of sequences $f: [n] \to \mathbb{R}$ is local if

there exists a family $\boldsymbol{\mathcal{F}}$ of forbidden pairs $(a,b)\in\mathbb{R}^2$ such that

 $f \in \mathcal{P} \Leftrightarrow \forall i \in [n-1] \forall (a, b) \in \mathcal{F}$: $(f(i), f(i+1)) \neq (a, b)$

• Phase transition results hold both for erasures and for corruptions

Plan: Results in the online-erasures model

- \checkmark Classical properties that exhibit the extremes in terms of the query complexity
	- linearity, low-degree, sortedness
- \checkmark Separations between the modelsmodels
	- query separation and randomness separation
- \checkmark A more nuanced version of the online models
	- fixed-rate vs. budget-managing adversary; rates of erasure; batch queries
- Connection to Maker-Breaker games

Connection to Maker-Breaker games

[Ben-Eliezer Kelman Meir Raskhodnikova 24]

- Positional games are central in combinatorics (see textbooks[Beck08, Hefetz Krivelevich Stojaković Szabó 14])
-
- Maker-Breaker games are a prominent and widely investigated example.

An $(s:t)$ Maker-Breaker game

is defined by a finite set X of board elements and a family $W \subseteq 2^X$ winning sets.

- Two players, Maker and Breaker, take turns claiming unclaimed elements of X .
- Maker claims s elements on each turn; Breaker claims t
- Maker wins if she manages to claim all elements of a winning set; o.w. Breaker wins

Connection to Maker-Breaker games

An $(s:t)$ Maker-Breaker game

is defined by a finite set X of board elements and a family $W \subseteq 2^X$ winning sets.

- Two players, Maker and Breaker, take turns claiming unclaimed elements of X .
- Maker claims s elements on each turn; Breaker claims t
- Maker wins if she manages to claim all elements of a winning set; o.w. Breaker wins
- In online testing:
	- algorithm is the Maker, adversary is the Breaker
	- the domain of the input function is the set of board elements
	- witness are winning sets.
- A big complication is that the tester does not know in advance which sets are in W .
- A prerequisite for designing an online tester:
	- identify the general structure of the sets in W
	- and a winning strategy for Maker.

Online-erasures model motivates studying new Maker-Breaker games

Plan: Results in the online-erasures model

- \checkmark Classical properties that exhibit the extremes in terms of the query complexity
	- linearity, low-degree, sortedness
- \checkmark Separations between the modelsmodels
	- query separation and randomness separation
- \checkmark A more nuanced version of the online modelmodels
	- fixed-rate vs. budget-managing adversary; batch queries
- ✓ Connection to Maker-Breaker games

Open questions

- Online manipulation-resilient testers for specific properties
- An investigation of the threshold for t , the rate of erasures, in phase transitions
	- What is t_{max} for which a given property is testable?
	- What is the query complexity as we approach t_{max} ?
- Some general characterization of properties testable with online erasures?
	- Maybe, in terms of the structure of witnesses
- More techniques for the online-corruptions model?
	- All testability results so far rely on algorithms that are unlikely to see a manipulated point
- Online-erasure-resilient algorithms for tasks other than property testing?