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[Bansal, Blum, Chawla, 2002, 2004]

Correlation clustering
Input:

Goal:

A clustering that aligns with f
as much as possible.

dissimilar similar

Application:

• Aggregating accounts
• Semi-supervised learning

Cost = 2 + 1
shoes

n objects

Similarity function f
f(a, b) → {similar, dissimilar}



History (an overview)

• [Bansal, Blum, Chawla, 2002, 2004]
• [Charikar, Guruswami, Wirth, 2003] – APX-hard, 4 approximation
• [Demaine, Emanuel, Fiat, Immorlica, 2006] – O(log n) approximation for weighted

• …

• [Ailon, Charikar, Newman, 2005, 2008] – 3 approximation, Pivot
• [Chawla, Makarychev, Schramm, Yaroslavtsev, 2014] – 2.06 approximation
• [Cohen-Addad, Lee, Newman, 2022] – 1.994 approximation
• [Cohen-Addad, Lee, Li, Newman, 2023] – 1.73 approximation
• [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024] – 1.437 approximation



n = number of vertices in the input graph
∆ = maximum vertex degreeHistory (big data regimes)

Approx. Model Complexity References

3 Centralized 𝑂(𝑚) [Ailon, Charikar, Newman, 2005]

3 MPC 𝑂 log2 𝑛 [Blelloch, Fineman, Shun, 2012]

3+ε MPC 𝑂(log 𝑛 log ∆) [Chierichetti, Dalvi, Kumar, 2014]

3 MPC 𝑂(log 𝑛) [Fischer, Noever, 2018]

3 MPC 𝑂(log ∆ log log 𝑛) [Cambus, Choo, Miikonen, Uitto, 2021]

~700 MPC 𝑂(1) [Cohen-Addad, Lattanzi, M, Norouzi-Fard, Parotsidis, Tarnawski, 2021]

3+ε MPC 𝑂(1/𝜖) [Behnezhad, Charikar, Ma, Tan, 2022]

3+ε MPC 𝑂(1)* [Cambus, Kuhn, Lindy, Pai, Uitto, 2023]

3+ε MPC 𝑂(log 1/𝜖) this work

1.846 MPC 𝑂(1) [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]

3+ε LCA
∆

𝑂
1
𝜖

[Behnezhad, Charikar, Ma, Tan, 2022]

3+ε LCA 𝑂(∆/𝜖) this work

3+ε Dynamic 𝑂(log2 𝑛 log2 Δ) [Behnezhad, Derakhshan, Hajiaghayi, Stein, Sudan, 2019]

3+ε Dynamic 𝑂(log4 𝑛) [Chechik, Zhang, 2019]

3+ε Dynamic 𝑂(1/𝜖) this work

2.997 Dynamic poly log 𝑛 [Behnezhad, Charikar, Cohen-Addad, Ghafari, Ma, 2024]

Not complete picture.
We will return to this.



Recent History 
in semi-streaming single pass

Approx. References

5 [Behnezhad, Charikar, Ma, Tan, 2023]

3+ε [Cambus, Kuhn, Lindy, Pai, Uitto ,2023]

3+ε [Chakrabarty, Makarychev, 2023]

3+ε this work



Outline

• Pivot [Ailon, Charikar, Newman, 2005]

• Our approach (Pruned Pivot)

• Implementations 

• Implications on Maximal Independent Set

• Analysis
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Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

1. Let π be a random ordering of V
2. For i = 1 to n

a. If π(i) is not clustered
a. Cluster π(i) and its un-clustered 

neighbors together.

n = number of vertices in the input graph

Claim: In expectation, Pivot outputs a 3-approximate correlation clustering.
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Pivot – Recursive Query View

Vertex v is a pivot iff 
none of its smaller-π-value neighbors is a pivot.

9

3 4

1
3

1

[Behnezhad, Charikar, Ma, Tan, 2022]
Tree-depth = O(1/ε)

+
[Chakrabarty, Makarychev, 2023]
Vertex-width = O(1/ε)

Tree-size = 1/εO(1/ε)

If the query tree for v has size greater 
than 1/ε, make v a singleton cluster.

Gives a 3+O(ε) approximation.

Our approach (Pruned Pivot)
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Pruned Pivot:
Why to expect it works?
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If the query tree for v has size greater 
than 1/ε, make v a singleton cluster.

Gives a 3+O(ε) approximation.

Our approach (Pruned Pivot)

𝑤

not cut by Pivot,
but cut by Pruned Pivot
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pivot

pivot

pivot

pivot

Charge the blue to the red 
query-edges cut by Pivot!
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LCA(v)

1. Perform LCA queries from v.
2. If the number of queries exceeds 1/ε, make v singleton.



MPC

1. Reduce the degree of each vertex to (at most) 1/ε.
2. Collect 1/ε-hop neighborhood of each vertex.
3. Simulate the algorithm for each vertex locally.



Dynamic

1. An edge is in expectation in O(1) many query trees.
2. k-highest-ranked neighbors can be accessed in expected 

O(k) time.



Dynamic

1. An edge is in expectation in O(1) many query trees.
2. k-highest-ranked neighbors can be accessed in expected 

O(k) time.

TBC (To Be Convinced)

1,
𝑛

𝑑 𝑣

Bucket 1

𝑛

𝑑 𝑣
, 2

𝑛

𝑑 𝑣

Bucket 2

𝑑 𝑣 − 1
𝑛

𝑑 𝑣
, 𝑛

Bucket 𝑑(𝑣)…
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𝑂  Δ Expectation from a random vertex this work
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𝚫 = maximum degree
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Setup

1

?

4
?

?

?
3

2?

pivot

pivot = in MIS

settled

settled

pivotsettled
settled

pivot

1. Reveal ranks one at the time.
2. How large is the in-tree to a vertex?

How many times an edge is queried?

v can be settled before its rank is revealed.
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1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?
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t = 6
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c
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?

?
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Why is this not an issue in the entire process?

It is unlikely e will query c in the first place!

Idea:
• Condition on this state
• Ask how many e’s (non-settled) neighbors 

will query e at time t = 10, 11, …, n.

𝑤1

𝑤𝑘

𝑤2

𝑤3
pivot 

(in MIS)

settled

Very likely that 𝑤1 or 𝑤2 or 𝑤3 or … or 𝑤𝑘 
will have rank higher than c.
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non-settled

1. If among 𝑐, 𝑒, 𝑤1, 𝑤2, … , 𝑤𝑘, the rank of 
c is set next, then:
• new Query path 𝑒 → 𝑐 → 𝑏 → 𝑎
• Potentially many 𝑤𝑖-es query 𝑒 →

𝑐 → 𝑏 → 𝑎; new Dangerous query 
paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2.  

𝑤1

𝑤𝑘

𝑤2

𝑤3



Formalizing

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?
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paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2. Otherwise, e never queries c! (GREAT)
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paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2. Otherwise, e never queries c! (GREAT)
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•  
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• Potentially many 𝑤𝑖-es query 𝑒 →

𝑐 → 𝑏 → 𝑎; new Dangerous query 
paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2. Otherwise, e never queries c! (GREAT)

𝑤1

𝑤𝑘
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𝑤3

• With probability 
1

𝑘+1
: 

+1 query path and 𝑘 Dangerous query paths
• With probability 1: -1 Dangerous query path
• 2 * #[Dangerous query paths for (a, b)] 

+ #[Query paths for (a, b)] is a supermartingale.
•  
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2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?
Query path

non-settled

1. If among 𝑐, 𝑒, 𝑤1, 𝑤2, … , 𝑤𝑘, the rank of 
c is set next, then:
• new Query path 𝑒 → 𝑐 → 𝑏 → 𝑎
• Potentially many 𝑤𝑖-es query 𝑒 →

𝑐 → 𝑏 → 𝑎; new Dangerous query 
paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2. Otherwise, e never queries c! (GREAT)

𝑤1

𝑤𝑘

𝑤2

𝑤3

• With probability 
1

𝑘+1
: 

+1 query path and 𝑘 Dangerous query paths
• With probability 1: -1 Dangerous query path
• 2 * #[Dangerous query paths for (a, b)] 

+ #[Query paths for (a, b)] is a supermartingale.
• At t = 0, that sum equals 2 for each edge (a, b).



Open questions

Other applications of this analysis.

MIS in 𝑝𝑜𝑙𝑦 Δ LCA queries in expectation 
from any vertex.
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