

Sublinear algorithms for correlation clustering

Slobodan Mitrović (UC Davis)

Mina Dalirrooyfard Morgan Stanley Research

Konstantin Makarychev Northwestern University

[Bansal, Blum, Chawla, 2002, 2004]

Input:

n objects Similarity function *f f(a, b) → {similar, dissimilar}*

[Bansal, Blum, Chawla, 2002, 2004]

Input:

n objects Similarity function *f f(a, b) → {similar, dissimilar}*

[Bansal, Blum, Chawla, 2002, 2004]

Input: Similarity function *f f(a, b) → {similar, dissimilar}* Goal: A clustering that aligns with *f* n objects

as much as possible.

[Bansal, Blum, Chawla, 2002, 2004]

Input: Goal: A clustering that aligns with *f* n objects Similarity function *f f(a, b) → {similar, dissimilar}*

as much as possible.

[Bansal, Blum, Chawla, 2002, 2004]

Input: Goal: A clustering that aligns with *f as much as possible*. n objects Similarity function *f f(a, b) → {similar, dissimilar}*

Application:

• Aggregating accounts

[Bansal, Blum, Chawla, 2002, 2004]

Input: Goal: A clustering that aligns with *f* n objects Similarity function *f f(a, b) → {similar, dissimilar}*

as much as possible.

Application:

- Aggregating accounts
- Semi-supervised learning

shoes

History (an overview)

- [Bansal, Blum, Chawla, 2002, 2004]
- [Charikar, Guruswami, Wirth, 2003] APX-hard, 4 approximation
- [Demaine, Emanuel, Fiat, Immorlica, 2006] O(log n) approximation for weighted

\bullet …

- [Ailon, Charikar, Newman, 2005, 2008] 3 approximation, **Pivot**
- [Chawla, Makarychev, Schramm, Yaroslavtsev, 2014] 2.06 approximation
- [Cohen-Addad, Lee, Newman, 2022] 1.994 approximation
- [Cohen-Addad, Lee, Li, Newman, 2023] 1.73 approximation
- [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024] 1.437 approximation

$$

Recent History in semi-streaming single pass

Outline

- Pivot [Ailon, Charikar, Newman, 2005]
- Our approach (Pruned Pivot)
- Implementations
- Implications on Maximal Independent Set
- Analysis

n = number of vertices in the input graph

Pivot

Input: G = (V, E)

n = number of vertices in the input graph

Pivot

Input: G = (V, E)

1. Let π be a random ordering of V

n = number of vertices in the input graph

Pivot

Input: $G = (V, E)$

- 1. Let π be a random ordering of V
- 2. For $i = 1$ to n
	- a. If $\pi(i)$ is not clustered
		- a. Cluster $\pi(i)$ and its un-clustered neighbors together.

n = number of vertices in the input graph

Pivot

Input: $G = (V, E)$

- 1. Let π be a random ordering of V
- 2. For $i = 1$ to n
	- a. If $\pi(i)$ is not clustered
		- a. Cluster $\pi(i)$ and its un-clustered neighbors together.

 $edge =$ similar no-edge = dissimilar

n = number of vertices in the input graph

Pivot

Input: $G = (V, E)$

- 1. Let π be a random ordering of V
- 2. For $i = 1$ to n
	- a. If $\pi(i)$ is not clustered
		- a. Cluster $\pi(i)$ and its un-clustered neighbors together.

n = number of vertices in the input graph

Pivot

Input: $G = (V, E)$

- 1. Let π be a random ordering of V
- 2. For $i = 1$ to n
	- a. If $\pi(i)$ is not clustered
		- a. Cluster $\pi(i)$ and its un-clustered neighbors together.

 $edge =$ similar no-edge = dissimilar

n = number of vertices in the input graph

Pivot

Input: $G = (V, E)$

- 1. Let π be a random ordering of V
- 2. For $i = 1$ to n
	- a. If $\pi(i)$ is not clustered
		- a. Cluster $\pi(i)$ and its un-clustered neighbors together.

8 3 9 7 2 no-edge = dissimilar **pivot pivot**

edge = similar

Claim: In expectation, Pivot outputs a 3-approximate correlation clustering.

Vertex v is a pivot **iff** none of its smaller-π-value neighbors is a pivot. 1 5 6 8 3 4 9 7 $\overline{}$ edge = similar no-edge = dissimilar

Vertex v is a pivot **iff** none of its smaller-π-value neighbors is a pivot.

? 1 5 6 8 3 4 9 7 $\overline{}$ edge = similar no-edge = dissimilar

Vertex v is a pivot **iff** none of its smaller-π-value neighbors is a pivot.

Our approach (Pruned Pivot)

If the query tree for v has size greater than $1/\varepsilon$, make v a singleton cluster. Gives a $3+O(\varepsilon)$ approximation.

Vertex v is a pivot **iff** none of its smaller-π-value neighbors is a pivot.

[Behnezhad, Charikar, Ma, Tan, 2022] **Tree-depth = O(1/ε) +** [Chakrabarty, Makarychev, 2023] **Vertex-width = O(1/ε)**

Tree-size = 1/ε O(1/ε)

Our approach (Pruned Pivot)

If the query tree for v has size greater than $1/\varepsilon$, make v a singleton cluster. Gives a $3+O(\varepsilon)$ approximation.

Pruned Pivot: Why to expect it works?

Our approach (Pruned Pivot)

If the query tree for v has size greater than $1/\varepsilon$, make v a singleton cluster. Gives a $3+O(\epsilon)$ approximation.

Pruned Pivot: Why to expect it works?

Our approach (Pruned Pivot)

If the query tree for v has size greater than $1/\varepsilon$, make v a singleton cluster. Gives a $3+O(\epsilon)$ approximation.

Outline

- Pivot [Ailon, Charikar, Newman, 2005]
- Our approach (Pruned Pivot)
- Implementations
- Implications on Maximal Independent Set
- Analysis

LCA(v)

1. Perform LCA queries from v.

2. If the number of queries exceeds 1/ε, make v singleton.

MPC

- 1. Reduce the degree of each vertex to (at most) $1/\varepsilon$.
- 2. Collect 1/ε-hop neighborhood of each vertex.
- 3. Simulate the algorithm for each vertex locally.

Dynamic

- 1. An edge is in expectation in O(1) many query trees.
- 2. k-highest-ranked neighbors can be accessed in expected O(k) time.

Dynamic

- 1. An edge is in expectation in O(1) many query trees.
- 2. k-highest-ranked neighbors can be accessed in expected O(k) time.

TBC (To Be Convinced)

Outline

- Pivot [Ailon, Charikar, Newman, 2005]
- Our approach (Pruned Pivot)
- Implementations
- Implications on Maximal Independent Set
- Analysis

Pivot = Randomized greedy algorithm for MIS

Pivot = Randomized greedy algorithm for MIS

How many **LCA queries** needed to decide whether v is a pivot, i.e., whether v is in MIS?

Pivot = Randomized greedy algorithm for MIS

How many **LCA queries** needed to decide whether v is a pivot, i.e., whether v is in MIS?

 Δ = maximum degree $\overline{\Delta}$ = average degree

Pivot = Randomized greedy algorithm for MIS

How many **LCA queries** needed to decide whether v is a pivot, i.e., whether v is in MIS?

 Δ = maximum degree $\overline{\Delta}$ = average degree

Pivot = Randomized greedy algorithm for MIS

How many **LCA queries** needed to decide whether v is a pivot, i.e., whether v is in MIS?

 Δ = maximum degree $\overline{\Delta}$ = average degree

Outline

- Pivot [Ailon, Charikar, Newman, 2005]
- Our approach (Pruned Pivot)
- Implementations
- Implications on Maximal Independent Set
- Analysis

pivot = in MIS

1. Reveal ranks one at the time.

pivot = in MIS

pivot = in MIS

- 1. Reveal ranks one at the time.
- 2. How large is the **in-tree** to a vertex? How many times **an edge** is queried?

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?

 $t = 0$

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?

 $t = 3$

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?

 $t = 5$

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?

 $t = 9$

 $t = 9$

v can be settled **before** its rank is revealed.

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?

Idea:

- Condition on this state
- Ask how many e's (non-settled) neighbors will query e at time $t = 10, 11, ..., n$.

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?

Idea:

- Condition on this state
- Ask how many e's (non-settled) neighbors will query e at time $t = 10, 11, ..., n$.

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?

Idea:

- Condition on this state
- Ask how many e's (non-settled) neighbors will query e at time $t = 10, 11, ..., n$.

Why is this not an issue in the entire process?

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?

Idea:

- Condition on this state
- Ask how many e's (non-settled) neighbors will query e at time $t = 10, 11, ..., n$.

Why is this not an issue in the entire process?

It is **unlikely** e will query c in the first place!

An attempt (and an idea)

1. Reveal ranks one at the time.

2. How many times **edge (a, b)** is queried?

Idea:

- Condition on this state
- Ask how many e's (non-settled) neighbors will query e at time $t = 10, 11, ..., n$.

Why is this not an issue in the entire process?

It is **unlikely** e will query c in the first place!

Very likely that w_1 or w_2 or w_3 or ... or w_k will have rank **higher** than c.

An attempt (and an idea)

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?

Idea:

- Condition on this state
- Ask how many e's (non-settled) neighbors will query e at time $t = 10, 11, ..., n$.

Why is this not an issue in the entire process?

It is **unlikely** e will query c in the first place!

Very likely that w_1 or w_2 or w_3 or ... or w_k will have rank **higher** than c.

2. How many times **edge (a, b)** is queried?

2. How many times **edge (a, b)** is queried?

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?
- 1. If among c, e, w_1 , w_2 , ..., w_k , the rank of c is set next, then:
	- new Query path $e \rightarrow c \rightarrow b \rightarrow a$
	- Potentially many w_i -es query $e \rightarrow$ $c \rightarrow b \rightarrow a$; new Dangerous query paths $w_i \rightarrow e \rightarrow c \rightarrow b \rightarrow a$ (BAD)

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?
- 1. If among $c, e, w_1, w_2, ..., w_k$, the rank of c is set next, then:
	- new Query path $e \rightarrow c \rightarrow b \rightarrow a$
	- Potentially many w_i -es query $e \rightarrow$ $c \rightarrow b \rightarrow a$; new Dangerous query paths $w_i \rightarrow e \rightarrow c \rightarrow b \rightarrow a$ (BAD)
- 2. Otherwise, e never queries c! (GREAT)

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?
- 1. If among $c, e, w_1, w_2, ..., w_k$, the rank of c is set next, then:
	- new Query path $e \rightarrow c \rightarrow b \rightarrow a$
	- Potentially many w_i -es query $e \rightarrow$ $c \rightarrow b \rightarrow a$; new Dangerous query paths $w_i \rightarrow e \rightarrow c \rightarrow b \rightarrow a$ (BAD)
- 2. Otherwise, e never queries c! (GREAT)

• With probability $\frac{1}{k+1}$ $k+1$: $+1$ query path and k Dangerous query paths
Formalizing

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?
- 1. If among $c, e, w_1, w_2, ..., w_k$, the rank of c is set next, then:
	- new Query path $e \rightarrow c \rightarrow b \rightarrow a$
	- Potentially many w_i -es query $e \rightarrow$ $c \rightarrow b \rightarrow a$; new Dangerous query paths $w_i \rightarrow e \rightarrow c \rightarrow b \rightarrow a$ (BAD)
- 2. Otherwise, e never queries c! (GREAT)
- With probability $\frac{1}{k+1}$ $k+1$: +1 query path and k Dangerous query paths
- With probability 1: -1 Dangerous query path

Formalizing

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?
- 1. If among $c, e, w_1, w_2, ..., w_k$, the rank of c is set next, then:
	- new Query path $e \rightarrow c \rightarrow b \rightarrow a$
	- Potentially many w_i -es query $e \rightarrow$ $c \rightarrow b \rightarrow a$; new Dangerous query paths $w_i \rightarrow e \rightarrow c \rightarrow b \rightarrow a$ (BAD)
- 2. Otherwise, e never queries c! (GREAT)
- With probability $\frac{1}{k+1}$ $k+1$: $+1$ query path and k Dangerous query paths
- With probability 1: -1 Dangerous query path
- 2 * #[Dangerous query paths for (a, b)] + #[Query paths for (a, b)] is a supermartingale.

Formalizing

- 1. Reveal ranks one at the time.
- 2. How many times **edge (a, b)** is queried?
- 1. If among $c, e, w_1, w_2, ..., w_k$, the rank of c is set next, then:
	- new Query path $e \rightarrow c \rightarrow b \rightarrow a$
	- Potentially many w_i -es query $e \rightarrow$ $c \rightarrow b \rightarrow a$; new Dangerous query paths $w_i \rightarrow e \rightarrow c \rightarrow b \rightarrow a$ (BAD)
- 2. Otherwise, e never queries c! (GREAT)
- With probability $\frac{1}{k+1}$ $k+1$: $+1$ query path and k Dangerous query paths
- With probability 1: -1 Dangerous query path
- 2 * #[Dangerous query paths for (a, b)] + #[Query paths for (a, b)] is a supermartingale.
- At $t = 0$, that sum equals 2 for each edge (a, b) .

Open questions

Other applications of this analysis.

MIS in $poly \Delta$ LCA queries in expectation from **any** vertex.

