
Sublinear algorithms for
correlation clustering

Slobodan Mitrović
(UC Davis)

Mina Dalirrooyfard
Morgan Stanley Research

Konstantin Makarychev
Northwestern University

[Bansal, Blum, Chawla, 2002, 2004]

Correlation clustering

n objects

Input:

Similarity function f
f(a, b) → {similar, dissimilar}

[Bansal, Blum, Chawla, 2002, 2004]

Correlation clustering
Input:

dissimilar similar

n objects

Similarity function f
f(a, b) → {similar, dissimilar}

[Bansal, Blum, Chawla, 2002, 2004]

Correlation clustering
Input:

Similarity function f
f(a, b) → {similar, dissimilar}

Goal:

A clustering that aligns with f
as much as possible.

dissimilar similar

n objects

[Bansal, Blum, Chawla, 2002, 2004]

Correlation clustering
Input:

Goal:

A clustering that aligns with f
as much as possible.

dissimilar similar

Cost = 2 + 1

n objects

Similarity function f
f(a, b) → {similar, dissimilar}

[Bansal, Blum, Chawla, 2002, 2004]

Correlation clustering
Input:

Goal:

A clustering that aligns with f
as much as possible.

dissimilar similar

Application:

• Aggregating accounts

Cost = 2 + 1

n objects

Similarity function f
f(a, b) → {similar, dissimilar}

[Bansal, Blum, Chawla, 2002, 2004]

Correlation clustering
Input:

Goal:

A clustering that aligns with f
as much as possible.

dissimilar similar

Application:

• Aggregating accounts
• Semi-supervised learning

Cost = 2 + 1
shoes

n objects

Similarity function f
f(a, b) → {similar, dissimilar}

History (an overview)

• [Bansal, Blum, Chawla, 2002, 2004]
• [Charikar, Guruswami, Wirth, 2003] – APX-hard, 4 approximation
• [Demaine, Emanuel, Fiat, Immorlica, 2006] – O(log n) approximation for weighted

• …

• [Ailon, Charikar, Newman, 2005, 2008] – 3 approximation, Pivot
• [Chawla, Makarychev, Schramm, Yaroslavtsev, 2014] – 2.06 approximation
• [Cohen-Addad, Lee, Newman, 2022] – 1.994 approximation
• [Cohen-Addad, Lee, Li, Newman, 2023] – 1.73 approximation
• [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024] – 1.437 approximation

n = number of vertices in the input graph
∆ = maximum vertex degreeHistory (big data regimes)

Approx. Model Complexity References

3 Centralized 𝑂(𝑚) [Ailon, Charikar, Newman, 2005]

3 MPC 𝑂 log2 𝑛 [Blelloch, Fineman, Shun, 2012]

3+ε MPC 𝑂(log 𝑛 log ∆) [Chierichetti, Dalvi, Kumar, 2014]

3 MPC 𝑂(log 𝑛) [Fischer, Noever, 2018]

3 MPC 𝑂(log ∆ log log 𝑛) [Cambus, Choo, Miikonen, Uitto, 2021]

~700 MPC 𝑂(1) [Cohen-Addad, Lattanzi, M, Norouzi-Fard, Parotsidis, Tarnawski, 2021]

3+ε MPC 𝑂(1/𝜖) [Behnezhad, Charikar, Ma, Tan, 2022]

3+ε MPC 𝑂(1)* [Cambus, Kuhn, Lindy, Pai, Uitto, 2023]

3+ε MPC 𝑂(log 1/𝜖) this work

1.846 MPC 𝑂(1) [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]

3+ε LCA
∆

𝑂
1
𝜖

[Behnezhad, Charikar, Ma, Tan, 2022]

3+ε LCA 𝑂(∆/𝜖) this work

3+ε Dynamic 𝑂(log2 𝑛 log2 Δ) [Behnezhad, Derakhshan, Hajiaghayi, Stein, Sudan, 2019]

3+ε Dynamic 𝑂(log4 𝑛) [Chechik, Zhang, 2019]

3+ε Dynamic 𝑂(1/𝜖) this work

2.997 Dynamic poly log 𝑛 [Behnezhad, Charikar, Cohen-Addad, Ghafari, Ma, 2024]

Not complete picture.
We will return to this.

Recent History
in semi-streaming single pass

Approx. References

5 [Behnezhad, Charikar, Ma, Tan, 2023]

3+ε [Cambus, Kuhn, Lindy, Pai, Uitto ,2023]

3+ε [Chakrabarty, Makarychev, 2023]

3+ε this work

Outline

• Pivot [Ailon, Charikar, Newman, 2005]

• Our approach (Pruned Pivot)

• Implementations

• Implications on Maximal Independent Set

• Analysis

Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

n = number of vertices in the input graph

Pivot

Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

1. Let π be a random ordering of V

n = number of vertices in the input graph

Pivot

Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

1. Let π be a random ordering of V
2. For i = 1 to n

a. If π(i) is not clustered
a. Cluster π(i) and its un-clustered

neighbors together.

n = number of vertices in the input graph

Pivot

Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

1. Let π be a random ordering of V
2. For i = 1 to n

a. If π(i) is not clustered
a. Cluster π(i) and its un-clustered

neighbors together.

n = number of vertices in the input graph

Pivot

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

1. Let π be a random ordering of V
2. For i = 1 to n

a. If π(i) is not clustered
a. Cluster π(i) and its un-clustered

neighbors together.

n = number of vertices in the input graph

Pivot

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

1. Let π be a random ordering of V
2. For i = 1 to n

a. If π(i) is not clustered
a. Cluster π(i) and its un-clustered

neighbors together.

n = number of vertices in the input graph

Pivot

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

pivot

Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

1. Let π be a random ordering of V
2. For i = 1 to n

a. If π(i) is not clustered
a. Cluster π(i) and its un-clustered

neighbors together.

n = number of vertices in the input graph

Pivot

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

pivot

pivot

Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

1. Let π be a random ordering of V
2. For i = 1 to n

a. If π(i) is not clustered
a. Cluster π(i) and its un-clustered

neighbors together.

n = number of vertices in the input graph

Pivot

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

pivot

pivot

pivot

Input: G = (V, E)

Pivot [Ailon, Charikar, Newman, 2005]

1. Let π be a random ordering of V
2. For i = 1 to n

a. If π(i) is not clustered
a. Cluster π(i) and its un-clustered

neighbors together.

n = number of vertices in the input graph

Claim: In expectation, Pivot outputs a 3-approximate correlation clustering.

Pivot

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

pivot

pivot

pivot

Pivot – Recursive Query View

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

?

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

?

?

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

?

?

?

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

?

?

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

?

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

?

?

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

?

?

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

?

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

pivot

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

pivot

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

Pivot – Recursive Query View

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

pivot

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

9

3 4

1
3

1

Pivot – Recursive Query View

1

5

6
8

3

4

9

7

2

edge = similar
no-edge = dissimilar

pivot

pivot

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

9

3 4

1
3

1

If the query tree for v has size greater
than 1/ε, make v a singleton cluster.

Gives a 3+O(ε) approximation.

Our approach (Pruned Pivot)

Pivot – Recursive Query View

Vertex v is a pivot iff
none of its smaller-π-value neighbors is a pivot.

9

3 4

1
3

1

[Behnezhad, Charikar, Ma, Tan, 2022]
Tree-depth = O(1/ε)

+
[Chakrabarty, Makarychev, 2023]
Vertex-width = O(1/ε)

Tree-size = 1/εO(1/ε)

If the query tree for v has size greater
than 1/ε, make v a singleton cluster.

Gives a 3+O(ε) approximation.

Our approach (Pruned Pivot)

Pruned Pivot:
Why to expect it works?

9

3 4

1
3

1

If the query tree for v has size greater
than 1/ε, make v a singleton cluster.

Gives a 3+O(ε) approximation.

Our approach (Pruned Pivot)

𝑤

not cut by Pivot,
but cut by Pruned Pivot

1

5

6
8

3

4

9

7

2

pivot

pivot

pivot

pivot

Pruned Pivot:
Why to expect it works?

9

3 4

1
3

1

If the query tree for v has size greater
than 1/ε, make v a singleton cluster.

Gives a 3+O(ε) approximation.

Our approach (Pruned Pivot)

𝑤

not cut by Pivot,
but cut by Pruned Pivot

1

5

6
8

3

4

9

7

2

pivot

pivot

pivot

pivot

Charge the blue to the red
query-edges cut by Pivot!

Outline

• Pivot [Ailon, Charikar, Newman, 2005]

• Our approach (Pruned Pivot)

• Implementations

• Implications on Maximal Independent Set

• Analysis

LCA(v)

1. Perform LCA queries from v.
2. If the number of queries exceeds 1/ε, make v singleton.

MPC

1. Reduce the degree of each vertex to (at most) 1/ε.
2. Collect 1/ε-hop neighborhood of each vertex.
3. Simulate the algorithm for each vertex locally.

Dynamic

1. An edge is in expectation in O(1) many query trees.
2. k-highest-ranked neighbors can be accessed in expected

O(k) time.

Dynamic

1. An edge is in expectation in O(1) many query trees.
2. k-highest-ranked neighbors can be accessed in expected

O(k) time.

TBC (To Be Convinced)

1,
𝑛

𝑑 𝑣

Bucket 1

𝑛

𝑑 𝑣
, 2

𝑛

𝑑 𝑣

Bucket 2

𝑑 𝑣 − 1
𝑛

𝑑 𝑣
, 𝑛

Bucket 𝑑(𝑣)…

Outline

• Pivot [Ailon, Charikar, Newman, 2005]

• Our approach (Pruned Pivot)

• Implementations

• Implications on Maximal Independent Set

• Analysis

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

How many LCA queries needed to decide
whether v is a pivot, i.e., whether v is in MIS?

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

Complexity Comment References

2𝑂(Δ) Expectation from any vertex [Nguyen, Onak, 2008]

𝑂 Δ Expectation from a random vertex [Yoshida, Yamamoto, Ito, 2009]

How many LCA queries needed to decide
whether v is a pivot, i.e., whether v is in MIS?

𝚫 = maximum degree
ഥ𝚫 = average degree

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

Complexity Comment References

2𝑂(Δ) Expectation from any vertex [Nguyen, Onak, 2008]

𝑂 Δ Expectation from a random vertex [Yoshida, Yamamoto, Ito, 2009]

Δ𝑂 Δ log Δ 𝑝𝑜𝑙𝑦 log 𝑛 Any vertex, whp [Rubinfeld, Tamir, Vardi, Xie, 2011]

Δ𝑂 log2 Δ 𝑝𝑜𝑙𝑦 log 𝑛 Any vertex, whp [Levi, Rubinfeld, Yodpinyanee, 2017]

Δ𝑂 Δ log∗ 𝑛 Any vertex, whp [Levi, Medina, 2017]

Δ𝑂 log Δ 𝑝𝑜𝑙𝑦 log 𝑛 Any vertex, whp [Ghaffari, 2016]

Δ𝑂 log log Δ 𝑝𝑜𝑙𝑦 log 𝑛 Any vertex, whp [Ghaffari, Uitto, 2019]

𝑝𝑜𝑙𝑦 Δ log 𝑛 Any vertex, whp [Ghaffari, 2022]

How many LCA queries needed to decide
whether v is a pivot, i.e., whether v is in MIS?

𝚫 = maximum degree
ഥ𝚫 = average degree

Maximal Independent Set (MIS)

Pivot = Randomized greedy algorithm for MIS

Complexity Comment References

2𝑂(Δ) Expectation from any vertex [Nguyen, Onak, 2008]

𝑂 Δ Expectation from a random vertex [Yoshida, Yamamoto, Ito, 2009]

Δ𝑂 Δ log Δ 𝑝𝑜𝑙𝑦 log 𝑛 Any vertex, whp [Rubinfeld, Tamir, Vardi, Xie, 2011]

Δ𝑂 log2 Δ 𝑝𝑜𝑙𝑦 log 𝑛 Any vertex, whp [Levi, Rubinfeld, Yodpinyanee, 2017]

Δ𝑂 Δ log∗ 𝑛 Any vertex, whp [Levi, Medina, 2017]

Δ𝑂 log Δ 𝑝𝑜𝑙𝑦 log 𝑛 Any vertex, whp [Ghaffari, 2016]

Δ𝑂 log log Δ 𝑝𝑜𝑙𝑦 log 𝑛 Any vertex, whp [Ghaffari, Uitto, 2019]

𝑝𝑜𝑙𝑦 Δ log 𝑛 Any vertex, whp [Ghaffari, 2022]

𝑂 Δ Expectation from a random vertex this work

How many LCA queries needed to decide
whether v is a pivot, i.e., whether v is in MIS?

𝚫 = maximum degree
ഥ𝚫 = average degree

Outline

• Pivot [Ailon, Charikar, Newman, 2005]

• Our approach (Pruned Pivot)

• Implementations

• Implications on Maximal Independent Set

• Analysis

Setup

1. Reveal ranks one at the time.

?

?

?
?

?

?
?

??

Setup

pivot = in MIS

1. Reveal ranks one at the time.

1

?

?
?

?

?
?

??

pivot

Setup

pivot = in MIS

1. Reveal ranks one at the time.

1

?

?
?

?

?
?

??

pivot

Setup

pivot = in MIS

1. Reveal ranks one at the time.

v can be settled before its rank is revealed.

1

?

?
?

?

?
?

??

settled

settled

pivot

Setup

pivot = in MIS

1. Reveal ranks one at the time.

v can be settled before its rank is revealed.

1

?

?
?

?

?
?

2?

settled

settled

pivotsettled

pivot

Setup

pivot = in MIS

1. Reveal ranks one at the time.

v can be settled before its rank is revealed.

1

?

?
?

?

?
3

2?

settled

settled

pivotsettled

pivot

Setup

pivot = in MIS

1. Reveal ranks one at the time.

v can be settled before its rank is revealed.

1

?

?
?

?

?
3

2?

settled

settled

pivotsettled

pivot

Setup

pivot = in MIS

1. Reveal ranks one at the time.

v can be settled before its rank is revealed.

1

?

4
?

?

?
3

2?

settled

settled

pivotsettled
settled

pivot

pivot

Setup

1

?

4
?

?

?
3

2?

pivot

pivot = in MIS

settled

settled

pivotsettled
settled

pivot

1. Reveal ranks one at the time.
2. How large is the in-tree to a vertex?

How many times an edge is queried?

v can be settled before its rank is revealed.

An attempt

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

t = 0

? ?

a b

v can be settled before its rank is revealed.

An attempt

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

t = 3

3 ?

a b

v can be settled before its rank is revealed.

An attempt

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

t = 5

3 5

a b

v can be settled before its rank is revealed.

An attempt

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 9

6

c
?

e

8

d

v can be settled before its rank is revealed.

An attempt

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 9

6

c
?

e

8

d

v can be settled before its rank is revealed.

Idea:
• Condition on this state
• Ask how many e’s (non-settled) neighbors

will query e at time t = 10, 11, …, n.

An attempt

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 9

6

c
?

e

8

d

v can be settled before its rank is revealed.

Idea:
• Condition on this state
• Ask how many e’s (non-settled) neighbors

will query e at time t = 10, 11, …, n.

?

?

?

?

?

?

non-settled

𝑤1

𝑤𝑘

𝑤2

𝑤3

An attempt

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 9

6

c
?

e

8

d

v can be settled before its rank is revealed.

?

?

?

?

?

?

Why is this not an issue in the entire process?

Idea:
• Condition on this state
• Ask how many e’s (non-settled) neighbors

will query e at time t = 10, 11, …, n.
non-settled

𝑤1

𝑤𝑘

𝑤2

𝑤3

An attempt

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 9

6

c
?

e

8

d

v can be settled before its rank is revealed.

?

?

?

?

?

?

Why is this not an issue in the entire process?

It is unlikely e will query c in the first place!

Idea:
• Condition on this state
• Ask how many e’s (non-settled) neighbors

will query e at time t = 10, 11, …, n.
non-settled

𝑤1

𝑤𝑘

𝑤2

𝑤3

An attempt (and an idea)

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?

Why is this not an issue in the entire process?

It is unlikely e will query c in the first place!

Idea:
• Condition on this state
• Ask how many e’s (non-settled) neighbors

will query e at time t = 10, 11, …, n.
non-settled

𝑤1

𝑤𝑘

𝑤2

𝑤3

Very likely that 𝑤1 or 𝑤2 or 𝑤3 or … or 𝑤𝑘
will have rank higher than c.

An attempt (and an idea)

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 6

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

6

?

?

?

Why is this not an issue in the entire process?

It is unlikely e will query c in the first place!

Idea:
• Condition on this state
• Ask how many e’s (non-settled) neighbors

will query e at time t = 10, 11, …, n.

𝑤1

𝑤𝑘

𝑤2

𝑤3
pivot

(in MIS)

settled

Very likely that 𝑤1 or 𝑤2 or 𝑤3 or … or 𝑤𝑘
will have rank higher than c.

Formalizing

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?
Query path

non-settled

𝑤1

𝑤𝑘

𝑤2

𝑤3

Formalizing

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?
Query path

non-settled

𝑤1

𝑤𝑘

𝑤2

𝑤3

Formalizing

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?
Query path

non-settled

1. If among 𝑐, 𝑒, 𝑤1, 𝑤2, … , 𝑤𝑘, the rank of
c is set next, then:
• new Query path 𝑒 → 𝑐 → 𝑏 → 𝑎
• Potentially many 𝑤𝑖-es query 𝑒 →

𝑐 → 𝑏 → 𝑎; new Dangerous query
paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2.

𝑤1

𝑤𝑘

𝑤2

𝑤3

Formalizing

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?
Query path

non-settled

1. If among 𝑐, 𝑒, 𝑤1, 𝑤2, … , 𝑤𝑘, the rank of
c is set next, then:
• new Query path 𝑒 → 𝑐 → 𝑏 → 𝑎
• Potentially many 𝑤𝑖-es query 𝑒 →

𝑐 → 𝑏 → 𝑎; new Dangerous query
paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2. Otherwise, e never queries c! (GREAT)

𝑤1

𝑤𝑘

𝑤2

𝑤3

Formalizing

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?
Query path

non-settled

1. If among 𝑐, 𝑒, 𝑤1, 𝑤2, … , 𝑤𝑘, the rank of
c is set next, then:
• new Query path 𝑒 → 𝑐 → 𝑏 → 𝑎
• Potentially many 𝑤𝑖-es query 𝑒 →

𝑐 → 𝑏 → 𝑎; new Dangerous query
paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2. Otherwise, e never queries c! (GREAT)

𝑤1

𝑤𝑘

𝑤2

𝑤3

• With probability
1

𝑘+1
:

+1 query path and 𝑘 Dangerous query paths
•
•

•

Formalizing

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?
Query path

non-settled

1. If among 𝑐, 𝑒, 𝑤1, 𝑤2, … , 𝑤𝑘, the rank of
c is set next, then:
• new Query path 𝑒 → 𝑐 → 𝑏 → 𝑎
• Potentially many 𝑤𝑖-es query 𝑒 →

𝑐 → 𝑏 → 𝑎; new Dangerous query
paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2. Otherwise, e never queries c! (GREAT)

𝑤1

𝑤𝑘

𝑤2

𝑤3

• With probability
1

𝑘+1
:

+1 query path and 𝑘 Dangerous query paths
• With probability 1: -1 Dangerous query path
•

•

Formalizing

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?
Query path

non-settled

1. If among 𝑐, 𝑒, 𝑤1, 𝑤2, … , 𝑤𝑘, the rank of
c is set next, then:
• new Query path 𝑒 → 𝑐 → 𝑏 → 𝑎
• Potentially many 𝑤𝑖-es query 𝑒 →

𝑐 → 𝑏 → 𝑎; new Dangerous query
paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2. Otherwise, e never queries c! (GREAT)

𝑤1

𝑤𝑘

𝑤2

𝑤3

• With probability
1

𝑘+1
:

+1 query path and 𝑘 Dangerous query paths
• With probability 1: -1 Dangerous query path
• 2 * #[Dangerous query paths for (a, b)]

+ #[Query paths for (a, b)] is a supermartingale.
•

Formalizing

1. Reveal ranks one at the time.
2. How many times edge (a, b) is queried?

3 5

a b

t = 5

?

c
?

e

?

d

v can be settled before its rank is revealed.

?

?

?

?

?

?
Query path

non-settled

1. If among 𝑐, 𝑒, 𝑤1, 𝑤2, … , 𝑤𝑘, the rank of
c is set next, then:
• new Query path 𝑒 → 𝑐 → 𝑏 → 𝑎
• Potentially many 𝑤𝑖-es query 𝑒 →

𝑐 → 𝑏 → 𝑎; new Dangerous query
paths 𝑤𝑖 → 𝑒 → 𝑐 → 𝑏 → 𝑎 (BAD)

2. Otherwise, e never queries c! (GREAT)

𝑤1

𝑤𝑘

𝑤2

𝑤3

• With probability
1

𝑘+1
:

+1 query path and 𝑘 Dangerous query paths
• With probability 1: -1 Dangerous query path
• 2 * #[Dangerous query paths for (a, b)]

+ #[Query paths for (a, b)] is a supermartingale.
• At t = 0, that sum equals 2 for each edge (a, b).

Open questions

Other applications of this analysis.

MIS in 𝑝𝑜𝑙𝑦 Δ LCA queries in expectation
from any vertex.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: History (an overview)
	Slide 10: History (big data regimes)
	Slide 11: Recent History in semi-streaming single pass
	Slide 12: Outline
	Slide 13: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 14: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 15: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 16: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 17: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 18: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 19: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 20: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 21: Pivot [Ailon, Charikar, Newman, 2005]
	Slide 22: Pivot – Recursive Query View
	Slide 23: Pivot – Recursive Query View
	Slide 24: Pivot – Recursive Query View
	Slide 25: Pivot – Recursive Query View
	Slide 26: Pivot – Recursive Query View
	Slide 27: Pivot – Recursive Query View
	Slide 28: Pivot – Recursive Query View
	Slide 29: Pivot – Recursive Query View
	Slide 30: Pivot – Recursive Query View
	Slide 31: Pivot – Recursive Query View
	Slide 32: Pivot – Recursive Query View
	Slide 33: Pivot – Recursive Query View
	Slide 34: Pivot – Recursive Query View
	Slide 35: Pruned Pivot: Why to expect it works?
	Slide 36: Pruned Pivot: Why to expect it works?
	Slide 37: Outline
	Slide 38: LCA(v)
	Slide 39: MPC
	Slide 40: Dynamic
	Slide 41: Dynamic
	Slide 42: Outline
	Slide 43: Maximal Independent Set (MIS)
	Slide 44: Maximal Independent Set (MIS)
	Slide 45: Maximal Independent Set (MIS)
	Slide 46: Maximal Independent Set (MIS)
	Slide 47: Maximal Independent Set (MIS)
	Slide 48: Outline
	Slide 49: Setup
	Slide 50: Setup
	Slide 51: Setup
	Slide 52: Setup
	Slide 53: Setup
	Slide 54: Setup
	Slide 55: Setup
	Slide 56: Setup
	Slide 57: Setup
	Slide 58: An attempt
	Slide 59: An attempt
	Slide 60: An attempt
	Slide 61: An attempt
	Slide 62: An attempt
	Slide 63: An attempt
	Slide 64: An attempt
	Slide 65: An attempt
	Slide 66: An attempt (and an idea)
	Slide 67: An attempt (and an idea)
	Slide 68: Formalizing
	Slide 69: Formalizing
	Slide 70: Formalizing
	Slide 71: Formalizing
	Slide 72: Formalizing
	Slide 73: Formalizing
	Slide 74: Formalizing
	Slide 75: Formalizing
	Slide 76
	Slide 77

