Distribution Learning Meets Graph Structure Sampling

Sayantan Sen

Arnab Bhattacharyya

Sutanu Gayen

Philips George John

N. V. Vinodchandran

UNIVERSITY of NEBRASKA

Plan of the talk

- Distribution Learning
- Online Learning
- Interplay of Distribution and Online Learning
- Summary of our results
- Overview of our technical framework

Distribution Learning

Given samples from an unknown distribution P^* , we want to "learn" a distribution \hat{P} which is "close to" P^* .

- \hat{P} should generally be "efficiently sampleable" (can return a sampler).
- May want \hat{P} to have a specific structure. Assumptions (if any) about P^* .

$$\mathsf{d}_{\mathsf{KL}}(P^* \quad \hat{P}) = \sum_{x} P^*(x) \log \frac{P^*(x)}{\hat{P}(x)}$$

Distribution Learning Contd.

- Pertinent complexity measures for a distribution learning algorithm include:
- Sample complexity (# of samples needed for theoretical guarantees to hold)
- Time complexity (running time)

Algorithm design might involve trade-offs between these two factors.

4

Distribution Learning: Motivation

A lot of machine learning is implicitly distribution learning where the learnt distribution is on \mathscr{X} , given by the data/features distribution (over \mathscr{X} and the classification or regression model $f: \mathscr{X} \to \mathscr{Y}$. 2D clustering problem

Induces a distribution on $\times \{0,1,2\}.$ 0,1

labels

data

Learning this distribution gives a clustering method (after marginalization, choose the marginal with maximum likelihood).

Learning High Dimensional Distributions

- Distribution learning is non-trivial even with discrete distributions, when the *domain* is large, e.g $[k]^n$.
- Takes exponential number of samples and time in general.

 $\Omega(k^n)$ samples are required for learning *arbitrary distributions* over $[k]^n$.

Many use cases involve high dimensional distributions:

- Machine Learning
- Program Analysis

Can we learn important subclasses?

Bayesian Networks

A distribution P over n variables X_1, \ldots, X_n is a Bayesian Network on a DAG G = ([n], E) if P factories as follows:

$$P(x) = \prod_{i=1}^{n} \Pr_{X \sim P} \left(X_i = x_i \mid \forall j \in \mathsf{pa}(i), X_j = x_j \right)$$

7

$$P(A = a, B = b, E = e) = p_B(b) \cdot p_E(e) \cdot p_A(a \mid b, e)$$

A Bayes net distribution P can be represented by $\left(G, P = \{p_i(X_i \mid X_{pa(i)})\}_{i \in [n]}\right)$.

Representation requires $O(nk^{d+1})$ space.

Bayes Nets Contd.

Indegree, treewidth etc. of a Bayes net refers to the indegree, treewidth etc. of G.

(in)degree of G = maximum (in)degree of its vertices.

Any distribution $P(X_1, ..., X_n)$ can be represented by a Bayes net with indegree $\leq n - 1$.

$$P(A = a, B = b, E = e) = p_B(b) \cdot p_E(e) \cdot p_A(a \mid b, e)$$

$$P(x) = \prod_{i=1}^{n} \Pr_{X \sim P} \left(X_i = x_i \mid X_1 = x_1, \dots, X_{i-1} = x_{i-1} \right)$$

Our results: Spotlight 1

- First efficient algorithm that does not use the Chow-Liu approach.
- Sample complexity better in terms of k (k^2 vs k^3) compared to the Chow-Liu approach in the realizable case.

Our results: Spotlight 2

First efficient algorithm for learning chordal-structured distributions when the skeleton is known. Sample complexity $\tilde{O}\left(\frac{n^3k^{d+1}}{\varepsilon^2}\right)$.

- Chordal-structured distributions form a large and interesting class of Bayes nets over $[k]^n$.
- Covers tree-structured distributions, polytree-structured distributions etc.
- Previously, no efficient algorithms for learning even if skeleton was known.

Online Learning

Online Learning (Prediction)

- Before seeing outcome $x^{(t)} \in \mathcal{X}$, learner predicts $\hat{f}_t \in \mathcal{D}$.
- After prediction, learner sees $x^{(t)}$ and suffers loss $\ell(\hat{f}_t, x^{(t)})$.
- $x^{(1)}, \ldots, x^{(T)}$ can be arbitrary.

Online Prediction

13

Prediction with Expert Advice

- The online learning algorithm \mathscr{A} is given a set of experts $\mathscr{E} = \{E_1, ..., E_N\}$.
- Suppose each E_i corresponds to a prediction in \mathcal{D} .
- \mathscr{A} predicts \hat{f}_t based on $\{E_1, \dots, E_N\}$ before seeing $x^{(t)}$.
- \mathscr{A} suffers loss $\mathscr{C}(\hat{f}_t, x^{(t)})$. E_i suffers loss $\mathscr{C}(E_i, x^{(t)})$.

Regret of learner \mathscr{A} wrt \mathscr{E} is:

$$Reg_{T}(\mathscr{A};\mathscr{C}) = \sum_{t=1}^{T} \ell(\hat{P}_{t}, x^{(t)}) - \min_{E \in \mathscr{C}} \sum_{t=1}^{T} \ell(E, x^{(t)})$$

Total loss of \mathscr{A} Total loss of bext expert

Online Distribution Learning

• Before seeing $x^{(t)}$, learner predicts \hat{P}_t .

Every Expert will be a candidate distribution!

Online Distribution Learning Contd.

Regret of an online distribution learning algorithm $\mathscr A$ wrt class of distributions $\mathscr C$ is

$$Reg_{T}(\mathscr{A};\mathscr{C}) = \sum_{t=1}^{T} \mathscr{\ell}(\hat{P}_{t}, x^{(t)}) - \min_{E \in \mathscr{C}} \sum_{t=1}^{T} \mathscr{\ell}(P, x^{(t)})$$

$$\underbrace{\mathsf{Total \ loss \ of \ \mathscr{A}}}_{\mathsf{Total \ loss \ of \ bext \ expert}}$$

• Useful to have algorithms with $Reg_T(\mathscr{A}, \mathscr{C}) = o(T)$.

• Average regret
$$\frac{Reg(\mathscr{A}, \mathscr{C})}{T} = o(1).$$

No regret learning!

Interplay of Distribution Learning & Online Learning

For $\ell(P, x)$ is log loss and $x^{(1)}, \dots, x^{(T)} \sim P^*$,

$$\mathbb{E}_{x^{(1)},\ldots,x^{(T)}\sim P^*} \mathbb{E}_{t\sim\mathsf{Unif}([T])} \left[\mathsf{d}_{\mathsf{KL}}(P^* \| \hat{P}_t) \right] \leq \frac{1}{T} \mathbb{E}_{x^{(1)},\ldots,x^{(T)}} \left[\operatorname{Reg}_T(\mathscr{A}\,;\,\mathscr{C}) \right] + \min_{P\in\mathscr{C}} \mathsf{d}_{\mathsf{KL}}(P^* - P)$$

Low regret online algorithms gives distribution learning algorithms!

Interplay of Distribution Learning & Online Learning Contd. $\mathbb{E}_{x^{(1)},...,x^{(T)}\sim P^{*}} \mathbb{E}_{t\sim \mathsf{Unif}([T])} \left[\mathsf{d}_{\mathsf{KL}}(P^{*} \| \hat{P}_{t}) \right] \leq \frac{1}{T} \mathbb{E}_{x^{(1)},...,x^{(T)}} \left[\operatorname{Reg}_{T}(\mathscr{A}\,;\,\mathscr{C}) \right] + \min_{P \in \mathscr{C}} \mathsf{d}_{\mathsf{KL}}(P^{*} P)$

• If we run \mathscr{A} for large enough T, then

$$\mathbb{E}_{x^{(1)},\ldots,x^{(T)}} \left[\mathsf{d}_{\mathsf{KL}} \left(P^* \| \frac{1}{T} \sum_{t=1}^T \hat{P}_t \right) \right] \leq \min_{P \in \mathscr{C}} \mathsf{d}_{\mathsf{KL}} (P^* \quad P) + \varepsilon$$

• Apply concentration bounds for high probability guarantee.

Proof Sketch of Reg-AL Lemma

$$\begin{aligned} \text{Lemma:} \quad & \mathbb{E}_{x^{(1)},...,x^{(T)} \sim P^{*}} \quad \mathbb{E}_{t \sim \text{Unif}([T])} \left[\mathsf{d}_{\mathsf{KL}}(P^{*} \| \hat{P}_{i}) \right] \leq \frac{1}{T} \sum_{x^{(1)},...,x^{(T)}} \mathbb{E}_{reg_{T}}(\mathscr{A}\,;\,\mathscr{C}) \right] + \min_{P \in \mathscr{C}} \mathsf{d}_{\mathsf{KL}}(P^{*} - P) \\ & \frac{1}{T} \operatorname{Reg_{T}}(\mathscr{A},\mathscr{C}) = \frac{1}{T} \sum_{t=1}^{T} \log \frac{1}{\hat{P}_{t}(x^{(t)})} - \frac{1}{T} \min_{P \in \mathscr{C}} \sum_{t=1}^{T} \log \frac{1}{P(x^{(t)})} \\ & = \frac{1}{T} \sum_{t=1}^{T} \log \frac{P^{*}(x^{(t)})}{\hat{P}_{t}(x^{(t)})} - \min_{P \in \mathscr{C}} \frac{1}{T} \sum_{t=1}^{T} \log \frac{P^{*}(x^{(t)})}{P(x^{(t)})} \\ & \frac{1}{T} \sum_{x^{(1)},...,x^{(T)}} \operatorname{Reg_{T}}(\mathscr{A},\mathscr{C}) = \frac{1}{T} \sum_{t=1}^{T} \sum_{x^{(1)},...,x^{(t-1)}} \mathbb{E}_{x^{(0)} \sim P^{*}} \left[\log \frac{P^{*}(x^{(t)})}{\hat{P}_{t}(x^{(t)})} \right] x^{(1)},...,x^{(t-1)} \right] - \sum_{x^{(1)},...,x^{(T)}} \min_{P \in \mathscr{C}} \frac{1}{T} \sum_{t=1}^{T} \left[\log \frac{P^{*}(x^{(t)})}{P_{t}(x^{(t)})} \right] \\ & \geq \frac{1}{T} \sum_{t=1}^{T} \sum_{x^{(1)},...,x^{(t-1)}} \mathbb{E}_{x^{(0)} \sim P^{*}} \left[\log \frac{P^{*}(x^{(t)})}{\hat{P}_{t}(x^{(t)})} \right] x^{(1)},...,x^{(t-1)} \right] - \min_{P \in \mathscr{C}} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{x^{(0)}} \left[\log \frac{P^{*}(x^{(t)})}{P(x^{(t)})} \right] \\ & = \lim_{x^{(1)},...,x^{(T-1)}} \mathbb{E}_{x^{(0)} \sim P^{*}} \left[\log \frac{P^{*}(x^{(t)})}{\hat{P}_{t}(x^{(t)})} \right] x^{(1)},...,x^{(t-1)} \right] - \min_{P \in \mathscr{C}} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{x^{(0)}} \left[\log \frac{P^{*}(x^{(t)})}{P(x^{(t)})} \right] \right] \\ & = \lim_{x^{(1)},...,x^{(T-1)}} \mathbb{E}_{x^{(0)} \to \mathbb{E}_{x^{(0)}}} \mathbb{E}_{x^{(1)}} \left[\log \frac{P^{*}(x^{(t)})}{\hat{P}_{t}(x^{(t)})} \right] x^{(1)},...,x^{(t-1)} \right] - \min_{P \in \mathscr{C}} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{x^{(0)}} \left[\log \frac{P^{*}(x^{(t)})}{P(x^{(t)})} \right] \right]$$

Rearranging gives the lemma!

Our results

Learning Bayes nets Bounds

 $\mathscr{C} = \{ \text{ Bayes nets of indegree} \le d \text{ over } [k]^n \}$

These algorithms are time inefficient!

Sample Complexity	Realizable	Agnostic
Improper Learning	$\tilde{O}\left(\frac{nk^{d+1}}{\varepsilon}\log\frac{1}{\delta}\right)$	$\tilde{O}\left(\frac{n^4k^{2d+2}}{\varepsilon^4}\log\frac{1}{\delta}\right)$
Proper Learning	$\tilde{O}\left(rac{n^2k^{d+1}}{\varepsilon^2} ight)$ (BGPTV21)	$\tilde{O}\left(\frac{n^3k^{d+1}}{\varepsilon^2\delta^2}\right)$
Lower bound	$\Omega\left(\frac{nk^{d+1}}{\varepsilon}\right) (\text{BCD20})$	

21

Tree-structured Distributions

Let T be a tree on [n], and G_T be any rooted orientation of T aka *out-arborescence* (all edges directed outwards from a fixed root node).

A distribution P is tree-structured (aka a tree Bayes net) if it is a Bayes net on G_T for some tree T.

 $P(x) = p_1(x_1) \cdot p_2(x_2 \mid x_1) \cdot p_3(x_3 \mid x_1) \cdot p_4(x_4 \mid x_3) \cdot p_5(x_5 \mid x_2) \cdot p_6(x_6 \mid x_2)$

Our results for Tree-struct. Distributions

Pupe in Poly(n	1	1	timol
	$\overline{\varepsilon}$	$\overline{\delta}'$	une:

Sample Complexity	Realizable	Agnostic
Improper Learning	$\tilde{O}\left(\frac{nk^2}{\varepsilon\delta}\right)^{\frac{dependency of k^2}{k^2}}$	$\tilde{O}\left(\frac{n^4k^4}{\varepsilon^4}\log\frac{1}{\delta}\right)$
Proper Learning	$\tilde{O}\left(\frac{nk^3}{\varepsilon}\right)$	$\tilde{O}\left(rac{n^3k^2}{arepsilon^2\delta^2} ight)$
Lower bound	$\Omega\left(\frac{nk^2}{\varepsilon}\right)$ (CDKS17)	$\Omega\left(\frac{n^2}{\varepsilon^2}\right) \begin{array}{c} (BGPTV21, \\ DP21) \end{array}$

Chordal-structured Distributions

G = undirected *chordal graph (*all cycles of length ≥ 4 have *chord edges*).

 \overline{G} = any DAG with *skeleton* (underlying undirected graph) G.

Distribution *P* is chordal-structured with skeleton G if it is a Bayes net on \overline{G} .

Tree-structured

Polytree-structured (tree skeleton, DAG oriented arbitrarily)

Chordal-structured (non-tree skeleton)

Our results for Chordal-structured distribution

G is undirected chordal graph.

 $\mathscr{C} = \{ \text{ Bayes nets with skeleton G of indegree} \leq d \text{ over } [k]^n \}$

Our Techniques

Our Algorithm Framework 1: Discreatization

For a class \mathscr{C} of Bayes nets, discreatize distributions in \mathscr{C} to a finite set $\mathscr{N} \subset C$ such that

- Clipping: $-\log P(x)$ is upper bounded for all $P \in \mathcal{N}$.
- Bucketing: Bound regret wrt \mathcal{N} close to regret wrt \mathscr{C} .

Distribution over $\{0,1,2\}$ p = (x, y) in outer triangle p(0) = 1 - x - yp(1) = xp(2) = y0 0.5

0.5

Our Algorithm Framework 2: Learning

Run an EWA / RWM-based online learning algorithm with ${\mathscr N}$ as the set of experts.

- EWA = Exponential Weighted Average (returns mixture of \mathcal{N} -distributions).
- RWM = Randomized Weighted Majority (returns single distribution in \mathcal{N}).

Use regret bounds of EWA/RWM to get learning guarantees.

EWA and RWM based Learning Algorithms

$$w_{i,t} = \exp\left(-\eta \sum_{s=1}^{t} \ell(E_i, x^{(s)})\right)$$

Algorithm 1: EWA forecaster Input: Experts $\mathcal{E} = \{E_1, \ldots, E_N\},\$ parameter η , horizon T. 1 $w_{i,0} \leftarrow 1$ for each $i \in [N]$. **2** for $t \leftarrow 1$ to T do $\widehat{P}_t \leftarrow \frac{\sum_{i=1}^N w_{i,t-1} E_i}{\sum_{j=1}^N w_{j,t-1}}.$ 3 **Output** P_t . 4 Observe outcome $x^{(t)}$. 5 for $i \in [N]$ do 6 $w_{i,t} \leftarrow$ 7 $w_{i,t-1} \cdot \exp\left(-\eta \cdot \ell(E_i, x^{(t)})
ight).$

Algorithm 2: RWM forecaster Input: Experts $\mathcal{E} = \{E_1, \ldots, E_N\},\$ parameter η , horizon T. 1 $w_{i,0} \leftarrow 1$ for each $i \in [N]$. 2 for $t \leftarrow 1$ to T do Sample $\widehat{P}_t \in \mathcal{E}$ where 3 $\Pr[\hat{P}_t = E_i] = \frac{w_{i,t-1}}{\sum_{i=1}^N w_{j,t-1}}.$ Output \hat{P}_t . 4 Observe outcome $x^{(t)}$. 5 for $i \in [N]$ do 6 $w_{i,t} \leftarrow$ 7 $w_{i,t-1} \cdot \exp\left(-\eta \cdot \ell(E_i, x^{(t)})\right).$ Regret Bounds of EWA & RWM

$$Reg_{T}(\mathscr{A};\mathscr{E}) = \sum_{t=1}^{T} \ell(\hat{P}_{t}, x^{(t)}) - \min_{E \in \mathscr{E}} \sum_{t=1}^{T} \ell(P, x^{(t)})$$
$$\ell(P, x) = \log\left(\frac{1}{P(x)}\right)$$

For finite \mathscr{C} , EWA forecaster gives

For finite \mathscr{C} , RWM algorithm gives

 $Reg_T(\mathsf{EWA}; \mathscr{C}) \le O(\log N)$

 $Reg_T(\mathsf{RWM}; \mathscr{E})] \le O(\sqrt{T \log N})$

Our Algo Framework: Time Efficiency

Goal is to implement the EWA/RWM based algorithms efficiently.

• EWA/RWM based algorithms use exponential space and time even when k and d are constant. $\left((nk)^{nk^{d+1}} \right)$

• Number of candidate distribution is
$$O\left(\left(\frac{nk}{\varepsilon}\right)^{nk^{d+1}}\right)$$
.

- For trees, chordal graphs etc., one can take advantage of the product structure of the EWA/ RWM mixture distribution.
- Can sample efficiently from it "edge-by-edge" (each element of \mathcal{N} is a Bayes net (G, \mathbb{P})).

Efficient Learning of Tree-structured distributions

Consider $\mathcal{N}^{\text{TREE}}$, the discretization of all tree-structured Bayes nets $(T, \mathcal{P} = \{p_1, ..., p_n\})$.

• Each spanning tree T of K_n is oriented (outwards) with root 1.

Algorithm

1. Sample p_1 (distribution at root node) from discretization.

2. Sample tree structure T.

3. Sample $p_i(x_i \mid x_{pa(i)})$ from discreatization for every $i \in \{2, ..., n\}$.

• Steps (1) and (3) involve sampling from
$$Poly(n, \frac{1}{\epsilon})$$
 possibilities for constant k.

Tree-structured distributions Contd.

• The sampling step involves computing a normalization factor with exponential terms of the form

$$\sum_{T} \prod_{e \in T} wt(e)$$
out oriented

• Can efficiently compute this using a weighted version of Tutte's matrix tree theorem as the determinant of associated Laplacian matrix (DL 20).

• The probability of sampling an edge of T is the ratio of two Laplacian determinants.

Sampling Tree Structured Distribution Example

34

Learning Chordal Distributions

- Unlike trees, not all orientations of a chordal skeleton G are acyclic.
- Need to compute weighted sums over all partial *acyclic orientations* of G consistent with a particular sub-orientation.
 - This generalizes the problem of "counting acyclic orientations of a chordal graph" (BS 22).
 - The clique tree decomposition of a chordal graph guides the DP computation and sampling.
- DP table can be used to sample a random acyclic orientation, giving a random DAG \overrightarrow{G} with appropriate probability.

Chordal-structured DAG

Sampling Chordal distribution Example

Conclusion

- Designed the first efficient algorithm for learning chordal-structured distribution.
- Our approach gives new algorithm for learning tree structured distributions.
- Can our bounds be improved?
- Can this approach be extended for other models?

Thank You!