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Plan of the talk
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• Distribution Learning

• Summary of our results

• Overview of our technical framework

• Online Learning

• Interplay of Distribution and Online Learning



Distribution Learning
 Given samples from an unknown distribution , we want to “learn” a distribution  which is “close to” . 𝑃∗ �̂� 𝑃∗

3

Distribution Learner

𝒜

•  should generally be “efficiently sampleable” (can return a sampler).̂P

• May want  to have a specific structure. Assumptions (if any) about .̂P P*

Samples x(1), x(2), …, ∼ P*

Δ(P*, ̂P) ≤ ε wp  ≥ 1 − δ

Predicted distribution ̂P

𝖽𝖪𝖫(P* | | ̂P) = ∑
x

P*(x)log
P*(x)

̂P(x)



Distribution Learning Contd.
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Algorithm design might involve trade-offs between these two factors. 

• Pertinent complexity measures for a distribution learning algorithm include: 

• Sample complexity (# of samples needed for theoretical guarantees to hold) 

• Time complexity (running time) 

Distribution Learner

𝒜

Samples x(1), x(2), …, ∼ P*

𝖽𝖪𝖫(P*, ̂P) ≤ ε wp  ≥ 1 − δ

Predicted distribution ̂P



Distribution Learning: Motivation
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2D clustering problem

Induces a distribution on 
.[0,1]2

⏟
data

× {0,1, 2}
⏟

labels

Learning this distribution gives a 
clustering method (after 
marginalization, choose the marginal 
with maximum likelihood).

 A lot of machine learning is implicitly distribution learning where the learnt distribution is on , 
given by the data/features distribution (over  and the classification or regression model 

.

𝒳
𝒳

f : 𝒳 → 𝒴



Learning High Dimensional Distributions
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• Distribution learning is non-trivial even with discrete distributions, when the domain is large, e.g .[k]n

• Takes exponential number of samples and time in general.

 Many use cases involve high dimensional distributions:

 •Machine Learning

 •Program Analysis

 samples are required for learning arbitrary distributions over  .Ω(kn) [𝑘]𝑛

Can we learn important subclasses?



Bayesian Networks
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 A distribution P over n variables  is a Bayesian Network on a DAG 
 if P factories as follows:

X1, …, Xn
G = ([n], E)

P(x) =
n

∏
i=1

Pr
X∼P (Xi = xi ∣ ∀j ∈ 𝗉𝖺(i), Xj = xj)

P(A = a, B = b, E = e) = pB(b) ⋅ pE(e) ⋅ pA(a ∣ b, e)

A Bayes net distribution P can be represented by .(G, P = {pi (Xi ∣ Xpa(i))}i∈[n])
Representation requires  space.O(nkd+1)



Bayes Nets Contd.
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Indegree, treewidth etc. of a Bayes net refers to the indegree, treewidth etc. of .𝐺

(in)degree of  = maximum (in)degree of its vertices.𝐺

Any distribution  can be represented by a 
Bayes net with indegree .

𝑃(𝑋1, …, 𝑋𝑛)
≤ 𝑛 − 1

P(x) =
n

∏
i=1

Pr
X∼P

(Xi = xi ∣ X1 = x1, …, Xi−1 = xi−1)
P(A = a, B = b, E = e) = pB(b) ⋅ pE(e) ⋅ pA(a ∣ b, e)



Distribution Learning Variants
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Distribution Learner

𝒜

Samples x(1), x(2), …, ∼ P*

Δ(P*, ̂P) ≤ ε wp  ≥ 1 − δ

Predicted distribution ̂P

• Realizable Learning: P* ∈ 𝒞

• Agnostic Learning:  arbitraryP*

• Proper Learning: ̂P ∈ 𝒞

• Improper Learning:  is mixture of  distributionŝP 𝒞

Concept class
𝓒

All Distributions on [𝒌]𝒏

 (Realizable)𝑃∗ ∈ 𝒞

. (Agnostic)𝑃∗ arbit

 (Proper)�̂� ∈ 𝒞

 (Improper)�̂� ∉ 𝒞

𝑃 min
P∈𝒞

Δ(P*, P)



Our results: Spotlight 1
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Efficient learning algorithm for tree-structured distributions that requires  and 

samples respectively in the realizable and agnostic cases.

~𝑂( 𝑛𝒌𝟐

𝜀 ) ~𝑂( 𝑛4𝑘4

𝜀4 )

• First efficient algorithm that does not use the Chow-Liu approach.

• Sample complexity better in terms of  (  vs ) compared to the Chow-Liu approach in the realizable 
case.

𝑘 𝑘2 𝑘3



Our results: Spotlight 2
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First efficient algorithm for learning chordal-structured distributions when the 

skeleton is known. Sample complexity .Õ ( n3kd+1

ε2 )
• Chordal-structured distributions form a large and interesting class of Bayes nets over .[𝑘]𝑛

• Covers tree-structured distributions, polytree-structured distributions etc.

• Previously, no efficient algorithms for learning even if skeleton was known.



12

Online Learning



Online Learning (Prediction)
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• Before seeing outcome , learner predicts 
.

x(t) ∈ 𝒳
̂ft ∈ 𝒟

• After prediction, learner sees  and suffers loss 
.

x(t)

ℓ( ̂ft, x(t))

•   can be arbitrary.x(1), …, x(T)

Learner

Online Prediction

t = 1 ̂f1
Loss ℓ( ̂f1, x(1))

Learnert = 2 ̂f2

Loss ℓ( ̂f2, x(2))

Learnert = T ̂fT
Loss ℓ( ̂fT, x(T))

⋮



Prediction with Expert Advice

14

• The online learning algorithm  is given a set of experts .𝒜 ℰ = {E1, …, EN}

• Suppose each  corresponds to a prediction in .Ei 𝒟

•  predicts  based on  before seeing 𝒜 ̂ft {E1, …, EN} x(t) .

•  suffers loss  suffers loss 𝒜 ℓ( ̂ft, x(t)) . Ei ℓ(Ei, x(t)) .

 Regret of learner  wrt  is:𝒜 ℰ

RegT(𝒜; ℰ) =
T

∑
t=1

ℓ( ̂Pt, x(t))

Total loss of 𝒜

− min
E∈ℰ

T

∑
t=1

ℓ(E, x(t))

Total loss of bext expert



Online Distribution Learning
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• Before seeing , learner predicts x(t) ̂Pt .

• After prediction, learner sees  and 
suffers loss 

x(t)

ℓ( ̂Pt, x(t)) .

•  are iid samples.x(1), …, x(T)

Learnert = 1 ̂P1

Loss ℓ( ̂P1, x(1))
x(1)

Learnert = 2 ̂P2
Loss ℓ( ̂P2, x(2))

x(2)

Learnert = T ̂PT
Loss ℓ( ̂PT, x(T))

x(T)

⋮

Every Expert will be a candidate distribution!



Online Distribution Learning Contd.
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 Regret of an online distribution learning algorithm  wrt class of distributions  is 𝒜 𝒞

RegT(𝒜; 𝒞) =
T

∑
t=1

ℓ( ̂Pt, x(t))

Total loss of 𝒜

− min
E∈𝒞

T

∑
t=1

ℓ(P, x(t))

Total loss of bext expert

• Useful to have algorithms with . RegT(𝒜, 𝒞) = o(T)

• Average regret . 
Reg(𝒜, 𝒞)

T
= o(1)

No regret learning!



Interplay of Distribution Learning & Online Learning
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For  is log loss and ,ℓ(P, x) x(1), …, x(T) ∼ P*

𝔼
x(1),…,x(T)∼P*

𝔼
t∼𝖴𝗇𝗂𝖿([T]) [𝖽𝖪𝖫(P*∥ ̂Pt)] ≤

1
T

𝔼
x(1),…,x(T) [RegT(𝒜 ; 𝒞)] + min

P∈𝒞
𝖽𝖪𝖫(P* | |P)

Low regret online algorithms gives distribution learning algorithms!



Interplay of Distribution Learning & Online Learning Contd.
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𝔼
x(1),…,x(T)∼P*

𝔼
t∼𝖴𝗇𝗂𝖿([T]) [𝖽𝖪𝖫(P*∥ ̂Pt)] ≤

1
T

𝔼
x(1),…,x(T) [RegT(𝒜 ; 𝒞)] + min

P∈𝒞
𝖽𝖪𝖫(P* | |P)

• If we run  for large enough T, then𝒜

𝔼
x(1),…,x(T)

𝖽𝖪𝖫 (P*∥
1
T

T

∑
t=1

̂Pt) ≤ min
P∈𝒞

𝖽𝖪𝖫(P* | |P) + ε

• Apply concentration bounds for high probability guarantee.



Proof Sketch of Reg-AL Lemma

Lemma:
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1
T

RegT(𝒜, 𝒞) =
1
T

T

∑
t=1

log
1

̂Pt(x(t))
−

1
T

min
P∈𝒞

T

∑
t=1

log
1

P(x(t))

≥
1
T

T

∑
t=1

𝔼
x(1),…,x(t−1)

𝔼
x(t)∼P* [log

P*(x(t))
̂Pt(x(t))

x(1), …, x(t−1)] − min
P∈𝒞

1
T

T

∑
t=1

𝔼
x(t) [log

P*(x(t))
P(x(t)) ]

1
T

𝔼
x(1),...,x(T )

RegT(𝒜, 𝒞) =
1
T

T

∑
t=1

𝔼
x(1),…,x(t−1)

𝔼
x(t)∼P* [log

P*(x(t))
̂Pt(x(t))

x(1), …, x(t−1)] − 𝔼
x(1),…,x(T )

min
P∈𝒞

1
T

T

∑
t=1 [log

P*(x(t))
Pt(x(t)) ]

= 𝔼
x(1),...,x(T)

𝔼
t∼𝖴𝗇𝗂𝖿([T])

𝖽𝖪𝖫 (P* | | ̂Pt) − min
P∈𝒞

𝖽𝖪𝖫 (P* | |P)

=
1
T

T

∑
t=1

log
P*(x(t))

̂Pt(x(t))
− min

P∈𝒞

1
T

T

∑
t=1

log
P*(x(t))
P(x(t))

Rearranging gives the lemma!

𝔼
x(1),…,x(T )∼P*

𝔼
t∼𝖴𝗇𝗂𝖿([T]) [𝖽𝖪𝖫(P*∥ ̂Pt)] ≤

1
T

𝔼
x(1),…,x(T ) [RegT(𝒜 ; 𝒞)] + min

P∈𝒞
𝖽𝖪𝖫(P* | |P)

Jensen’s ineq. and linearity of 
expectation

Linearity of expectation & law of conditional expectation
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Our results



Learning Bayes nets Bounds
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 = { Bayes nets of indegree  over }𝒞 ≤ d [𝑘]𝑛

Sample Complexity Realizable Agnostic

Improper Learning

Proper Learning  realizable       agnostic (BGPV 21)

Lower bound

Õ ( nkd+1

ε
log

1
δ ) Õ ( n4k2d+2

ε4
log

1
δ )

Õ ( n2kd+1

ε2 ) Õ ( n3kd+1

ε2δ2 )
Ω ( nkd+1

ε )

(BGPTV21)

(BCD20)

These algorithms 
are time inefficient! 



Tree-structured Distributions
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1

2

6

3

4

5

 A distribution P is tree-structured (aka a tree Bayes 
net) if it is a Bayes net on  for some tree .𝐺𝑇 𝑇

 Let  be a tree on , and  be any rooted 
orientation of  aka out-arborescence (all edges 
directed outwards from a fixed root node).

 

𝑇 [𝑛] 𝐺𝑇
𝑇

P(x) = p1(x1) ⋅ p2(x2 ∣ x1) ⋅ p3(x3 ∣ x1) ⋅ p4(x4 ∣ x3) ⋅ p5(x5 ∣ x2) ⋅ p6(x6 ∣ x2)



Our results for Tree-struct. Distributions
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Sample Complexity Realizable Agnostic

Improper Learning

Proper Learning  realizable       agnostic (BGPV 21)

Lower bound

Õ ( nk2

εδ ) Õ ( n4k4

ε4
log

1
δ )

Ω ( nk2

ε ) Ω ( n2

ε2 )

Õ ( nk3

ε ) Õ ( n3k2

ε2δ2 )
(CDKS17) (BGPTV21,   

DP21)

Improves the 
dependency of 

k2

Runs in  time!𝖯𝗈𝗅𝗒(n,
1
ε

,
1
δ

)



Chordal-structured Distributions
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1

2

3

4

Tree-structured

1

2

3

4

Polytree-structured

𝟏

𝟐 𝟑

𝟒 𝟓

Chordal-structured

  = undirected chordal graph (all cycles of length  have chord edges).

 

𝐺 ≥ 4

  = any DAG with skeleton (underlying undirected graph) .

 

�̄� 𝐺

 Distribution  is chordal-structured with skeleton G if it is a Bayes net on .𝑃 �̄�

(tree skeleton, DAG oriented arbitrarily) (non-tree skeleton)



Our results for Chordal-structured distribution
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Sample Complexity Agnostic

Improper Learning

Proper Learning

Lower bound Ω ( nkd+1

ε )

Õ ( n3kd+1

ε2δ2 )

Õ ( n4k2d+2

ε4
log

1
δ )

(CYBC24)

G is undirected chordal graph.
 = { Bayes nets with skeleton G of indegree  over }𝒞 ≤ d [𝑘]𝑛

Runs in  time!𝖯𝗈𝗅𝗒(n,
1
ε

,
1
δ

)
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Our Techniques



Our Algorithm Framework 1: Discreatization
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For a class  of Bayes nets, discreatize distributions in  to 
a finite set  such that 

𝒞 𝒞
𝒩 ⊂ C

• Clipping:  is upper bounded for all .−log P(x) P ∈ 𝒩

• Bucketing: Bound regret wrt  close to regret wrt .𝒩 𝒞

Distribution over {0,1,2}
 in outer trianglep = (x, y)

p(0) = 1 − x − y
p(1) = x
p(2) = y



Our Algorithm Framework 2: Learning
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 Run an EWA / RWM-based online learning algorithm with  as the set of experts.

 

𝒩

• EWA = Exponential Weighted Average (returns mixture of -distributions).𝒩

• RWM = Randomized Weighted Majority (returns single distribution in ).𝒩

 Use regret bounds of EWA/RWM to get learning guarantees.



EWA and RWM based Learning Algorithms
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wi,t = exp (−η
t

∑
s=1

ℓ(Ei, x(s)))



Regret Bounds of EWA & RWM
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RegT(𝖤𝖶𝖠; ℰ) ≤ O(log N) RegT(𝖱𝖶𝖬; ℰ)] ≤ O( T log N)

For finite , EWA forecaster givesℰ

ℓ(P, x) = log ( 1
P(x) )

For finite , RWM algorithm givesℰ

RegT(𝒜; ℰ) =
T

∑
t=1

ℓ( ̂Pt, x(t)) − min
E∈ℰ

T

∑
t=1

ℓ(P, x(t))



Our Algo Framework: Time Efficiency
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• Can sample efficiently from it “edge-by-edge” (each element of  is a Bayes net ).𝒩 (𝐺, ℙ)

• EWA/RWM based algorithms use exponential space and time even when k and d are constant.

• For trees, chordal graphs etc., one can take advantage of the product structure of the EWA/
RWM mixture distribution.

 Goal is to implement the EWA/RWM based algorithms efficiently.

•
Number of candidate distribution is .

•

O ( nk
ε )

nkd+1



Efficient Learning of Tree-structured distributions
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 Consider , the discretization of all tree-structured Bayes nets .

 

𝒩TREE (𝑇, ℙ = {𝑝1, …, 𝑝𝑛}) 

• Each spanning tree  of  is oriented (outwards) with root .𝑇 𝐾𝑛 1

• Steps (1) and (3) involve sampling from  possibilities for constant .𝖯𝗈𝗅𝗒(n,
1
ε

) 𝑘

1. Sample  (distribution at root node) from discretization.p1

   2.  Sample tree structure T.

 3. Sample  from discreatization for every .pi(xi ∣ xpa(i)) i ∈ {2,…, n}

Algorithm



Tree-structured distributions Contd.
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• The sampling step involves computing a normalization factor with exponential terms of the form

∑
T

out oriented 

∏
e∈T

𝗐𝗍(e)

• Can efficiently compute this using a weighted version of Tutte’s matrix tree theorem as the 
determinant of associated Laplacian matrix (DL 20).

• The probability of sampling an edge of   is the ratio of two Laplacian determinants.𝑇
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1

2

6

3

4
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1

2

6

3

4

5

Sampling Tree Structured Distribution Example



Learning Chordal Distributions
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• Unlike trees, not all orientations of a chordal skeleton  are acyclic.𝐺

• Need to compute weighted sums over all 
partial acyclic orientations of  consistent 
with a particular sub-orientation.

𝐺

• DP table can be used to sample a random 
acyclic orientation, giving a random DAG  with 
appropriate probability.

G

𝟏

𝟐 𝟑

𝟓𝟒

Chordal-structured DAG

• This generalizes the problem of “counting acyclic 
orientations of a chordal graph” (BS 22).

• The clique tree decomposition of a chordal graph 
guides the DP computation and sampling.
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𝟏

𝟐 𝟑

𝟓𝟒

𝟏

𝟐 𝟑

𝟓𝟒

𝟏

𝟐 𝟑

𝟓𝟒

𝟏

𝟐 𝟑

𝟓𝟒

𝟏

𝟐 𝟑

𝟓𝟒

Sampling Chordal distribution Example



Conclusion
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Thank You!

• Designed the first efficient algorithm for learning chordal-structured distribution.

•  Our approach gives new algorithm for learning tree structured distributions.

•  Can this approach be extended for other models?

•  Can our bounds be improved?
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