Distribution Learning Meets Graph Structure Sampling

Sayantan Sen

Centre for

■ ⊛ **NUS**

Plan of the talk

- Distribution Learning
- Online Learning
- Interplay of Distribution and Online Learning
- Summary of our results
- Overview of our technical framework

Distribution Learning

Given samples from an unknown distribution P^* , we want to "learn" a distribution \hat{P} which is "close to" P^* .

- \hat{P} should generally be "efficiently sampleable" (can return a sampler).
- May want \hat{P} to have a specific structure. Assumptions (if any) about P^* .

$$
d_{KL}(P^* \quad \hat{P}) = \sum_{x} P^*(x) \log \frac{P^*(x)}{\hat{P}(x)}
$$

Distribution Learning Contd.

- Pertinent complexity measures for a distribution learning algorithm include:
- Sample complexity (# of samples needed for theoretical guarantees to hold)
- Time complexity (running time)

Algorithm design might involve **trade-offs** between these two factors.

4

Distribution Learning: Motivation

2D clustering problem A lot of machine learning is implicitly distribution learning where the learnt distribution is on $\mathscr{X},$ given by the data/features distribution (over $\mathscr X$ and the classification or regression model $\breve{f} : \mathcal{X} \to \mathcal{Y}$.

Induces a distribution on $[0,1]^2 \times [0,1,2].$ 2 $\overline{}$ $\frac{1}{2}$

labels

data

Learning this distribution gives a clustering method (after marginalization, choose the marginal with maximum likelihood).

Learning High Dimensional Distributions

- Distribution learning is non-trivial even with discrete distributions, when the *domain* is large, e.g $[k]^n$.
- Takes exponential number of samples and time in general.

 $\Omega(k^n)$ samples are required for learning *arbitrary distributions* over $\left[k\right]^n$.

Many use cases involve high dimensional distributions:

- •Machine Learning
- •Program Analysis

Can we learn important subclasses?

Bayesian Networks

A distribution P over n variables X_1, \ldots, X_n is a Bayesian Network on a DAG if P factories as follows: X_1, \ldots, X_n $G = ([n], E)$

$$
P(x) = \prod_{i=1}^{n} \Pr_{X \sim P} \left(X_i = x_i \mid \forall j \in pa(i), X_j = x_j \right)
$$

$$
P(A = a, B = b, E = e) = p_B(b) \cdot p_E(e) \cdot p_A(a \mid b, e)
$$

A Bayes net distribution P can be represented by
$$
\left(G, P = \{p_i\left(X_i \mid X_{pa(i)}\right)\}_{i \in [n]}\right).
$$

Representation requires $O(nk^{d+1})$ space.

Bayes Nets Contd.

Indegree, treewidth etc. of a Bayes net refers to the indegree, treewidth etc. of G .

(in)degree of $G =$ maximum (in)degree of its vertices.

Any distribution $P(X_1,...,X_n)$ can be represented by a Γ Bayes net with indegree $\leq n-1$.

$$
P(A = a, B = b, E = e) = p_B(b) \cdot p_E(e) \cdot p_A(a \mid b, e)
$$

$$
P(x) = \prod_{i=1}^{n} \Pr_{X \sim P} (X_i = x_i \mid X_1 = x_1, \dots, X_{i-1} = x_{i-1})
$$

9

Our results: Spotlight 1

- First efficient algorithm that does not use the Chow-Liu approach.
- Sample complexity better in terms of k (k^2 vs k^3) compared to the Chow-Liu approach in the realizable case.

Our results: Spotlight 2

First **efficient** algorithm for learning **chordal-structured distributions when the skeleton is known**. Sample complexity $\tilde{O}\left(\frac{n\kappa}{2}\right)$. $\sqrt{2}$ n^3k^{d+1} *ε*²)

- Chordal-structured distributions form a large and interesting class of Bayes nets over $\lbrack k \rbrack''$.
- Covers tree-structured distributions, polytree-structured distributions etc.
- Previously, no efficient algorithms for learning even if skeleton was known.

Online Learning

Online Learning (Prediction)

- Before seeing outcome $x^{(t)} \in \mathcal{X}$, learner predicts $\hat{f}_t \in \mathcal{D}$. $\hat{f}_t \in \mathcal{D}$.
- After prediction, learner sees $x^{(t)}$ and suffers loss $\ell(\hat{f}_t, x^{(t)})$.
- $x^{(1)}, ..., x^{(T)}$ can be arbitrary.

Online Prediction

Prediction with Expert Advice

- The online learning algorithm $\mathscr A$ is given a set of experts $\mathscr E = \{E_1, ..., E_N\}$.
- Suppose each E_i corresponds to a prediction in \mathcal{D} .
- $\mathscr A$ predicts $\hat f_t$ based on $\{E_1, \ldots, E_N\}$ before seeing $x^{(t)}$.
- $\mathscr A$ suffers loss $\ell^j(\hat f_t, x^{(t)})$. E_i suffers loss $\ell^j(E_i, x^{(t)})$.

Regret of learner $\mathscr A$ wrt $\mathscr E$ is:

$$
Reg_T(\mathcal{A}; \mathcal{E}) = \sum_{t=1}^{T} \ell(\hat{P}_t, x^{(t)}) - \min_{E \in \mathcal{E}} \sum_{t=1}^{T} \ell(E, x^{(t)})
$$

Total loss of \mathcal{A} Total loss of best expert

Online Distribution Learning

• Before seeing $x^{(t)}$, learner predicts \hat{P}_t .

Every Expert will be a candidate distribution!

Online Distribution Learning Contd.

Regret of an online distribution learning algorithm $\mathscr A$ wrt class of distributions $\mathscr C$ is

$$
Reg_T(\mathscr{A}; \mathscr{C}) = \sum_{t=1}^T \ell(\hat{P}_t, x^{(t)}) - \min_{E \in \mathscr{C}} \sum_{t=1}^T \ell(P, x^{(t)})
$$

Total loss of \mathscr{A} Total loss of best expert

• Useful to have algorithms with $Reg_T(\mathcal{A}, \mathcal{C}) = o(T)$.

$$
\text{Average regret } \frac{Reg(\mathcal{A}, \mathcal{C})}{T} = o(1).
$$

No regret learning!

Interplay of Distribution Learning & Online Learning

For $\ell(P, x)$ is log loss and $x^{(1)}, ..., x^{(T)} \sim P^*$,

$$
\mathop{\mathbb{E}}_{x^{(1)},\ldots,x^{(T)}\sim P^* \ t\sim \text{Unif}([T])} \left[d_{\mathsf{KL}}(P^* \| \hat{P}_t) \right] \leq \frac{1}{T} \mathop{\mathbb{E}}_{x^{(1)},\ldots,x^{(T)}} \left[Reg_T(\mathcal{A}; \mathcal{C}) \right] + \min_{P \in \mathcal{C}} d_{\mathsf{KL}}(P^* \ P)
$$

Low regret online algorithms gives distribution learning algorithms!

Interplay of Distribution Learning & Online Learning Contd. *x*(1) ,…,*x*(*T*) [∼]*P** *^t*[∼] ([*T*]) [(*P**∥*P*̂ *t*) | ≤ 1 $\frac{1}{T} \mathop{\mathbb{E}}_{x^{(1)},...,x^{(T)}} [Reg_T(\mathscr{A}; \mathscr{C})] + \min_{P \in \mathscr{C}}$ (*P** *P*)

• If we run $\mathscr A$ for large enough T, then

$$
\underset{x^{(1)},...,x^{(T)}}{\mathbb{E}}\left[\mathsf{d}_{\mathsf{KL}}\left(P^*\|\frac{1}{T}\sum_{t=1}^T\hat{P}_t\right)\right] \leq \min_{P\in\mathscr{C}}\mathsf{d}_{\mathsf{KL}}(P^* \quad P) + \varepsilon
$$

• Apply concentration bounds for high probability guarantee.

Proof Sketch of Reg-AL Lemma

Lemma:
$$
\mathbb{E}_{\mathbf{r}^{(1)},\ldots,\mathbf{r}^{(T)}\sim P^{*}}\mathbb{E}_{\mathbf{r}\sim\text{Unif}([T])}\left[d_{KL}(P^{*}||\hat{P}_{i})\right] \leq \frac{1}{T} \mathbb{E}_{x^{(1)},\ldots,x^{(T)}}\left[Reg_{T}(\mathcal{A};\mathcal{C})\right] + \min_{P\in\mathcal{C}}d_{KL}(P^{*}||P)
$$
\n
$$
\frac{1}{T}Reg_{T}(\mathcal{A};\mathcal{C}) = \frac{1}{T} \sum_{t=1}^{T} \log \frac{1}{\hat{P}_{t}(x^{(t)})} - \frac{1}{T} \min_{P\in\mathcal{C}} \sum_{t=1}^{T} \log \frac{1}{P(x^{(t)})}
$$
\n
$$
= \frac{1}{T} \sum_{t=1}^{T} \log \frac{P^{*}(x^{(t)})}{\hat{P}_{t}(x^{(t)})} - \min_{P\in\mathcal{C}} \frac{1}{T} \sum_{t=1}^{T} \log \frac{P^{*}(x^{(t)})}{P(x^{(t)})}
$$
\nLinearity of expectation & law of conditional expectation\n
$$
\frac{1}{T} \mathbb{E}_{x^{(1)},\ldots,x^{(T)}} Res_{T}(\mathcal{A};\mathcal{C}) = \frac{1}{T} \sum_{t=1}^{T} \sum_{x^{(1)},\ldots,x^{(t-1)}} \mathbb{E}_{x^{(t)}} \sum_{x^{(t)}=1}^{T} \left[\log \frac{P^{*}(x^{(t)})}{\hat{P}_{t}(x^{(t)})} \Big| x^{(1)},\ldots,x^{(t-1)} \right] - \min_{x^{(1)},\ldots,x^{(T)}} \frac{1}{P\in\mathcal{C}} \sum_{t=1}^{T} \sum_{t=1}^{T} \left[\log \frac{P^{*}(x^{(t)})}{P_{t}(x^{(t)})} \right]
$$
\n
$$
\geq \frac{1}{T} \sum_{t=1}^{T} \sum_{x^{(1)},\ldots,x^{(t-1)}} \mathbb{E}_{x^{(t)}} \left[\log \frac{P^{*}(x^{(t)})}{\hat{P}_{t}(x^{(t)})} \Big| x^{(1)},\ldots,x^{(t-1)} \right] - \min_{P\in\mathcal{C}} \frac{1
$$

Rearranging gives the lemma!

Our results

Learning Bayes nets Bounds

 $\mathscr{C} = \{$ Bayes nets of indegree $\leq d$ over $\left[k\right]^{n}$

These algorithms are time inefficient!

Tree-structured Distributions

Let T be a tree on $[n]$, and G_T be any rooted orientation of T aka *out-arborescence* (all edges directed outwards from a fixed root node).

A distribution P is tree-structured (aka a tree Bayes net) if it is a Bayes net on G_T for some tree T.

 $P(x) = p_1(x_1) \cdot p_2(x_2 | x_1) \cdot p_3(x_3 | x_1) \cdot p_4(x_4 | x_3) \cdot p_5(x_5 | x_2) \cdot p_6(x_6 | x_2)$

Our results for Tree-struct. Distributions

Chordal-structured Distributions

 G = undirected *chordal graph (*all cycles of length \geq 4 have *chord edges*).

 \overline{G} = any DAG with *skeleton* (underlying undirected graph) G .

Distribution P is **chordal-structured with skeleton G** if it is a Bayes net on \overline{G} .

Tree-structured

Polytree-structured Chordal-structured (tree skeleton, DAG oriented arbitrarily) (non-tree skeleton)

Our results for Chordal-structured distribution

G is undirected chordal graph.

 \mathscr{C} = { Bayes nets with skeleton G of indegree $\leq d$ over $\left[k\right]^{n}$ }

Our Techniques

Our Algorithm Framework 1: Discreatization

For a class $\mathscr C$ of Bayes nets, discreatize distributions in $\mathscr C$ to a finite set $\mathcal N \subset C$ such that

- Clipping: $-\log P(x)$ is upper bounded for all $P \in \mathcal{N}$.
- Bucketing: Bound regret wrt $\mathcal N$ close to regret wrt $\mathscr C$.

Distribution over {0,1,2} $p = (x, y)$ in outer triangle $p(0) = 1 - x - y$ $p(1) = x$ $p(2) = y$ 0.5 Ω 0.5

Our Algorithm Framework 2: Learning

Run an EWA / RWM-based online learning algorithm with $\mathcal N$ as the set of experts.

- EWA = Exponential Weighted Average (returns mixture of $\mathcal N$ -distributions).
- RWM = Randomized Weighted Majority (returns single distribution in \mathcal{N}).

Use regret bounds of EWA/RWM to get learning guarantees.

EWA and RWM based Learning Algorithms

$$
w_{i,t} = \exp\left(-\eta \sum_{s=1}^{t} \ell(E_i, x^{(s)})\right)
$$

Algorithm 1: EWA forecaster **Input:** Experts $\mathcal{E} = \{E_1, \ldots, E_N\},\$ parameter η , horizon T. 1 $w_{i,0} \leftarrow 1$ for each $i \in [N]$. 2 for $t \leftarrow 1$ to T do $\widehat{P}_t \leftarrow \frac{\sum_{i=1}^N w_{i,t-1} E_i}{\sum_{j=1}^N w_{j,t-1}}.$ $\overline{\mathbf{3}}$ Output P_t . $\overline{\mathbf{4}}$ Observe outcome $x^{(t)}$. 5 for $i \in [N]$ do 6 $w_{i,t} \leftarrow$ $\overline{7}$ $w_{i,t-1}\cdot \exp\left(-\eta\cdot \ell(E_i,x^{(t)})\right).$

Algorithm 2: RWM forecaster **Input:** Experts $\mathcal{E} = \{E_1, \ldots, E_N\},\$ parameter η , horizon T. 1 $w_{i,0} \leftarrow 1$ for each $i \in [N]$. 2 for $t \leftarrow 1$ to T do Sample $\widehat{P}_t \in \mathcal{E}$ where $\mathbf{3}$ $\Pr[\widehat{P}_t = E_i] = \frac{w_{i,t-1}}{\sum_{i=1}^N w_{j,t-1}}.$ Output \widehat{P}_t . $\overline{\mathbf{4}}$ Observe outcome $x^{(t)}$. $\mathbf{5}$ for $i \in [N]$ do 6 $w_{i,t} \leftarrow$ $\overline{7}$ $w_{i,t-1}\cdot \exp\left(-\eta\cdot \ell(E_i,x^{(t)})\right).$ Regret Bounds of EWA & RWM

$$
Reg_T(\mathcal{A}; \mathcal{E}) = \sum_{t=1}^T \ell(\hat{P}_t, x^{(t)}) - \min_{E \in \mathcal{E}} \sum_{t=1}^T \ell(P, x^{(t)})
$$

$$
\ell(P, x) = \log\left(\frac{1}{P(x)}\right)
$$

For finite \mathscr{E} , EWA forecaster gives

For finite $\mathscr E$, RWM algorithm gives

 $Reg_T(\text{EWA}; \mathscr{E}) \leq O(\log N)$ *Reg_T*(*RWM*; $\mathscr{E}) \leq O(\sqrt{T \log N})$

Our Algo Framework: Time Efficiency

Goal is to implement the EWA/RWM based algorithms efficiently.

• EWA/RWM based algorithms use exponential space and time even when k and d are constant. $\sqrt{ }$

Number of candidate distribution is
$$
O\left(\left(\frac{nk}{\varepsilon}\right)^{nk^{d+1}}\right)
$$
.

- For trees, chordal graphs etc., one can take advantage of the product structure of the EWA/ RWM mixture distribution.
- Can sample efficiently from it "edge-by-edge" (each element of $\mathscr N$ is a Bayes net $(G,\mathbb P)$).

Efficient Learning of Tree-structured distributions

Consider N^{TREE} , the discretization of all tree-structured Bayes nets $(T, P = \{p_1, ..., p_n\})$.

• Each spanning tree T of K_n is oriented (outwards) with root 1.

Algorithm

1. Sample p_1 (distribution at root node) from discretization.

2. Sample tree structure T.

3. Sample $p_i(x_i | x_{pa(i)})$ from discreatization for every $i \in \{2,...,n\}$.

• Steps (1) and (3) involve sampling from
$$
\text{Poly}(n, \frac{1}{\varepsilon})
$$
 possibilities for constant k .

Tree-structured distributions Contd.

• The sampling step involves computing a normalization factor with exponential terms of the form

$$
\sum_{T}\prod_{e\in T}\mathsf{wt}(e)
$$
out oriented

• Can efficiently compute this using a weighted version of Tutte's matrix tree theorem as the determinant of associated Laplacian matrix (DL 20).

• The probability of sampling an edge of T is the ratio of two Laplacian determinants.

Sampling Tree Structured Distribution Example

Learning Chordal Distributions

- Unlike trees, not all orientations of a chordal skeleton G are acyclic.
- Need to compute weighted sums over all partial *acyclic orientations* of G consistent with a particular sub-orientation.
	- This generalizes the problem of "counting acyclic orientations of a chordal graph" **(BS 22)**.
	- The **clique tree decomposition** of a chordal graph guides the DP computation and sampling.
- DP table can be used to sample a random acyclic orientation, giving a random DAG G with appropriate probability.

Chordal-structured DAG

Sampling Chordal distribution Example

Conclusion

- Designed the first efficient algorithm for learning chordal-structured distribution.
- Our approach gives new algorithm for learning tree structured distributions.
- Can our bounds be improved?
- Can this approach be extended for other models?

Thank You!