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Streaming Model

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆



Lots of problems…

• Graph problems: Matchings, MST, MAX-CUT

• Geometric problems: Clustering, facility location

• Statistical problems: Heavy-hitters, norm/moment 
estimation, quantile estimation

• Algebraic problems: Subspace embeddings, regression, 
low-rank approximation

• String problems: pattern matching, periodicity

• Others: CSPs, coding theory, submodular optimization, etc



Distinct Elements

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖  be the frequency 
of element 𝑖. (How often it appears)

• Let 𝐹0 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy 
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹0

• Motivation: Traffic monitoring

𝐹0 = |{𝑖 ∶ 𝑓𝑖 ≠ 0}|



Insertion-Only Streams

• Each update of the stream can only increase a coordinate 
of the frequency vector 𝑥 ∈ ℝ𝑛

1 4 2 1 3 4 4 1  3, 1, 1, 3, 0 ≔ 𝑥

4 Distinct 
Elements



Streaming Algorithms for ℓ0 Estimation

1 + 𝜀 -multiplicative approximation streaming algorithms for distinct 
elements estimation using space:

• 𝑂 log 𝑛 , assuming constant 𝜀 and random oracle [FlajoletMartin85] 

• 𝑂 log 𝑛 , assuming constant 𝜀 [AlonMatiasSzegedy99] 

• 𝑂
1

𝜀2 log 𝑛  [Bar-YoseffJayramKumarSivakumar02] 

• 𝑂
1

𝜀2 log log 𝑛 + log 𝑛  assumes random oracle, additive error, i.e., 

HyperLogLog [FlajoletFusyGandouetMeunier07] 

• 𝑂
1

𝜀2 +log 𝑛  [KaneNelsonWoodruff10], [Blasiok20] 



Streaming Algorithms for ℓ0 Estimation

• Sample the elements of the universe [𝑛] at rate 
1

2𝑖 into set 𝑆𝑖  

for 𝑖 = 0,1, … , 𝑂 log 𝑛

• Pick set 𝑆𝑖  with roughly 
1

𝜀2 log 𝑛 items in the stream

• Output 𝑆𝑖 ⋅ 2𝑖  as constant-factor approximation to the 
number of distinct elements



Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1 1
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Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

• Adversarially Robust: “Future queries may depend on 
previous queries”

• Motivation: Database queries, adversarial ML



Robust Algorithms for ℓ0 Estimation

1 + 𝜀 -multiplicative approximation adversarially robust streaming 
algorithms for distinct elements estimation using space:

• ෨𝑂
1

𝜀3 ⋅ polylog(𝑛), via sketch switching [Ben-

EliezerJayaramWoodruffYogev20] 

• ෨𝑂
1

𝜀2.5 ⋅ polylog(𝑛), via differential privacy 

[HassidimKaplanMansourMatiasStemmer20] 

• ෨𝑂
1

𝜀2 ⋅ polylog(𝑛), via difference estimators [WoodruffZhou21] 



Robust Algorithms for ℓ0 Estimation

1 + 𝜀 -multiplicative approximation adversarially robust streaming 
algorithms for distinct elements estimation using space:

• ෨𝑂
1

𝜀3 ⋅ polylog(𝑛), via sketch switching [Ben-

EliezerJayaramWoodruffYogev20] 

• ෨𝑂
1

𝜀2.5 ⋅ polylog(𝑛), via differential privacy 

[HassidimKaplanMansourMatiasStemmer20] 

• ෨𝑂
1

𝜀2 ⋅ polylog(𝑛), via difference estimators [WoodruffZhou21] 

Nearly tight results for 
adversarial robustness on 

insertion-only streams



Insertion-Deletion Streams

• Each update 𝑢𝑡 = 𝑎𝑡, Δ𝑡  can increase or decrease a 
coordinate 𝑎𝑡 ∈ 𝑛  of the underlying frequency vector 𝑥 ∈ ℝ𝑛 
by Δ𝑡 ∈ ℤ

• For simplicity, we assume Δ𝑡 ∈ {−1, +1}

• In the robust setting, each update 𝑢𝑡 can be chosen 
adversarially



Insertion-Deletion Streams

• ෨𝑂 𝑚1/3  space algorithm for distinct element estimation, 
where 𝑚 is the length of the stream [Ben-EliezerEdenOnak22]

• Nothing known for constant-factor approximation in space 
polynomial in 𝑛



Linear Sketch

• Algorithm maintains 𝐴𝑥 for a matrix 𝐴 throughout the stream

• The algorithm then outputs 𝑓(𝐴𝑥) for some post-processing 
function 𝑓

• All insertion-deletion streaming algorithms on a sufficiently long 
stream might as well be linear sketches [LiNguyenWoodruff14, 
AiHuLiWoodruff16]



Reconstruction Attack on Linear Sketches

• Linear sketches are “not robust” to adversarial attacks, must use 
Ω(𝑛) space [HardtWoodruff13] 

• Approximately learn sketch matrix 𝐴, query something in the kernel 
of 𝐴

• Iterative process, start with 𝑉1, … , 𝑉𝑟

• Correlation finding: Find vectors weakly correlated with 𝐴 
orthogonal to 𝑉𝑖−1

• Boosting: Use these vectors to find strongly correlated vector 𝑣

• Progress: Set 𝑉𝑖 = span(𝑉𝑖−1, 𝑣)



Reconstruction Attack on Linear Sketches

• Attack randomly generates Gaussian vectors

• Analysis uses rotational invariance of Gaussians to observe 
which directions have larger ℓ2

• Attack ONLY works on real-valued inputs and ONLY against 
ℓ2 norm estimation



Our Contribution

• There exists a constant 𝜀 = Ω 1  such that any linear sketch 
that produces (1 + 𝜀)-approximation to ℓ0 on an adversarial 
insertion-deletion stream on universe 𝑛 requires poly(𝑛) rows

• There exists a constant 𝜀 = Ω 1  such that any linear skech that 
produces (1 + 𝜀)-approximation to ℓ0 on an adversarial 
insertion-deletion stream using 𝑟 ≪ 𝑛 rows can be broken in 
෨𝑂 𝑟8  queries. 



Questions?Upcoming

▪Attack intuition



Gap ℓ0 Norm Problem

• Let 𝛼 and 𝛽 be fixed constants

• Distinguish between the case where 𝑥 0 < 𝛼𝑛 or 𝑥 0 > 𝛽𝑛

• Algorithm allowed to arbitrarily output when neither case holds

• Any multiplicative (1 + 𝜀)-approximation algorithm to ℓ0 can solve the 

gap problem, for sufficiently small 𝜀 ≈
𝛽

𝛼
− 1



Attack Outline

• Intuitively, a sketch matrix 𝐴 may preserve a “large” amount of 
information about some coordinates and a “small” amount of 
information about other coordinates
• There can be a row of 𝐴 that is nonzero in only a single 

column
• 𝐴 can be sampled such that a random set of 𝑂(1) 

coordinates has large information
• There can be coordinates that only appears in columns with a 

large number of nonzero entries



𝑥 ≔ 0,1,0,1,0,0,0

𝐴1 ≔ 0,0,0,1,0,0,0  𝐴1, 𝑥 = 1
𝐴2 ≔ 1, −1,1,1,0,1,1  𝐴2, 𝑥 = 0

𝐴𝑥 ≔
0 0 0 1 0 0 0
1 − 1 1 1 0 1 1

0
1
0
1
0
0
0

=
1
0

𝐴

𝑥



Attack Outline

• Adversary wants to gradually learn the sketching matrix 

• Strategy: 
1. Iteratively identify the significant coordinates and set them 

to zero in all future queries
2. After we have learned all such coordinates, the query 

algorithm must rely on the other coordinates, which the 
sketch 𝐴𝑥 only has “small” information



Attack Outline

• Consider an extreme example where the sketch 𝐴𝑥 is a subset 𝑆 
of 𝑟 coordinates of 𝑥, unknown to the adversary

• Attack: 
1. Identify 𝑆
2. Place zeros in 𝑆 and nonzeros elsewhere



Interactive Fingerprinting Code Problem

• An algorithm 𝒫 selects a set 𝑆 ⊂ [𝑛] of coordinates unknown to the 
fingerprinting code ℱ

• ℱ must identify 𝑆 by making adaptive queries 𝑐𝑡 ∈ ±1 𝑛

• 𝒫 must answer consistently with some coordinate in 𝑐𝑡, i.e., 𝑎𝑡 = 𝑐𝑖
𝑡  for 

some 𝑖 ∈ 𝑛

• BUT 𝒫 can only observe 𝑐𝑖
𝑡 for 𝑖 ∈ 𝑆  needs to distinguish between 

inputs that are all zeros and all ones restricted to 𝑆

• Used for watermarking, traitor-tracing schemes [BonehShaw98]



Interactive Fingerprinting Codes

• There exists an interactive fingerprinting code with length 
෨𝑂 𝑛2  [SteinkeUllman15]

• Gap ℓ0 norm problem needs to distinguish between 𝑥 0 < 𝛼𝑛 
or 𝑥 0 > 𝛽𝑛

• Stronger requirement than fingerprinting code (which just 
needs to distinguish between all zeros and all ones)



Significant Coordinates (I)

• How to quantify significant coordinates?

• 𝑖 is significant if there exists:
• an elementary vector 𝑒𝑖  that is a row of 𝐴



𝑥 ≔ 0,1,0,1,0,0,0

𝐴1 ≔ 0,0,0,1,0,0,0  𝐴1, 𝑥 = 1
𝐴2 ≔ 1,999,1,1,0,1,1  𝐴2, 𝑥 = 1000

𝐴𝑥 ≔
0 0 0 1 0 0 0
1 999 1 1 0 1 1

0
1
0
1
0
0
0

=
1

1000

𝐴

𝑥



Significant Coordinates (II)

• Since the algorithm has 𝐴𝑥, it can recover 𝑦⊤𝐴𝑥 for any vector 
𝑦 ∈ ℝ𝑟

• If there exists 𝑦 ∈ ℝ𝑟 such that 𝑦⊤𝐴𝑥 𝑖
2 ≥

1

𝑠
𝑦⊤𝐴 2

2, then 𝑖 is 

significant (leverage score of column 𝑖 is large)



Significant Coordinates (II)

• How to quantify significant coordinates?

• 𝑖 is significant if there exists:
• an elementary vector 𝑒𝑖  that is a row of 𝐴

• 𝑦 ∈ ℝ𝑟 such that 𝑦⊤𝐴 𝑖
2 ≥

1

𝑠
𝑦⊤𝐴 2

2



𝑥 ≔ 2,3,5,0,0,0,1

𝐴1 ≔ 10, 10, 10, 10, 10, 10, 3  𝐴1, 𝑥 = 103

Reveals information about 𝑥𝑛 modulo 10



𝑥 ≔ 2,3,5,0,0,0,1

𝐴1 ≔ 1, 1, 1, 1, 1, 1,
3

10
 𝐴1, 𝑥 = 10.3

**Fractional** part of 𝑦⊤𝐴 𝑛 is large, for 
𝑦 selecting the first row of 𝐴



Significant Coordinates (III)

• 𝑖 is significant if there exists 𝑦 ∈ ℝ𝑟 such that 

FRAC 𝑦⊤𝐴𝑥 𝑖
2 ≥

1

𝑠
σ𝑖 FRAC 𝑦⊤𝐴𝑥 𝑖

2



Significant Coordinates

• How to quantify significant coordinates?

• 𝑖 is significant if there exists:
• an elementary vector 𝑒𝑖  that is a row of 𝐴

• 𝑦 ∈ ℝ𝑟 such that 𝑦⊤𝐴 𝑖
2 ≥

1

𝑠
𝑦⊤𝐴 2

2

• 𝑦 ∈ ℝ𝑟 such that FRAC 𝑦⊤𝐴𝑥 𝑖
2 ≥

1

𝑠
σ𝑖 FRAC 𝑦⊤𝐴𝑥 𝑖

2



Pre-processing the Sketch Matrix

• The algorithm has access to linear sketch 𝐴𝑥

• Pre-process the matrix 𝐴 into a larger matrix 𝐴′ that separates 
the significant coordinates

• Only gives the algorithm “more” information

0 0 0 1 0 0 0
1 999 1 1 0 1 1

0 0 0 1 0 0 0
1 0 1 1 0 1 1
0 1 0 0 0 0 0

𝐴 𝐴′



Pre-processing the Sketch Matrix

• Resulting matrix 𝐴′ is a combination of a sparse part 𝑆 and a 
dense part 𝐷

𝐴′ =
𝑆
𝐷

𝐴′ =
0 0 0 1 0 0 0
1 0 1 1 0 1 1
0 1 0 0 0 0 0

→
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 1 1 0 1 1



Pre-processing the Sketch Matrix

• Sparse part 𝑆 has at most one nonzero entry per column

• Dense part 𝐷 has no significant columns

• Show only 𝑂(𝑟𝑠 log 𝑛) rows added to 𝐴

• Note that if there were no dense part, we can use fingerprinting 
code to attack 𝑆

0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 1 1 0 1 1



Overall Attack

1. Pre-process the matrix 𝐴 
into a matrix 𝐴′ that is a 
combination of a sparse 
part 𝑆 and a dense part 𝐷

2. Attack sparse part 𝑆 using 
fingerprinting code

3. Attack dense part 𝐷



Questions?Upcoming

▪Attack on dense part



Attacking the Dense Part

• Design a family of distributions 𝒟 over −𝑅, … , −1,0,1, … , 𝑅  
with 𝑅 = poly(𝑛) such that:
• For 𝐷𝑝 ∈ 𝒟 with 𝑝 ∈ 𝑎, 𝑏 , we have Pr

𝑋∼𝐷𝑝

𝑋 = 0 = 𝑝

• For any 𝑞, 𝑝 ∈ 𝑎, 𝑏 , the total variation distance between 

𝐷𝑥𝑝 and 𝐷𝑥𝑞 is small, i.e., 
1

poly(𝑛)



Attacking the Dense Part

• Design a family of distributions 𝒟 over −𝑅, … , −1,0,1, … , 𝑅  
with 𝑅 = poly(𝑛) such that:
• For 𝐷𝑝 ∈ 𝒟 with 𝑝 ∈ 𝑎, 𝑏 , we have Pr

𝑋∼𝐷𝑝

𝑋 = 0 = 𝑝

• For any 𝑞, 𝑝 ∈ 𝑎, 𝑏 , the total variation distance between 

𝐷𝑥𝑝 and 𝐷𝑥𝑞 is small, i.e., 
1

poly(𝑛)

• If 𝑥 ∼ 𝐷𝑝
𝑛, then Ex 𝑥 0 = 𝑝𝑛 and if 𝑥 ∼ 𝐷𝑞

𝑛, then Ex 𝑥 0 =
𝑞𝑛, but the marginal distribution of 𝐷𝑥 is nearly identical for 
𝑥 ∼ 𝐷𝑝

𝑛 and 𝑥 ∼ 𝐷𝑞
𝑛, so the algorithm must use 𝑆𝑥



Overall Attack

1. Pre-process the matrix 𝐴 
into a matrix 𝐴′ that is a 
combination of a sparse 
part 𝑆 and a dense part 𝐷

2. Attack sparse part 𝑆 using 
fingerprinting code

3. Attack dense part 𝐷 using 
the family of distributions 𝒟 



Bounding the Total Variation Distance

• Let 𝑃 be the probability distribution corresponding to 𝐷𝑥𝑝 and 
𝑄 be the probability distribution corresponding to 𝐷𝑥𝑞

• To bound the total variation distance between 𝑃 and 𝑄, note

𝑃 𝑥 − 𝑄 𝑥 =
1

2𝜋 𝑟
න

𝑢∈ −2𝜋,2𝜋 𝑟
𝑒𝑖 𝑢,𝑥 𝑃 𝑢 − 𝑄 𝑢 d𝑢

≤
1

2𝜋 𝑟 𝑢∈ −2𝜋,2𝜋 𝑟
𝑃 𝑢 − 𝑄 𝑢  d𝑢



Bounding the Total Variation Distance

• For a symmetric distribution, we can write

𝑃 𝑢 = Ex𝑧∼𝑃 𝑒−𝑖⟨𝑢,𝑧⟩

= ෑ

𝑗∈[𝑛]



𝑘≥0

𝑀𝑝(2𝑘) ⋅ 𝑓(𝐷, 𝑢, 𝑘)

where 𝑀𝑝 2𝑘 = σ𝑚≥0 𝑃𝑚𝑚2𝑘  is the 2𝑘-th moment of the 
distribution and 𝑓 is a rapidly decaying function independent of 𝑃



Bounding the Total Variation Distance

• To analyze the total variation distance, we have

𝑃 𝑢 − 𝑄 𝑢 = ෑ

𝑗∈[𝑛]



𝑘≥0

𝑀𝑝 2𝑘 − 𝑀𝑞(2𝑘) ⋅ 𝑓(𝐷, 𝑢, 𝑘)

so if the first 2𝑘 moments of the distributions of 𝑃 and 𝑄 match, 
for a sufficiently large 𝑘, then the TVD is small



Constructing Hard Distributions

• Design a family of distributions 𝒟 over −𝑅, … , −1,0,1, … , 𝑅  
with 𝑅 = poly(𝑛) such that:
• For 𝐷𝑝 ∈ 𝒟 with 𝑝 ∈ 𝑎, 𝑏 , we have Pr

𝑋∼𝐷𝑝

𝑋 = 0 = 𝑝

• For any 𝑞, 𝑝 ∈ 𝑎, 𝑏 , the total variation distance between 

𝐷𝑥𝑝 and 𝐷𝑥𝑞 is small, i.e., 
1

poly(𝑛)

• The first 2𝑘 moments of the distributions of 𝐷𝑝and 𝐷𝑞 match



Moment Matching

• Want Ex𝑋∼𝐷𝑝
𝑋𝑘 = Ex𝑋∼𝐷𝑞

𝑋𝑘  for all 𝑘 ≤ 𝐾 = 𝑂(𝑟 log 𝑛)

• There exists [LarsenWeinsteinYu20] a polynomial 𝑄 such that 
𝑄 0 = Ω 1  and for all 𝑡 < 𝑅 − deg 𝑄 :



𝑖=0

𝑅
𝑅

𝑖
⋅ 𝑄 𝑖 = 𝑂 1



𝑖=0

𝑅

−1 𝑖
𝑅

𝑖
⋅ 𝑄 𝑖 ⋅ 𝑖𝑡 = 0

Set 𝐷𝑝 𝑖  to be

𝐷 𝑖 + 𝑐𝑝 ⋅ −1 𝑖 −1 𝑖 𝑅
𝑖

⋅ 𝑄 𝑖 ⋅ 𝑖𝑡 



Overall Attack

1. Pre-process the matrix 𝐴 
into a matrix 𝐴′ that is a 
combination of a sparse 
part 𝑆 and a dense part 𝐷

2. Attack sparse part 𝑆 using 
fingerprinting code

3. Attack dense part 𝐷 using 
the family of distributions 𝒟 



Main Results

• There exists a constant 𝜀 = Ω 1  such that any linear sketch 
that produces (1 + 𝜀)-approximation to ℓ0 on an adversarial 
insertion-deletion stream on universe 𝑛 requires poly(𝑛) rows

• There exists a constant 𝜀 = Ω 1  such that any linear skech that 
produces (1 + 𝜀)-approximation to ℓ0 on an adversarial 
insertion-deletion stream using 𝑟 ≪ 𝑛 rows can be broken in 
෨𝑂 𝑟8  queries. 



Other Results

• Any linear skech that produces 1.1-approximation to ℓ0 on an 
adversarial insertion-deletion stream using 𝑟 ≪ 𝑛 rows can be 
broken in ෨𝑂 𝑟3  queries, if the calculations are performed on 
finite fields 𝔽𝑝

• There exists an attack on any real-valued linear skech that 
produces 𝑂(1)-approximation to ℓ0 on an adversarial insertion-
deletion stream with 𝑟 ≪ 𝑛 rows, using poly 𝑟  queries



Future Directions

• Attacks with a smaller number of queries?

• Attacks against pseudo-deterministic algorithms?



Future Directions

Attacks on linear-sketches 
for ℓ0 estimation on 
adversarial insertion-

deletion streams 

Attacks on streaming 
algorithms for ℓ0 

estimation on adversarial 
insertion-deletion streams 

Attacks on linear-sketches 
for ℓ𝑝 estimation on 
adversarial insertion-

deletion streams 

Attacks on streaming 
algorithms for ℓ𝑝 

estimation on adversarial 
insertion-deletion streams 
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