A Strong Separation for Adversarially Robust ℓ_0 Estimation for Linear Sketches

Elena Gribelyuk Honghao Lin David P. Woodruff Huacheng Yu Samson Zhou

Streaming Model

- Input: Elements of an underlying data set S , which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

Lots of problems…

- Graph problems: Matchings, MST, MAX-CUT
- Geometric problems: Clustering, facility location
- Statistical problems: Heavy-hitters, norm/moment estimation, quantile estimation
- Algebraic problems: Subspace embeddings, regression, low-rank approximation
- String problems: pattern matching, periodicity
- Others: CSPs, coding theory, submodular optimization, etc

Distinct Elements

- Given a set S of m elements from $|n|$, let f_i be the frequency of element i . (How often it appears)
- Let F_0 be the frequency moment of the vector:

 $F_0 = |\{ i : f_i \neq 0\}|$

- Goal: Given a set S of m elements from $[n]$ and an accuracy parameter ε , output a $(1 + \varepsilon)$ -approximation to F_0
- Motivation: Traffic monitoring

Insertion-Only Streams

• Each update of the stream can only increase a coordinate of the frequency vector $x \in \mathbb{R}^n$

 $1\ 4\ 2\ 1\ 3\ 4\ 4\ 1\rightarrow [3, 1, 1, 3, 0] \coloneqq x$

Streaming Algorithms for ℓ_0 Estimation

 $(1 + \varepsilon)$ -multiplicative approximation streaming algorithms for distinct elements estimation using space:

- $O(log n)$, assuming constant ε and random oracle [FlajoletMartin85]
- $O(log n)$, assuming constant ε [AlonMatiasSzegedy99]
- 0 1 $\frac{1}{\varepsilon^2} \log n$ [Bar-YoseffJayramKumarSivakumar02]
- 0 1 $\frac{1}{\varepsilon^2} \log \log n + \log n$) assumes random oracle, additive error, i.e., HyperLogLog [FlajoletFusyGandouetMeunier07]
- 0 1 $\frac{1}{\varepsilon^2}$ + $\log n$) [KaneNelsonWoodruff10], [Blasiok20]

Streaming Algorithms for ℓ_0 Estimation

- Sample the elements of the universe $[n]$ at rate 1 $\frac{1}{2^i}$ into set S_i for $i = 0, 1, ..., O(\log n)$
- Pick set S_i with roughly $\frac{1}{s^2}$ $\frac{1}{\varepsilon^2} \log n$ items in the stream
- Output $|S_i| \cdot 2^i$ as constant-factor approximation to the number of distinct elements

- Input: Elements of an underlying data set S , which arrives sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function

 $1 \hspace{2.5cm} 1$

 \bullet Goal: Use space *sublinear* in the size m of the input S

- Input: Elements of an underlying data set S , which arrives sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

- Input: Elements of an underlying data set S , which arrives sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

1421

- Input: Elements of an underlying data set S , which arrives sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

- Input: Elements of an underlying data set S , which arrives sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

- Input: Elements of an underlying data set S , which arrives sequentially and *adversarially*
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S

- Adversarially Robust: "Future queries may depend on previous queries"
- Motivation: Database queries, adversarial ML

Robust Algorithms for ℓ_0 Estimation

 $(1 + \varepsilon)$ -multiplicative approximation adversarially robust streaming algorithms for distinct elements estimation using space:

- $\cdot \tilde{O}\left(\frac{1}{\sigma^3}\right)$ $\left(\frac{1}{\epsilon^3}\right)$ · polylog(n), via sketch switching [Ben-EliezerJayaramWoodruffYogev20]
- $\cdot \tilde{O}\left(\frac{1}{c^2}\right)$ $\left(\frac{1}{\varepsilon^{2.5}}\right) \cdot \text{polylog}(n)$, via differential privacy [HassidimKaplanMansourMatiasStemmer20]
- $\cdot \tilde{O}\left(\frac{1}{\sigma^2}\right)$ $\left(\frac{1}{\varepsilon^2}\right)$ · polylog(n), via difference estimators [WoodruffZhou21]

Robust Algorithms for ℓ_0 Estimation

Insertion-Deletion Streams

- Each update $u_t = (a_t, \Delta_t)$ can increase or decrease a coordinate $a_t \in [n]$ of the underlying frequency vector $x \in \mathbb{R}^n$ by $\Delta_t \in \mathbb{Z}$
- For simplicity, we assume $\Delta_t \in \{-1, +1\}$
- In the robust setting, each update u_t can be chosen adversarially

Insertion-Deletion Streams

• $\tilde{O}(m^{1/3})$ space algorithm for distinct element estimation, where m is the length of the stream [Ben-EliezerEdenOnak22]

• Nothing known for constant-factor approximation in space polynomial in n

Linear Sketch

- Algorithm maintains Ax for a matrix A throughout the stream
- The algorithm then outputs $f(Ax)$ for some post-processing function f

• All insertion-deletion streaming algorithms on a sufficiently long stream might as well be linear sketches [LiNguyenWoodruff14, AiHuLiWoodruff16]

Reconstruction Attack on Linear Sketches

- Linear sketches are "not robust" to adversarial attacks, must use $\Omega(n)$ space [HardtWoodruff13]
- Approximately learn sketch matrix \vec{A} , query something in the kernel $of A$
- Iterative process, start with $V_1, ..., V_r$
- Correlation finding: Find vectors weakly correlated with A orthogonal to V_{i-1}
- Boosting: Use these vectors to find strongly correlated vector v
- Progress: Set $V_i = \text{span}(V_{i-1}, v)$

Reconstruction Attack on Linear Sketches

• Attack randomly generates Gaussian vectors

• Analysis uses rotational invariance of Gaussians to observe which directions have larger ℓ_2

• Attack ONLY works on *real-valued inputs* and ONLY against ℓ_2 norm estimation

Our Contribution

• There exists a constant $\varepsilon = \Omega(1)$ such that any linear sketch that produces $(1 + \varepsilon)$ -approximation to ℓ_0 on an adversarial insertion-deletion stream on universe *n* requires $poly(n)$ rows

• There exists a constant $\varepsilon = \Omega(1)$ such that any linear skech that produces $(1 + \varepsilon)$ -approximation to ℓ_0 on an adversarial insertion-deletion stream using $r \ll n$ rows can be broken in $\tilde{O}(r^8)$ queries.

EAttack intuition

Upcoming Reserve Land Questions?

Gap ℓ_0 Norm Problem

- Let α and β be fixed constants
- Distinguish between the case where $||x||_0 < \alpha n$ or $||x||_0 > \beta n$
- Algorithm allowed to arbitrarily output when neither case holds
- Any multiplicative $(1 + \varepsilon)$ -approximation algorithm to ℓ_0 can solve the gap problem, for sufficiently small $\varepsilon \approx$ β α − 1

Attack Outline

- Intuitively, a sketch matrix A may preserve a "large" amount of information about some coordinates and a "small" amount of information about other coordinates
	- There can be a row of A that is nonzero in only a single column
	- A can be sampled such that a random set of $O(1)$ coordinates has large information
	- There can be coordinates that only appears in columns with a large number of nonzero entries

$$
Ax := \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

$$
x := [0,1,0,1,0,0,0]
$$

$$
A_1 := [0,0,0,1,0,0,0] \rightarrow \langle A_1, x \rangle = 1
$$

$$
A_2 := [1, -1,1,1,0,1,1] \rightarrow \langle A_2, x \rangle = 0
$$

Attack Outline

• Adversary wants to gradually learn the sketching matrix

- Strategy:
	- 1. Iteratively identify the significant coordinates and set them to zero in all future queries
	- 2. After we have learned all such coordinates, the query algorithm must rely on the other coordinates, which the sketch Ax only has "small" information

Attack Outline

• Consider an extreme example where the sketch Ax is a subset S of r coordinates of x , unknown to the adversary

- Attack:
	- 1. Identify
	- 2. Place zeros in S and nonzeros elsewhere

Interactive Fingerprinting Code Problem

- An algorithm P selects a set $S \subset [n]$ of coordinates unknown to the fingerprinting code $\mathcal F$
- ${\cal F}$ must identify S by making adaptive queries $c^t \in \{\pm 1\}^n$
- P must answer consistently with some coordinate in c^t , i.e., $a^t = c^t$ for some $i \in [n]$
- BUT $\mathcal P$ can only observe c_i^t for $i \in S$ \rightarrow needs to distinguish between inputs that are all zeros and all ones restricted to S
- Used for watermarking, traitor-tracing schemes [BonehShaw98]

Interactive Fingerprinting Codes

- There exists an interactive fingerprinting code with length $\tilde{O}(n^2)$ [SteinkeUllman15]
- Gap ℓ_0 norm problem needs to distinguish between $||x||_0 < \alpha n$ or $||x||_0 > \beta n$
- Stronger requirement than fingerprinting code (which just needs to distinguish between all zeros and all ones)

Significant Coordinates (I)

- How to quantify significant coordinates?
- \cdot *i* is significant if there exists:
	- an elementary vector e_i that is a row of A

$$
Ax := \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 999 & 1 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1000 \end{bmatrix}
$$

$$
x := \begin{bmatrix} 0, 1, 0, 1, 0, 0, 0 \end{bmatrix}
$$

$$
A_1 := [0,0,0,1,0,0,0] \rightarrow \langle A_1, x \rangle = 1
$$

$$
A_2 := [1,999,1,1,0,1,1] \rightarrow \langle A_2, x \rangle = 1000
$$

Significant Coordinates (II)

- Since the algorithm has Ax , it can recover y^TAx for any vector $\nu \in \mathbb{R}^r$
- If there exists $y \in \mathbb{R}^r$ such that $(y^{\top}Ax)_{i}^{2} \geq \frac{1}{s}$ $\overline{\mathcal{S}}$ $y^{\mathsf{T}}A\Vert_{2}^{2}$, then i is significant (leverage score of column i is large)

Significant Coordinates (II)

- How to quantify significant coordinates?
- \cdot *i* is significant if there exists:
	- an elementary vector e_i that is a row of A
	- $y \in \mathbb{R}^r$ such that $(y^{\top}A)_i^2 \geq \frac{1}{s}$ $\overline{\mathcal{S}}$ $y^{\mathsf{T}}A\|_2^2$

$$
A_1 := [10, 10, 10, 10, 10, 10, 3] \rightarrow \langle A_1, x \rangle = 103
$$

$$
x := [2,3,5,0,0,0,1]
$$

Reveals information about x_n modulo 10

$$
A_1 := [1, 1, 1, 1, 1, \frac{3}{10}] \rightarrow \langle A_1, x \rangle = 10.3
$$

$$
x := [2,3,5,0,0,0,1]
$$

Fractional part of $(y^TA)_n$ is large, for y selecting the first row of A

Significant Coordinates (III)

• *i* is significant if there exists $y \in \mathbb{R}^r$ such that $FRAC(y^{\top}Ax)_i)^2 \geq \frac{1}{s}$ $\overline{\mathcal{S}}$ $\sum_i (\text{FRAC}(y^{\top}Ax)_i)^2$

Significant Coordinates

- How to quantify significant coordinates?
- \cdot *i* is significant if there exists:
	- an elementary vector e_i that is a row of A
	- $y \in \mathbb{R}^r$ such that $(y^{\top}A)_i^2 \geq \frac{1}{s}$ $\overline{\mathcal{S}}$ $y^{\mathsf{T}}A\|_2^2$
	- $y \in \mathbb{R}^r$ such that $(\text{FRAC}(y^{\top}Ax)_i)^2 \geq \frac{1}{s}$ $\overline{\mathcal{S}}$ $\sum_i (\text{FRAC}(y^{\top}Ax)_i)^2$

Pre-processing the Sketch Matrix

- The algorithm has access to linear sketch Ax
- Pre-process the matrix A into a larger matrix A' that separates the significant coordinates
- Only gives the algorithm "more" information

$$
\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 999 & 1 & 1 & 0 & 1 & 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Pre-processing the Sketch Matrix

• Resulting matrix A' is a combination of a sparse part S and a dense part D

$$
A' = \begin{bmatrix} S \\ D \end{bmatrix}
$$

$$
A' = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}
$$

Pre-processing the Sketch Matrix

- Sparse part S has at most one nonzero entry per column
- Dense part D has no significant columns

• Show only $O(rs \log n)$ rows added to A

0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1

• Note that if there were no dense part, we can use fingerprinting code to attack

Overall Attack

1. Pre-process the matrix A into a matrix A' that is a combination of a sparse part S and a dense part D

- 2. Attack sparse part S using fingerprinting code
- 3. Attack dense part D

EAttack on dense part

Upcoming Reserve Land Reserve Land Reserve Land Reserve Proposers and Reserve Land Reserve Denomine Proposers

Attacking the Dense Part

- Design a family of distributions $\mathcal D$ over $[-R, ..., -1, 0, 1, ..., R]$ with $R = \text{poly}(n)$ such that:
	- For $D_p \in \mathcal{D}$ with $p \in [a, b]$, we have $\Pr_{\mathbf{y} \in D}$ $X~thicksim D_p$ $X = 0$] $= p$
	- For any $q, p \in [a, b]$, the total variation distance between Dx_p and Dx_q is small, i.e., $\frac{1}{\text{poly}}$ $poly(n)$

Attacking the Dense Part

- Design a family of distributions $\mathcal D$ over $[-R, ..., -1, 0, 1, ..., R]$ with $R = \text{poly}(n)$ such that:
	- For $D_p \in \mathcal{D}$ with $p \in [a, b]$, we have $\Pr_{\mathbf{y} \in D}$ $X~thicksim D_p$ $X = 0$] $= p$
	- For any $q, p \in [a, b]$, the total variation distance between Dx_p and Dx_q is small, i.e., $\frac{1}{\text{poly}}$ $poly(n)$
- If $x \sim D_p^n$, then $\text{Ex}[\|x\|_0] = pn$ and if $x \sim D_q^n$, then $\text{Ex}[\|x\|_0] =$, *but the marginal distribution of is nearly identical for* $\hat{x} \sim D_p^n$ and $x \sim D_q^n$, so the algorithm must use Sx

Overall Attack

- 1. Pre-process the matrix A into a matrix A' that is a combination of a sparse part S and a dense part D
- 2. Attack sparse part S using fingerprinting code
- 3. Attack dense part D using the family of distributions D

Bounding the Total Variation Distance

- Let P be the probability distribution corresponding to Dx_p and Q be the probability distribution corresponding to Dx_a
- To bound the total variation distance between P and Q , note

$$
|P(x) - Q(x)| = \left| \frac{1}{(2\pi)^r} \int_{u \in [-2\pi, 2\pi]^r} e^{i\langle u, x \rangle} \left(\hat{P}(u) - \hat{Q}(u) \right) du \right|
$$

$$
\leq \frac{1}{(2\pi)^r} \int_{u \in [-2\pi, 2\pi]^r} |\hat{P}(u) - \hat{Q}(u)| du
$$

Bounding the Total Variation Distance

• For a symmetric distribution, we can write

$$
\widehat{P}(u) = \operatorname{Ex}_{z \sim P}[e^{-i\langle u, z \rangle}]
$$

=
$$
\prod_{j \in [n]} \sum_{k \ge 0} (M_p(2k)) \cdot f(D, u, k)
$$

where $M_p(2k) = (\sum_{m\geq 0} P_m m^{2k})$ is the 2k-th moment of the distribution and f is a rapidly decaying function independent of P

Bounding the Total Variation Distance

• To analyze the total variation distance, we have

$$
|\widehat{P}(u)-\widehat{Q}(u)|=\prod_{j\in[n]}\sum_{k\geq 0} \big(M_p(2k)-M_q(2k)\big)\cdot f(D,u,k)
$$

so if the first $2k$ moments of the distributions of P and Q match, for a sufficiently large k , then the TVD is small

Constructing Hard Distributions

- Design a family of distributions D over $[-R, ..., -1, 0, 1, ..., R]$ with $R = \text{poly}(n)$ such that:
	- For $D_p \in \mathcal{D}$ with $p \in [a, b]$, we have $\Pr_{\mathbf{y} \in D}$ $X \sim D_p$ $X = 0$] = p
	- For any $q, p \in [a, b]$, the total variation distance between Dx_p and Dx_q is small, i.e., $\frac{1}{\text{poly}}$ $poly(n)$
	- The first 2k moments of the distributions of D_p and D_q match

Moment Matching

- Want $\mathrm{Ex}_{X\sim D_p}[X^k]=\mathrm{Ex}_{X\sim D_q}[X^k]$ for all $k\leq K=O(r\log n)$
- There exists [LarsenWeinsteinYu20] a polynomial Q such that $|Q(0)| = \Omega(1)$ and for all $t < R - \deg(Q)$:

 \sum $i=0$ \overline{R} \overline{R} \boldsymbol{i} \cdot $Q(i)$ = $O(1)$ \sum $i=0$ \overline{R} $(-1)^i$ \overline{R} \boldsymbol{i} \cdot $Q(i) \cdot i^t = 0$ Set $D_p(i)$ to be $D(i) + c_p \cdot (-1)^i (-1)^i {R_i \choose i}$ \boldsymbol{i} \cdot $Q(i) \cdot i^t$

Overall Attack

- 1. Pre-process the matrix A into a matrix A' that is a combination of a sparse part S and a dense part D
- 2. Attack sparse part S using fingerprinting code
- 3. Attack dense part D using the family of distributions D

Main Results

• There exists a constant $\varepsilon = \Omega(1)$ such that any linear sketch that produces $(1 + \varepsilon)$ -approximation to ℓ_0 on an adversarial insertion-deletion stream on universe *n* requires $poly(n)$ rows

• There exists a constant $\varepsilon = \Omega(1)$ such that any linear skech that produces $(1 + \varepsilon)$ -approximation to ℓ_0 on an adversarial insertion-deletion stream using $r \ll n$ rows can be broken in $\tilde{O}(r^8)$ queries.

Other Results

• Any linear skech that produces 1.1-approximation to ℓ_0 on an adversarial insertion-deletion stream using $r \ll n$ rows can be broken in $\tilde{O}(r^3)$ queries, if the calculations are performed on finite fields \mathbb{F}_p

• There exists an attack on any real-valued linear skech that produces $O(1)$ -approximation to ℓ_0 on an adversarial insertiondeletion stream with $r \ll n$ rows, using $poly(r)$ queries

Future Directions

• Attacks with a smaller number of queries?

• Attacks against pseudo-deterministic algorithms?

Future Directions

Attacks on linear-sketches for ℓ_0 estimation on adversarial insertiondeletion streams

Attacks on streaming algorithms for ℓ_0 estimation on adversarial insertion-deletion streams

Attacks on linear-sketches for ℓ_p estimation on adversarial insertiondeletion streams

Attacks on streaming algorithms for ℓ_p estimation on adversarial insertion-deletion streams