
A Strong Separation for
Adversarially Robust ℓ0

Estimation for Linear Sketches

Elena Gribelyuk
Honghao Lin

David P. Woodruff
Huacheng Yu
Samson Zhou

Streaming Model

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

Lots of problems…

• Graph problems: Matchings, MST, MAX-CUT

• Geometric problems: Clustering, facility location

• Statistical problems: Heavy-hitters, norm/moment
estimation, quantile estimation

• Algebraic problems: Subspace embeddings, regression,
low-rank approximation

• String problems: pattern matching, periodicity

• Others: CSPs, coding theory, submodular optimization, etc

Distinct Elements

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency
of element 𝑖. (How often it appears)

• Let 𝐹0 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹0

• Motivation: Traffic monitoring

𝐹0 = |{𝑖 ∶ 𝑓𝑖 ≠ 0}|

Insertion-Only Streams

• Each update of the stream can only increase a coordinate
of the frequency vector 𝑥 ∈ ℝ𝑛

1 4 2 1 3 4 4 1 3, 1, 1, 3, 0 ≔ 𝑥

4 Distinct
Elements

Streaming Algorithms for ℓ0 Estimation

1 + 𝜀 -multiplicative approximation streaming algorithms for distinct
elements estimation using space:

• 𝑂 log 𝑛 , assuming constant 𝜀 and random oracle [FlajoletMartin85]

• 𝑂 log 𝑛 , assuming constant 𝜀 [AlonMatiasSzegedy99]

• 𝑂
1

𝜀2 log 𝑛 [Bar-YoseffJayramKumarSivakumar02]

• 𝑂
1

𝜀2 log log 𝑛 + log 𝑛 assumes random oracle, additive error, i.e.,

HyperLogLog [FlajoletFusyGandouetMeunier07]

• 𝑂
1

𝜀2 +log 𝑛 [KaneNelsonWoodruff10], [Blasiok20]

Streaming Algorithms for ℓ0 Estimation

• Sample the elements of the universe [𝑛] at rate
1

2𝑖 into set 𝑆𝑖

for 𝑖 = 0,1, … , 𝑂 log 𝑛

• Pick set 𝑆𝑖 with roughly
1

𝜀2 log 𝑛 items in the stream

• Output 𝑆𝑖 ⋅ 2𝑖 as constant-factor approximation to the
number of distinct elements

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1 1

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1 4 2

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1 4 2 3

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1 4 2 1 4

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1 4 2 1 4

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

• Adversarially Robust: “Future queries may depend on
previous queries”

• Motivation: Database queries, adversarial ML

Robust Algorithms for ℓ0 Estimation

1 + 𝜀 -multiplicative approximation adversarially robust streaming
algorithms for distinct elements estimation using space:

• ෨𝑂
1

𝜀3 ⋅ polylog(𝑛), via sketch switching [Ben-

EliezerJayaramWoodruffYogev20]

• ෨𝑂
1

𝜀2.5 ⋅ polylog(𝑛), via differential privacy

[HassidimKaplanMansourMatiasStemmer20]

• ෨𝑂
1

𝜀2 ⋅ polylog(𝑛), via difference estimators [WoodruffZhou21]

Robust Algorithms for ℓ0 Estimation

1 + 𝜀 -multiplicative approximation adversarially robust streaming
algorithms for distinct elements estimation using space:

• ෨𝑂
1

𝜀3 ⋅ polylog(𝑛), via sketch switching [Ben-

EliezerJayaramWoodruffYogev20]

• ෨𝑂
1

𝜀2.5 ⋅ polylog(𝑛), via differential privacy

[HassidimKaplanMansourMatiasStemmer20]

• ෨𝑂
1

𝜀2 ⋅ polylog(𝑛), via difference estimators [WoodruffZhou21]

Nearly tight results for
adversarial robustness on

insertion-only streams

Insertion-Deletion Streams

• Each update 𝑢𝑡 = 𝑎𝑡, Δ𝑡 can increase or decrease a
coordinate 𝑎𝑡 ∈ 𝑛 of the underlying frequency vector 𝑥 ∈ ℝ𝑛
by Δ𝑡 ∈ ℤ

• For simplicity, we assume Δ𝑡 ∈ {−1, +1}

• In the robust setting, each update 𝑢𝑡 can be chosen
adversarially

Insertion-Deletion Streams

• ෨𝑂 𝑚1/3 space algorithm for distinct element estimation,
where 𝑚 is the length of the stream [Ben-EliezerEdenOnak22]

• Nothing known for constant-factor approximation in space
polynomial in 𝑛

Linear Sketch

• Algorithm maintains 𝐴𝑥 for a matrix 𝐴 throughout the stream

• The algorithm then outputs 𝑓(𝐴𝑥) for some post-processing
function 𝑓

• All insertion-deletion streaming algorithms on a sufficiently long
stream might as well be linear sketches [LiNguyenWoodruff14,
AiHuLiWoodruff16]

Reconstruction Attack on Linear Sketches

• Linear sketches are “not robust” to adversarial attacks, must use
Ω(𝑛) space [HardtWoodruff13]

• Approximately learn sketch matrix 𝐴, query something in the kernel
of 𝐴

• Iterative process, start with 𝑉1, … , 𝑉𝑟

• Correlation finding: Find vectors weakly correlated with 𝐴
orthogonal to 𝑉𝑖−1

• Boosting: Use these vectors to find strongly correlated vector 𝑣

• Progress: Set 𝑉𝑖 = span(𝑉𝑖−1, 𝑣)

Reconstruction Attack on Linear Sketches

• Attack randomly generates Gaussian vectors

• Analysis uses rotational invariance of Gaussians to observe
which directions have larger ℓ2

• Attack ONLY works on real-valued inputs and ONLY against
ℓ2 norm estimation

Our Contribution

• There exists a constant 𝜀 = Ω 1 such that any linear sketch
that produces (1 + 𝜀)-approximation to ℓ0 on an adversarial
insertion-deletion stream on universe 𝑛 requires poly(𝑛) rows

• There exists a constant 𝜀 = Ω 1 such that any linear skech that
produces (1 + 𝜀)-approximation to ℓ0 on an adversarial
insertion-deletion stream using 𝑟 ≪ 𝑛 rows can be broken in
෨𝑂 𝑟8 queries.

Questions?Upcoming

▪Attack intuition

Gap ℓ0 Norm Problem

• Let 𝛼 and 𝛽 be fixed constants

• Distinguish between the case where 𝑥 0 < 𝛼𝑛 or 𝑥 0 > 𝛽𝑛

• Algorithm allowed to arbitrarily output when neither case holds

• Any multiplicative (1 + 𝜀)-approximation algorithm to ℓ0 can solve the

gap problem, for sufficiently small 𝜀 ≈
𝛽

𝛼
− 1

Attack Outline

• Intuitively, a sketch matrix 𝐴 may preserve a “large” amount of
information about some coordinates and a “small” amount of
information about other coordinates
• There can be a row of 𝐴 that is nonzero in only a single

column
• 𝐴 can be sampled such that a random set of 𝑂(1)

coordinates has large information
• There can be coordinates that only appears in columns with a

large number of nonzero entries

𝑥 ≔ 0,1,0,1,0,0,0

𝐴1 ≔ 0,0,0,1,0,0,0 𝐴1, 𝑥 = 1
𝐴2 ≔ 1, −1,1,1,0,1,1 𝐴2, 𝑥 = 0

𝐴𝑥 ≔
0 0 0 1 0 0 0
1 − 1 1 1 0 1 1

0
1
0
1
0
0
0

=
1
0

𝐴

𝑥

Attack Outline

• Adversary wants to gradually learn the sketching matrix

• Strategy:
1. Iteratively identify the significant coordinates and set them

to zero in all future queries
2. After we have learned all such coordinates, the query

algorithm must rely on the other coordinates, which the
sketch 𝐴𝑥 only has “small” information

Attack Outline

• Consider an extreme example where the sketch 𝐴𝑥 is a subset 𝑆
of 𝑟 coordinates of 𝑥, unknown to the adversary

• Attack:
1. Identify 𝑆
2. Place zeros in 𝑆 and nonzeros elsewhere

Interactive Fingerprinting Code Problem

• An algorithm 𝒫 selects a set 𝑆 ⊂ [𝑛] of coordinates unknown to the
fingerprinting code ℱ

• ℱ must identify 𝑆 by making adaptive queries 𝑐𝑡 ∈ ±1 𝑛

• 𝒫 must answer consistently with some coordinate in 𝑐𝑡, i.e., 𝑎𝑡 = 𝑐𝑖
𝑡 for

some 𝑖 ∈ 𝑛

• BUT 𝒫 can only observe 𝑐𝑖
𝑡 for 𝑖 ∈ 𝑆 needs to distinguish between

inputs that are all zeros and all ones restricted to 𝑆

• Used for watermarking, traitor-tracing schemes [BonehShaw98]

Interactive Fingerprinting Codes

• There exists an interactive fingerprinting code with length
෨𝑂 𝑛2 [SteinkeUllman15]

• Gap ℓ0 norm problem needs to distinguish between 𝑥 0 < 𝛼𝑛
or 𝑥 0 > 𝛽𝑛

• Stronger requirement than fingerprinting code (which just
needs to distinguish between all zeros and all ones)

Significant Coordinates (I)

• How to quantify significant coordinates?

• 𝑖 is significant if there exists:
• an elementary vector 𝑒𝑖 that is a row of 𝐴

𝑥 ≔ 0,1,0,1,0,0,0

𝐴1 ≔ 0,0,0,1,0,0,0 𝐴1, 𝑥 = 1
𝐴2 ≔ 1,999,1,1,0,1,1 𝐴2, 𝑥 = 1000

𝐴𝑥 ≔
0 0 0 1 0 0 0
1 999 1 1 0 1 1

0
1
0
1
0
0
0

=
1

1000

𝐴

𝑥

Significant Coordinates (II)

• Since the algorithm has 𝐴𝑥, it can recover 𝑦⊤𝐴𝑥 for any vector
𝑦 ∈ ℝ𝑟

• If there exists 𝑦 ∈ ℝ𝑟 such that 𝑦⊤𝐴𝑥 𝑖
2 ≥

1

𝑠
𝑦⊤𝐴 2

2, then 𝑖 is

significant (leverage score of column 𝑖 is large)

Significant Coordinates (II)

• How to quantify significant coordinates?

• 𝑖 is significant if there exists:
• an elementary vector 𝑒𝑖 that is a row of 𝐴

• 𝑦 ∈ ℝ𝑟 such that 𝑦⊤𝐴 𝑖
2 ≥

1

𝑠
𝑦⊤𝐴 2

2

𝑥 ≔ 2,3,5,0,0,0,1

𝐴1 ≔ 10, 10, 10, 10, 10, 10, 3 𝐴1, 𝑥 = 103

Reveals information about 𝑥𝑛 modulo 10

𝑥 ≔ 2,3,5,0,0,0,1

𝐴1 ≔ 1, 1, 1, 1, 1, 1,
3

10
 𝐴1, 𝑥 = 10.3

Fractional part of 𝑦⊤𝐴 𝑛 is large, for
𝑦 selecting the first row of 𝐴

Significant Coordinates (III)

• 𝑖 is significant if there exists 𝑦 ∈ ℝ𝑟 such that

FRAC 𝑦⊤𝐴𝑥 𝑖
2 ≥

1

𝑠
σ𝑖 FRAC 𝑦⊤𝐴𝑥 𝑖

2

Significant Coordinates

• How to quantify significant coordinates?

• 𝑖 is significant if there exists:
• an elementary vector 𝑒𝑖 that is a row of 𝐴

• 𝑦 ∈ ℝ𝑟 such that 𝑦⊤𝐴 𝑖
2 ≥

1

𝑠
𝑦⊤𝐴 2

2

• 𝑦 ∈ ℝ𝑟 such that FRAC 𝑦⊤𝐴𝑥 𝑖
2 ≥

1

𝑠
σ𝑖 FRAC 𝑦⊤𝐴𝑥 𝑖

2

Pre-processing the Sketch Matrix

• The algorithm has access to linear sketch 𝐴𝑥

• Pre-process the matrix 𝐴 into a larger matrix 𝐴′ that separates
the significant coordinates

• Only gives the algorithm “more” information

0 0 0 1 0 0 0
1 999 1 1 0 1 1

0 0 0 1 0 0 0
1 0 1 1 0 1 1
0 1 0 0 0 0 0

𝐴 𝐴′

Pre-processing the Sketch Matrix

• Resulting matrix 𝐴′ is a combination of a sparse part 𝑆 and a
dense part 𝐷

𝐴′ =
𝑆
𝐷

𝐴′ =
0 0 0 1 0 0 0
1 0 1 1 0 1 1
0 1 0 0 0 0 0

→
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 1 1 0 1 1

Pre-processing the Sketch Matrix

• Sparse part 𝑆 has at most one nonzero entry per column

• Dense part 𝐷 has no significant columns

• Show only 𝑂(𝑟𝑠 log 𝑛) rows added to 𝐴

• Note that if there were no dense part, we can use fingerprinting
code to attack 𝑆

0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 1 1 0 1 1

Overall Attack

1. Pre-process the matrix 𝐴
into a matrix 𝐴′ that is a
combination of a sparse
part 𝑆 and a dense part 𝐷

2. Attack sparse part 𝑆 using
fingerprinting code

3. Attack dense part 𝐷

Questions?Upcoming

▪Attack on dense part

Attacking the Dense Part

• Design a family of distributions 𝒟 over −𝑅, … , −1,0,1, … , 𝑅
with 𝑅 = poly(𝑛) such that:
• For 𝐷𝑝 ∈ 𝒟 with 𝑝 ∈ 𝑎, 𝑏 , we have Pr

𝑋∼𝐷𝑝

𝑋 = 0 = 𝑝

• For any 𝑞, 𝑝 ∈ 𝑎, 𝑏 , the total variation distance between

𝐷𝑥𝑝 and 𝐷𝑥𝑞 is small, i.e.,
1

poly(𝑛)

Attacking the Dense Part

• Design a family of distributions 𝒟 over −𝑅, … , −1,0,1, … , 𝑅
with 𝑅 = poly(𝑛) such that:
• For 𝐷𝑝 ∈ 𝒟 with 𝑝 ∈ 𝑎, 𝑏 , we have Pr

𝑋∼𝐷𝑝

𝑋 = 0 = 𝑝

• For any 𝑞, 𝑝 ∈ 𝑎, 𝑏 , the total variation distance between

𝐷𝑥𝑝 and 𝐷𝑥𝑞 is small, i.e.,
1

poly(𝑛)

• If 𝑥 ∼ 𝐷𝑝
𝑛, then Ex 𝑥 0 = 𝑝𝑛 and if 𝑥 ∼ 𝐷𝑞

𝑛, then Ex 𝑥 0 =
𝑞𝑛, but the marginal distribution of 𝐷𝑥 is nearly identical for
𝑥 ∼ 𝐷𝑝

𝑛 and 𝑥 ∼ 𝐷𝑞
𝑛, so the algorithm must use 𝑆𝑥

Overall Attack

1. Pre-process the matrix 𝐴
into a matrix 𝐴′ that is a
combination of a sparse
part 𝑆 and a dense part 𝐷

2. Attack sparse part 𝑆 using
fingerprinting code

3. Attack dense part 𝐷 using
the family of distributions 𝒟

Bounding the Total Variation Distance

• Let 𝑃 be the probability distribution corresponding to 𝐷𝑥𝑝 and
𝑄 be the probability distribution corresponding to 𝐷𝑥𝑞

• To bound the total variation distance between 𝑃 and 𝑄, note

𝑃 𝑥 − 𝑄 𝑥 =
1

2𝜋 𝑟
න

𝑢∈ −2𝜋,2𝜋 𝑟
𝑒𝑖 𝑢,𝑥 𝑃 𝑢 − 𝑄 𝑢 d𝑢

≤
1

2𝜋 𝑟 𝑢∈ −2𝜋,2𝜋 𝑟
𝑃 𝑢 − 𝑄 𝑢 d𝑢

Bounding the Total Variation Distance

• For a symmetric distribution, we can write

𝑃 𝑢 = Ex𝑧∼𝑃 𝑒−𝑖⟨𝑢,𝑧⟩

= ෑ

𝑗∈[𝑛]

𝑘≥0

𝑀𝑝(2𝑘) ⋅ 𝑓(𝐷, 𝑢, 𝑘)

where 𝑀𝑝 2𝑘 = σ𝑚≥0 𝑃𝑚𝑚2𝑘 is the 2𝑘-th moment of the
distribution and 𝑓 is a rapidly decaying function independent of 𝑃

Bounding the Total Variation Distance

• To analyze the total variation distance, we have

𝑃 𝑢 − 𝑄 𝑢 = ෑ

𝑗∈[𝑛]

𝑘≥0

𝑀𝑝 2𝑘 − 𝑀𝑞(2𝑘) ⋅ 𝑓(𝐷, 𝑢, 𝑘)

so if the first 2𝑘 moments of the distributions of 𝑃 and 𝑄 match,
for a sufficiently large 𝑘, then the TVD is small

Constructing Hard Distributions

• Design a family of distributions 𝒟 over −𝑅, … , −1,0,1, … , 𝑅
with 𝑅 = poly(𝑛) such that:
• For 𝐷𝑝 ∈ 𝒟 with 𝑝 ∈ 𝑎, 𝑏 , we have Pr

𝑋∼𝐷𝑝

𝑋 = 0 = 𝑝

• For any 𝑞, 𝑝 ∈ 𝑎, 𝑏 , the total variation distance between

𝐷𝑥𝑝 and 𝐷𝑥𝑞 is small, i.e.,
1

poly(𝑛)

• The first 2𝑘 moments of the distributions of 𝐷𝑝and 𝐷𝑞 match

Moment Matching

• Want Ex𝑋∼𝐷𝑝
𝑋𝑘 = Ex𝑋∼𝐷𝑞

𝑋𝑘 for all 𝑘 ≤ 𝐾 = 𝑂(𝑟 log 𝑛)

• There exists [LarsenWeinsteinYu20] a polynomial 𝑄 such that
𝑄 0 = Ω 1 and for all 𝑡 < 𝑅 − deg 𝑄 :

𝑖=0

𝑅
𝑅

𝑖
⋅ 𝑄 𝑖 = 𝑂 1

𝑖=0

𝑅

−1 𝑖
𝑅

𝑖
⋅ 𝑄 𝑖 ⋅ 𝑖𝑡 = 0

Set 𝐷𝑝 𝑖 to be

𝐷 𝑖 + 𝑐𝑝 ⋅ −1 𝑖 −1 𝑖 𝑅
𝑖

⋅ 𝑄 𝑖 ⋅ 𝑖𝑡

Overall Attack

1. Pre-process the matrix 𝐴
into a matrix 𝐴′ that is a
combination of a sparse
part 𝑆 and a dense part 𝐷

2. Attack sparse part 𝑆 using
fingerprinting code

3. Attack dense part 𝐷 using
the family of distributions 𝒟

Main Results

• There exists a constant 𝜀 = Ω 1 such that any linear sketch
that produces (1 + 𝜀)-approximation to ℓ0 on an adversarial
insertion-deletion stream on universe 𝑛 requires poly(𝑛) rows

• There exists a constant 𝜀 = Ω 1 such that any linear skech that
produces (1 + 𝜀)-approximation to ℓ0 on an adversarial
insertion-deletion stream using 𝑟 ≪ 𝑛 rows can be broken in
෨𝑂 𝑟8 queries.

Other Results

• Any linear skech that produces 1.1-approximation to ℓ0 on an
adversarial insertion-deletion stream using 𝑟 ≪ 𝑛 rows can be
broken in ෨𝑂 𝑟3 queries, if the calculations are performed on
finite fields 𝔽𝑝

• There exists an attack on any real-valued linear skech that
produces 𝑂(1)-approximation to ℓ0 on an adversarial insertion-
deletion stream with 𝑟 ≪ 𝑛 rows, using poly 𝑟 queries

Future Directions

• Attacks with a smaller number of queries?

• Attacks against pseudo-deterministic algorithms?

Future Directions

Attacks on linear-sketches
for ℓ0 estimation on
adversarial insertion-

deletion streams

Attacks on streaming
algorithms for ℓ0

estimation on adversarial
insertion-deletion streams

Attacks on linear-sketches
for ℓ𝑝 estimation on
adversarial insertion-

deletion streams

Attacks on streaming
algorithms for ℓ𝑝

estimation on adversarial
insertion-deletion streams

	Slide 1: A Strong Separation for Adversarially Robust ℓ sub 0 Estimation for Linear Sketches
	Slide 2: Streaming Model
	Slide 3: Lots of problems…
	Slide 4: Distinct Elements
	Slide 5: Insertion-Only Streams
	Slide 6: Streaming Algorithms for ℓ sub 0 Estimation
	Slide 7: Streaming Algorithms for ℓ sub 0 Estimation
	Slide 8: Adversarially Robust Streaming
	Slide 9: Adversarially Robust Streaming
	Slide 10: Adversarially Robust Streaming
	Slide 11: Adversarially Robust Streaming
	Slide 12: Adversarially Robust Streaming
	Slide 13: Adversarially Robust Streaming
	Slide 14: Robust Algorithms for ℓ sub 0 Estimation
	Slide 15: Robust Algorithms for ℓ sub 0 Estimation
	Slide 16: Insertion-Deletion Streams
	Slide 17: Insertion-Deletion Streams
	Slide 18: Linear Sketch
	Slide 19: Reconstruction Attack on Linear Sketches
	Slide 20: Reconstruction Attack on Linear Sketches
	Slide 21: Our Contribution
	Slide 22: Questions?
	Slide 23: Gap ℓ sub 0 Norm Problem
	Slide 24: Attack Outline
	Slide 25
	Slide 26: Attack Outline
	Slide 27: Attack Outline
	Slide 28: Interactive Fingerprinting Code Problem
	Slide 29: Interactive Fingerprinting Codes
	Slide 30: Significant Coordinates (I)
	Slide 31
	Slide 32: Significant Coordinates (II)
	Slide 33: Significant Coordinates (II)
	Slide 34
	Slide 35
	Slide 36: Significant Coordinates (III)
	Slide 37: Significant Coordinates
	Slide 38: Pre-processing the Sketch Matrix
	Slide 39: Pre-processing the Sketch Matrix
	Slide 40: Pre-processing the Sketch Matrix
	Slide 41: Overall Attack
	Slide 42: Questions?
	Slide 43: Attacking the Dense Part
	Slide 44: Attacking the Dense Part
	Slide 45: Overall Attack
	Slide 46: Bounding the Total Variation Distance
	Slide 47: Bounding the Total Variation Distance
	Slide 48: Bounding the Total Variation Distance
	Slide 49: Constructing Hard Distributions
	Slide 50: Moment Matching
	Slide 51: Overall Attack
	Slide 52: Main Results
	Slide 53: Other Results
	Slide 54: Future Directions
	Slide 55: Future Directions

