Fast and Space-Optimal Streaming Algorithms for Euclidean Clustering

Vincent Cohen-Addad

Liudeng Wang

Carnegie David P. Woodruff University

Samson Zhou

Goal: Quickly cluster a stream of n points using O(1) space

k-Clustering

• Goal: Given input dataset X, find a set C of k centers that implicitly partition X into at most k different clusters, while minimizing some associated cost function of the clustering

k-Clustering

• Define clustering cost Cost(X, C) to be a function of ${\operatorname{dist}(x,C)}_{x \in X}$

(·)^z

 $(\cdot)^{z}$

 $(\cdot)^{Z}$

- k-median: $\operatorname{Cost}(X, C) = \sum_{x \in X} \operatorname{dist}(x, C)$ k-means: $\operatorname{Cost}(X, C) = \sum_{x \in X} \left(\operatorname{dist}(x, C)\right)^2$ (k, z)-clustering: $\operatorname{Cost}(X, C) = \sum_{x \in X} \left(\operatorname{dist}(x, C)\right)^z$

Euclidean k-Clustering

• For Euclidean k-clustering, input points $X = x_1, ..., x_n$ are in \mathbb{R}^d (for us, they will be in $[\Delta]^d \coloneqq \{1, 2, ..., \Delta\}^d$)

• dist $(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_d - y_d)^2}$ is the Euclidean distance

• (*k*, *z*)-clustering problem:

$$\min_{C:|C|\leq k} \operatorname{Cost}(X,C) = \min_{C:|C|\leq k} \sum_{x\in X} \left(\operatorname{dist}(x,C)\right)^{z}$$

A Streaming Model

- Input: Underlying data set *X* arrives sequentially
- Output: Output a "good" set C_t of k centers at each time t
- Goal: Use space *sublinear* in the size *n* of the input *X*, with fast update time

Coreset

 Weighted (w) subset X' of representative points of X for a specific clustering objective

• For all sets C with |C| = k,

 $(1 - \varepsilon)$ Cost $(X, C) \le$ Cost $(X', C, w) \le (1 + \varepsilon)$ Cost(X, C)

Coreset Constructions

• For (k, z)-clustering, there exist coreset constructions that only require $\tilde{O}\left(\frac{k}{\min(\varepsilon^4, \varepsilon^{2+z})}\right)$ weighted points of the input [CSS21, CLSS22, CLSSS22, BCJKSTW22, BCPSS24]

• *Independent* of input size *n*

Goal #1: Cluster a stream of n points using O(1) space, i.e., independent of size n

Goal #2: Cluster a stream of n points using o(k) amortized update time

Our Results (I)

• There exists a one-pass algorithm on insertion-only streams that maintains $(1 + \varepsilon)$ -coreset for (k, z)-clustering at *all times in the stream* and uses:

•
$$\tilde{O}\left(\frac{dk}{\min(\varepsilon^4,\varepsilon^{2+z})}\right)$$
 words of space

• $d \log(k) \cdot polylog(\log(n\Delta))$ amortized update time

Corollary

• There exists a one-pass algorithm on insertion-only streams that maintains O(z)-approximation for (k, z)-clustering at *all times in the stream* and uses:

•
$$\tilde{O}\left(\frac{dk}{\min(\varepsilon^4,\varepsilon^{2+z})}\right)$$
 words of space

• $d \log(k) \cdot polylog(\log(n\Delta))$ amortized update time

Streaming algorithm	Words of Memory	
[HK07], $z \in \{1, 2\}$	$\tilde{\mathcal{O}}\left(\frac{dk^{1+z}}{\varepsilon^{\mathcal{O}(d)}}\log^{d+z}n\right)$	
[HM04], $z \in \{1, 2\}$	$\tilde{\mathcal{O}}\left(\frac{dk}{\varepsilon^d}\log^{2d+2}n\right)$	
[Che09], $z \in \{1, 2\}$	$ ilde{\mathcal{O}}\left(rac{d^2k^2}{arepsilon^2}\log^8n ight)$	
[FL11], $z \in \{1, 2\}$	$\tilde{\mathcal{O}}\left(\frac{d^2k}{\varepsilon^{2z}}\log^{1+2z}n\right)$	
Sensitivity and rejection sampling [BFLR19]	$\tilde{\mathcal{O}}\left(rac{d^2k^2}{arepsilon^2}\log n ight)$	
Online sensitivity sampling	$ ilde{\mathcal{O}}\left(rac{d^2k^2}{arepsilon^2}\log^2 n ight)$	
Merge-and-reduce with coreset of [CLSS22]	$ ilde{\mathcal{O}}\left(rac{dk}{\min(arepsilon^4,arepsilon^{2+z})}\log^4 n ight)$	
[CWZ23]	$\tilde{\mathcal{O}}\left(\frac{dk}{\min(\varepsilon^4,\varepsilon^{2+z})}\right) \cdot \operatorname{polylog}(\log n)$	
Theorem 1.1 (this work)	$ ilde{\mathcal{O}}\left(rac{dk}{\min(arepsilon^{4},arepsilon^{2+z})} ight)$	

Fig. 1: Table of (k, z)-clustering algorithms on insertion-only streams. We summarize existing results with $z = \mathcal{O}(1)$, $\Delta = \text{poly}(n)$, and the assumption that $k > \frac{1}{\varepsilon^z}$ for the purpose of presentation.

Streaming algorithm	Amortized Update Time	
[HK20]	$k^2 \cdot \operatorname{polylog}(n\Delta)$	
[BCLP23]	$k \cdot \mathrm{polylog}(n\Delta)$	
Theorem 1.1 (this work)	$\log(k) \cdot \operatorname{polylog}(\log(n\Delta))$	

Fig. 2: Table of (k, z)-clustering algorithms on data streams, omitting linear dependencies in the dimension d. We remark that [HK20, BCLP23] can handle the fully-dynamic setting, whereas ours cannot. On the other hand, our algorithm uses sublinear space while theirs does not.

Subspace Embedding

• Subspace embedding: Given $\varepsilon > 0$ and $A \in$ $R^{n \times d}$, find matrix $M \in R^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^d$,

 $(1 - \varepsilon) \|Ax\|_2 \le \|Mx\|_2 \le (1 + \varepsilon) \|Ax\|_2$

- Equivalent to $(1 \varepsilon)A^{\top}A \leq M^{\top}M \leq$ $(1+\varepsilon)A^{\mathsf{T}}A$
- Can be used to approximate *all* cuts of a graph when rows of A correspond to graph edges

Our Results (II)

• There exists a one-pass algorithm on insertion-only streams with online condition number κ and maximum entry M that maintains $(1 + \varepsilon)$ -coreset for subspace embeddings at *all times in the stream* and uses:

•
$$\tilde{O}(d^2 \log(nM)) + \frac{d^2}{\epsilon^2} \cdot \operatorname{polylog}\left(d, \frac{1}{\epsilon}, \log(n\kappa)\right)$$
 words of space

• O(d) amortized update time

Our Results (III)

• Structural properties in "efficient encoding" also give improved communication bounds for clustering in distributed models

Upcoming

• (k, z)-Clustering in O(1) Space

Questions?

Goal #1: Cluster a stream of *n* points using O(1) space, i.e., independent of size *n*

Goal #2: Cluster a stream of n points using o(k) amortized update time

• Merge-and-reduce framework

• Example: Suppose there exists a $(1 + \varepsilon)$ -coreset construction for *k*-means clustering that uses $f\left(k, \frac{1}{\varepsilon}\right)$ weighted input points

$$\int \quad \tilde{O}\left(\frac{k}{\varepsilon^4}\right)$$

- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\epsilon}\right)$ points
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for each block $\int \tilde{O}\left(\frac{k}{\varepsilon^4}\log^2 n\right)$ • Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for the set of points formed by the union of two coresets for each block

- There are $O(\log n)$ levels
- Each coreset is a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset of two coresets
- Total approximation is $\left(1 + \frac{\varepsilon}{\log n}\right)^{\log n} = (1 + O(\varepsilon))$

• Total space is
$$f\left(k, \frac{\log n}{\varepsilon}\right) \cdot O(\log n)$$
 points

For k-means clustering, this is
$$\tilde{O}\left(\frac{k}{\epsilon^4} \cdot \log^3 n\right)$$
 points

Not independent of size *n* of the stream length!

Sensitivity Sampling

• The quantity $s(x) = \max_{C} \frac{Cost(x,C)}{Cost(X,C)}$ is called the *sensitivity* of *x* and intuitively measures how "important" the point *x* is

Online Sensitivity Sampling

- In a data stream, computing/approximating sensitivity $s(x) = \max_{C} \frac{Cost(x,C)}{Cost(X,C)}$ requires seeing the entire dataset X, but then it is too late to sample x
- We define the online sensitivity of x_t with respect to a stream $x_1, ..., x_n$ to be $\varphi(x_t) = \max_{C} \frac{Cost(x_t,C)}{Cost(X_t,C)}$, where $X_t = x_1, ..., x_t$, which intuitively measures how "important" the point x is SO FAR

Online Sensitivity Sampling

• Observation: we can use a $(1 + \varepsilon)$ -coreset to obtain a $(1 + \varepsilon)$ -approximation to $\varphi(x_t)$

• Use samples obtained from online sensitivity sampling at each time t - 1 to obtain a $(1 + \varepsilon)$ -approximation to $\varphi(x_t)$

• Can then perform online sensitivity sampling at time *t* and by induction, at all times in the stream

Online Sensitivity Sampling

- The *total online sensitivity* of $X = (x_1, ..., x_n)$ is $\sum_{t \in [n]} \varphi(x_t)$
- Quantifies how many points will be sampled
- Total online sensitivity is $O(k \log^2(nd\Delta)) \rightarrow$ we get a coreset of size $\sum_t p(x_t) = \frac{k^2 d}{\epsilon^2} \cdot \text{polylog}(n\Delta)$ (after a union bound)
- Sampling is done online, can view as a new stream X'

Insertion-Only Algorithm [CWZ23]

1. Perform online sensitivity sampling to *implicitly* create new stream X'

2. In parallel, run merge-and-reduce on X'

Insertion-Only Algorithm [CWZ23]

- New stream X' has length $\frac{k^2 d}{\epsilon^2} \cdot \text{polylog}(n\Delta)$
- Run merge-and-reduce on X'
- Recall: merge-and-reduce for k-means stored $\tilde{O}\left(\frac{k}{\epsilon^4} \cdot \log^3 n\right)$ points, but n was the length of the stream

• Total number of points now is $\tilde{O}\left(\frac{k}{\epsilon^4}\right) \cdot \operatorname{polylog}\left(k, d, \frac{1}{\epsilon}, \log(n\Delta)\right)$

Insertion-Only Algorithm

• Total number of points now is $\tilde{O}\left(\frac{k}{\epsilon^4}\right) \cdot \operatorname{polylog}\left(k, d, \frac{1}{\epsilon}, \log(n\Delta)\right)$

• Specifically, there are polylog
$$\left(k, d, \frac{1}{\varepsilon}, \log(n\Delta)\right)$$
 groups G_1, \ldots, G_ℓ of $\tilde{O}\left(\frac{k}{\varepsilon^4}\right) \cdot \operatorname{polylog}\left(k, d, \frac{1}{\varepsilon}, \log(n\Delta)\right)$ points

• If we want independence of size *n* of the stream length, cannot afford to store all points explicitly

Stream

- Look at a specific group G_i and compute a near-optimal solution S_i
- Store *offset* of each point from one of the centers of S_i

- For each point $x \in G_i$, let c_x be the closest center of S_i and $y = c_x x$
- Round y coordinate-wise to nearest power of $1 + \varepsilon'$ and store the vector of exponents \tilde{y}

• Round y coordinate-wise to nearest power of $1 + \varepsilon'$ and store the vector of exponents \tilde{y}

• For
$$\varepsilon' = \operatorname{poly}\left(\frac{\varepsilon}{\log(nd\Delta)}\right)$$
:

- Results in a $(1 + O(\varepsilon))$ -coreset of G_i
- Encoding each point uses $d \cdot \text{polylog}\left(\frac{1}{\epsilon}, \log(nd\Delta)\right)$ bits
- Encoding each group G_i uses $\tilde{O}\left(\frac{dk}{\epsilon^4}\right)$ words of space, e.g., for S_i
- However, there are polylog $\left(k, d, \frac{1}{\varepsilon}, \log(n\Delta)\right)$ groups G_1, \dots, G_ℓ

Stream

Global Encoding

• Instead of storing a near-optimal solution S_i for each group G_i , store a single near-optimal global solution S

- Store *offset* of each point from one of the centers of *S*
- For each point $x \in G_i$, let c_x be the closest center of S and $y = c_x x$
- Round y coordinate-wise to nearest power of $1 + \varepsilon'$ and store the vector of exponents \tilde{y}

Global Encoding

- For $\varepsilon' = \operatorname{poly}\left(\frac{\varepsilon}{\log(nd\Delta)}\right)$:
 - Rounded points no longer provide a $(1 + O(\varepsilon))$ -coreset of each G_i , but give $O(\varepsilon) \cdot OPT$ additive error, so $(1 + O(\varepsilon))$ -approximation overall
- Global encoding uses $\tilde{O}\left(\frac{dk}{\epsilon^4}\right)$ total words of space

- 1. Perform online sensitivity sampling to *implicitly* create new stream X'
- 2. In parallel, run merge-and-reduce on X'
- 3. Efficient global encoding on resulting coresets

Upcoming

• (k, z)-Clustering in o(k) Amortized Update Time

Questions?

• Algorithm bottleneck: approximation of online sensitivities for the sampling process to form the stream X'

- Computing a "good" approximation to sensitivities is often as hard as computing a "good" approximation to clustering
- Constant-factor approximation in time $O(dn^2)$ [GT08]
- We can view $n = \tilde{O}\left(\frac{k}{\epsilon^4}\right) \cdot \text{polylog}(d, \log(n\Delta))$

- Insight: Previous algorithm utilized a significantly smaller stream X' with length $\frac{k^2 d}{\epsilon^2} \cdot \text{polylog}(n\Delta)$
- Repeat this idea another level!

• Create stream \tilde{X} with length $n^{1-c} \cdot \frac{k^2 d}{\epsilon^2} \cdot \text{polylog}(n\Delta)$

• Create stream
$$\tilde{X}$$
 with length $n^{1-c} \cdot \frac{k^2 d}{\epsilon^2} \cdot \text{polylog}(n\Delta)$

• Can again use online sensitivity sampling of X to form \tilde{X}

• Now just need n^{1-c} -approximations for sensitivities

• Theorem: For any constant $c \in (0,1)$, there exists an algorithm that computes n^{1-c} -approximations to the sensitivities of a batch of k points of X using $d \log(k) \cdot \frac{1}{\log(\log(n\Delta))}$ amortized update time

Structural Property

• Both clustering costs and sensitivities are distorted by a O(1) when the cluster centers is among the input points

•
$$s(x) = \max_{C} \frac{Cost(x,C)}{Cost(X,C)}$$
 is an optimization problem

• Fast enumeration over the center serving a point that realizes the sensitivity when $|X| = \tilde{O}\left(\frac{k}{\epsilon^4}\right) \cdot \text{polylog}(d, \log(n\Delta))$

Structural Property

• Fast enumeration over the center serving a point that realizes the sensitivity when $|X| = \tilde{O}\left(\frac{k}{\epsilon^4}\right) \cdot \text{polylog}(d, \log(n\Delta))$

• For a fixed center *c* serving a point *x*, $\max_{C} \frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(x,C)}$ is now a constrained optimization problem for minimizing $\operatorname{Cost}(X,C)$, since no center in *C* can be closer to *x* than *c*

Total cost: 0 Level cost: 0

Total cost: $\left(\frac{7}{2} + \frac{11}{4}\right)\Delta$ Level cost: $\frac{\Delta}{4} \cdot 11$ 0 0 0 \mathbf{O} 0 \mathbf{O} \mathbf{O} 0 \mathbf{O} <mark>6</mark>▲ 6

- Choose side length of grid ℓ to be ζ^{ℓ} for $\zeta = O(n^{1-c})$, so there are only $O\left(\frac{1}{c}\right)$ levels in the quadtree
- Makes nearest-neighbor search much faster

- Can quickly solve a near-optimal clustering problem, generalizing an algorithm of [CLNSS20]
- Additional structural result to quickly approximate constrained clustering problem

Constrained Clustering

Upcoming

Subspace embeddings

Questions?

- 1. Perform online leverage score sampling to *implicitly* create new matrix A'
- 2. In parallel, run merge-and-reduce on A'
- 3. Efficient global encoding on resulting coresets

- Suppose we have a constant-factor subspace embedding *M* for the matrix *A*
- How to achieve $(1 + \varepsilon)$ -factor subspace embedding?

- Previously: charged each point to closest center
- Round each coordinate in each row to a power of $(1 + \varepsilon')$ after multiplying by a deterministic preconditioner of M

Crude Leverage Score Approximation

 Suppose we have a constant-factor subspace embedding M for the matrix A

- Let $Z = (M^{T}M)^{-1/2}$ so that $||Za_t||_2^2$ is a constant-factor approximation to the leverage score
- $\|gZa_t\|_2^2$ is n^{1-c} approximation to $\|Za_t\|_2^2$ for random gaussian g
- Compute in O(d) time since gZ does not change much over the stream

Summary

- We achieve one-pass algorithms on insertion-only streams that maintain $(1 + \varepsilon)$ -coreset for (k, z)-clustering and subspace embedding that use:
 - Words of space *independent* of stream length *n* (matching offline coreset constructions)
 - d log(k) · polylog(log(n∆)) amortized update time for clustering and O(d) amortized update time for subspace embedding

Open Questions

 Does there exist an algorithm for low-rank approximation on insertion-only streams that uses words of space independent of stream length n?

 Does there exist an algorithm for graph sparsification on insertion-only streams that match the offline coreset constructions?