Fast and Space-Optimal Streaming Algorithms for Euclidean Clustering

Vincent Cohen-Addad

Liudeng Wang

Carnegie David P. Woodruff **University**

Samson Zhou

Goal: Quickly cluster a stream of n points using $O(1)$ space

k-Clustering

• Goal: Given input dataset X, find a set C of k centers that implicitly partition X into at most k different clusters, while minimizing some associated cost function of the clustering

k -Clustering

- Define clustering cost $Cost(X, C)$ to be a function of $\{dist(x, C)\}_{x \in X}$
- k -median: $Cost(X, C) = \sum_{x \in X} dist(x, C)$
- k -means: $\text{Cost}(X, C) = \sum_{x \in X} (\text{dist}(x, C))$ 2
- (k, z) -clustering: $Cost(X, C) = \sum_{x \in X} (dist(x, C))$

Z

 \cdot)^Z

 \cdot)^Z

⋅ Z

⋅ Z

 \cdot)^Z

 \cdot)^Z

⋅ Z

Euclidean k -Clustering

• For Euclidean *k*-clustering, input points $X = x_1, ..., x_n$ are in \mathbb{R}^d (for us, they will be in $[\Delta]^d := \{1, 2, ..., \Delta\}^d$)

• dist(x, y) = $\sqrt{(x_1 - y_1)^2 + \dots + (x_d - y_d)^2}$ is the Euclidean distance

• (k, z) -clustering problem:

$$
\min_{C:|C| \leq k} Cost(X, C) = \min_{C:|C| \leq k} \sum_{x \in X} (dist(x, C))^z
$$

A Streaming Model

- Input: Underlying data set X arrives sequentially
- Output: Output a "good" set C_t of k centers at each time t
- \bullet Goal: Use space *sublinear* in the size n of the input X , with fast update time

Coreset

• Weighted (w) subset X' of representative points of X for a specific clustering objective

• For all sets C with $|C| = k$,

 $1 - \varepsilon$) $Cost(X, C) \leq Cost(X', C, w) \leq (1 + \varepsilon) Cost(X, C)$

Coreset Constructions

• For (k, z) -clustering, there exist coreset constructions that only require $\tilde{O}\left(\frac{k}{\min\{c^4\}}\right)$ $min(\varepsilon^4, \varepsilon)$ $\overline{L_{(2+z_0)}}$ weighted points of the input [CSS21, CLSS22, CLSSS22, BCJKSTW22, BCPSS24]

• *Independent* of input size *n*

Goal #1: Cluster a stream of *n* points using $O(1)$ space, i.e., independent of size n

Goal #2: Cluster a stream of *n* points using $o(k)$ amortized update time

Our Results (I)

• There exists a one-pass algorithm on insertion-only streams that maintains $(1 + \varepsilon)$ -coreset for (k, z) -clustering at *all times in the stream* and uses:

•
$$
\tilde{O}\left(\frac{dk}{\min(\varepsilon^4,\varepsilon^{2+z})}\right)
$$
 words of space

• $d \log(k)$ · polylog(log($n\Delta$)) amortized update time

Corollary

• There exists a one-pass algorithm on insertion-only streams that maintains $O(z)$ -approximation for (k, z) -clustering at *all times in the stream* and uses:

•
$$
\tilde{O}\left(\frac{dk}{\min(\varepsilon^4,\varepsilon^{2+z})}\right)
$$
 words of space

• $d \log(k)$ · polylog(log($n\Delta$)) amortized update time

Fig. 1: Table of (k, z) -clustering algorithms on insertion-only streams. We summarize existing results with $z = \mathcal{O}(1)$, $\Delta = \text{poly}(n)$, and the assumption that $k > \frac{1}{\varepsilon^z}$ for the purpose of presentation.

Fig. 2: Table of (k, z) -clustering algorithms on data streams, omitting linear dependencies in the dimension d . We remark that [HK20, BCLP23] can handle the fully-dynamic setting, whereas ours cannot. On the other hand, our algorithm uses sublinear space while theirs does not.

Subspace Embedding

• Subspace embedding: Given $\varepsilon > 0$ and $A \in$ $R^{n \times d}$, find matrix $M \in R^{m \times d}$ with $m \ll n$, such that for $\mathit{every}\ x \in \mathbb{R}^d$,

 $(1 - \varepsilon) \|Ax\|_2 \le \|Mx\|_2 \le (1 + \varepsilon) \|Ax\|_2$

- Equivalent to $(1 \varepsilon)A^{\top}A \leqslant M^{\top}M \leqslant$ $1 + \varepsilon)A^{\mathsf{T}}A$
- Can be used to approximate *all* cuts of a graph when rows of \vec{A} correspond to graph edges

Our Results (II)

• There exists a one-pass algorithm on insertion-only streams with online condition number κ and maximum entry M that maintains $(1 + \varepsilon)$ -coreset for subspace embeddings at *all times in the stream* and uses:

•
$$
\tilde{O}(d^2 \log(nM)) + \frac{d^2}{\varepsilon^2} \cdot \text{polylog}\left(d, \frac{1}{\varepsilon}, \log(n\kappa)\right)
$$
 words of space

$$
\bullet
$$
 $O(d)$ a
mortized update time

Our Results (III)

• Structural properties in "efficient encoding" also give improved communication bounds for clustering in distributed models

\blacksquare (k, z)-Clustering in $O(1)$ Space

Upcoming and Questions?

Goal #1: Cluster a stream of n points using $O(1)$ space, | i.e., independent of size n

Goal #2: Cluster a stream of *n* points using $o(k)$ amortized update time

• Merge-and-reduce framework

• Example: Suppose there exists a $(1 + \varepsilon)$ -coreset construction for k-means clustering that uses f (k , 1 $\mathcal{E}_{\mathcal{L}}$ weighted input points

$$
\widetilde{O}\left(\frac{k}{\varepsilon^4}\right)
$$

• Partition the stream into blocks containing f (k , $\log n$ $\mathcal{E}_{\mathcal{C}}$

 $\mathcal{E}_{\mathcal{C}}$

• Create a $(1 +$

 $\log n$ • Create a $(1 +$ \mathcal{E}_{0}^{2} $\log n$ -coreset for the set of points formed by the union of two coresets for each block $\frac{\pi}{\varepsilon^4}$ log² n

-coreset for each block $\qquad \qquad \longrightarrow a$

points

 \boldsymbol{k}

- There are $O(\log n)$ levels
- Each coreset is a $(1 +$ $\mathcal{E}_{\mathcal{C}}$ $\log n$ -coreset of two coresets
- Total approximation is $(1 +$ $\mathcal{E}_{\mathcal{C}}$ $\log n$ $\log n$ $= (1 + O(\varepsilon))$

\n- Total space is
$$
f\left(k, \frac{\log n}{\varepsilon}\right) \cdot O(\log n)
$$
 points
\n

For *k*-means clustering, this is
$$
\tilde{O}\left(\frac{k}{\varepsilon^4} \cdot \log^3 n\right)
$$
 points

Not independent of size n of the stream length!

Sensitivity Sampling

• The quantity $s(x) = \max$ $\mathcal C$ $Cost(x, C)$ $Cost(X, C)$ is called the *sensitivity* of x and intuitively measures how "important" the point x is

Online Sensitivity Sampling

- In a data stream, computing/approximating sensitivity $s(x) = \max$ $\overline{\mathcal{C}}$ $Cost(x, C)$ $Cost(X, C)$ requires seeing the entire dataset X , but then it is too late to sample x
- We define the *online sensitivity* of x_t with respect to a stream $x_1, ..., x_n$ to be $\varphi(x_t) = \max_{\mathcal{C}}$ $\mathcal C$ $\mathsf{Cost}(x_t, \mathcal{C})$ $Cost(X_t, C)$, where $X_t =$ $x_1, ..., x_t$, which intuitively measures how "important" the point x is *SO FAR*

Online Sensitivity Sampling

• Observation: we can use a $(1 + \varepsilon)$ -coreset to obtain a $(1 + \varepsilon)$ -approximation to $\varphi(x_t)$

• Use samples obtained from online sensitivity sampling at each time $t - 1$ to obtain a $(1 + \varepsilon)$ -approximation to $\varphi(x_t)$

• Can then perform online sensitivity sampling at time t and by induction, at all times in the stream

Online Sensitivity Sampling

- The *total online sensitivity* of $X = (x_1, ..., x_n)$ is $\sum_{t \in [n]} \varphi(x_t)$
- Quantifies how many points will be sampled
- Total online sensitivity is $O(k \log^2(nd\Delta)) \to$ we get a coreset of size $\sum_t p(x_t) =$ k^2d $\frac{2}{\varepsilon^2}$ · polylog($n\Delta$) (after a union bound)
- Sampling is done online, can view as a new stream X'

Insertion-Only Algorithm [CWZ23]

1. Perform online sensitivity sampling to *implicitly* create new stream X'

2. In parallel, run merge-and-reduce on X'

Insertion-Only Algorithm [CWZ23]

- New stream X' has length $\frac{k^2 d}{a^2}$ $\frac{1}{\varepsilon^2}$ · polylog($n\Delta$
- \bullet Run merge-and-reduce on X'
- Recall: merge-and-reduce for k -means stored $\tilde{O}(\frac{k}{\epsilon^4})$ $\frac{\kappa}{\varepsilon^4} \cdot \log^3 n$ points, but n was the length of the stream

• Total number of points now is $\tilde{O}\left(\frac{k}{\epsilon^4}\right)$ $\left(\frac{\kappa}{\varepsilon^4}\right) \cdot \operatorname{polylog}\left(k, d\right)$ 1 $\mathcal{E}_{\mathcal{C}}$, $log(n\Delta)$

Insertion-Only Algorithm

• Total number of points now is $\tilde{O}\left(\frac{k}{\epsilon^4}\right)$ $\left(\frac{\kappa}{\varepsilon^4}\right) \cdot \operatorname{polylog}\left(k, d\right)$ 1 $\mathcal{E}_{\mathcal{C}}$, $log(n\Delta)$

• Specifically, there are polylog
$$
(k, d, \frac{1}{\varepsilon}, \log(n\Delta))
$$
 groups $G_1, ..., G_\ell$ of $\tilde{O}\left(\frac{k}{\varepsilon^4}\right) \cdot \text{polylog}\left(k, d, \frac{1}{\varepsilon}, \log(n\Delta)\right)$ points

• If we want independence of size n of the stream length, cannot afford to store all points explicitly

Stream

- Look at a specific group G_i and compute a near-optimal solution S_i
- Store *offset* of each point from one of the centers of S_i

- For each point $x \in G_i$, let c_x be the closest center of S_i and $y =$ $c_{\chi}-x$
- Round y coordinate-wise to nearest power of $1 + \varepsilon'$ and store the vector of exponents \tilde{y}

• Round y coordinate-wise to nearest power of $1 + \varepsilon'$ and store the vector of exponents \tilde{y}

• For
$$
\varepsilon' = \text{poly}\left(\frac{\varepsilon}{\log(nd\Delta)}\right)
$$
:

- Results in a $(1 + O(\varepsilon))$ -coreset of G_i
- Encoding each point uses $d \cdot \mathrm{polylog} \Big(\frac{1}{\epsilon}\Big)$ $\mathcal{E}_{\mathcal{C}}$, $\log(nd\Delta)$ $\big)$ bits
- Encoding each group G_i uses $\tilde{O}\left(\frac{dk}{s^4}\right)$ $\mathcal{E}_{\mathcal{C}}$ $\left(\frac{\kappa}{4}\right)$ words of space, e.g., for S_i
- However, there are $\operatorname{polylog}(k, d)$ 1 $\mathcal{E}_{\mathcal{C}}$, $\log (n \Delta)$) groups $G_1,$ \dots , G_ℓ

Stream

Global Encoding

• Instead of storing a near-optimal solution S_i for each group G_i , store a single near-optimal global solution S

- Store *offset* of each point from one of the centers of S
- For each point $x \in G_i$, let c_x be the closest center of S and $y =$ $c_{\chi}-x$
- Round y coordinate-wise to nearest power of $1 + \varepsilon'$ and store the vector of exponents \tilde{v}

Global Encoding

- For $\varepsilon' = \text{poly}\left(\frac{\varepsilon}{\log(n)}\right)$ $log(nd\Delta)$:
:
	- Rounded points no longer provide a $(1 + O(\varepsilon))$ -coreset of each G_i , but give $O(\varepsilon) \cdot \text{OPT}$ additive error, so $(1 + O(\varepsilon))$ approximation overall
- Global encoding uses $\tilde{O}\left(\frac{dk}{c^4}\right)$ $\left(\frac{u\kappa}{\varepsilon^4}\right)$ total words of space

- 1. Perform online sensitivity sampling to *implicitly* create new stream X'
- 2. In parallel, run merge-and-reduce on X'
- 3. Efficient global encoding on resulting coresets

\blacksquare (k, z)-Clustering in $o(k)$ Amortized Update Time

Upcoming and Questions?

• Algorithm bottleneck: approximation of online sensitivities for the sampling process to form the stream X'

- Computing a "good" approximation to sensitivities is often as hard as computing a "good" approximation to clustering
- Constant-factor approximation in time $O(dn^2)$ [GT08]
- We can view $n = \tilde{O}\left(\frac{k}{\epsilon^4}\right)$ $\left(\frac{\kappa}{\varepsilon^4}\right) \cdot \operatorname{polylog}(d, \log(n\Delta))$

- Insight: Previous algorithm utilized a significantly smaller stream X' with length $\frac{k^2 d}{a^2}$ $\frac{1}{\varepsilon^2}$ · polylog($n\Delta$
- Repeat this idea another level!

• Create stream \tilde{X} with length n^{1-c} . k^2d $\frac{1}{\varepsilon^2}$ · polylog($n\Delta$

• Create stream
$$
\tilde{X}
$$
 with length $n^{1-c} \cdot \frac{k^2 d}{\varepsilon^2} \cdot \text{polylog}(n\Delta)$

• Can again use online sensitivity sampling of X to form \tilde{X}

• Now just need n^{1-c} -approximations for sensitivities

• Theorem: For any constant $c \in (0,1)$, there exists an algorithm that computes n^{1-c} -approximations to the sensitivities of a batch of k points of X using $d \log(k)$. polylog($log(n\Delta)$) amortized update time

Structural Property

• Both clustering costs and sensitivities are distorted by a $O(1)$ when the cluster centers is among the input points

•
$$
s(x) = \max_{C} \frac{\text{Cost}(x, C)}{\text{Cost}(X, C)}
$$
 is an optimization problem

• Fast enumeration over the center serving a point that realizes the sensitivity when $|{\rm X}| = \tilde{O}\left(\frac{k}{\epsilon^4}\right)$ $\left(\frac{\kappa}{\varepsilon^4}\right) \cdot \operatorname{polylog}(d, \log(n\Delta))$

Structural Property

- Fast enumeration over the center serving a point that realizes the sensitivity when $|{\rm X}| = \tilde{O}\left(\frac{k}{\epsilon^4}\right)$ $\left(\frac{\kappa}{\varepsilon^4}\right) \cdot \operatorname{polylog}(d, \log(n\Delta))$
- For a fixed center c serving a point x , max \overline{C} $Cost(x, C)$ $Cost(X, C)$ is now a constrained optimization problem for minimizing $Cost(X, C)$, since no center in C can be closer to x than c

Total cost: 0 Level cost: 0

Total cost: 7 2 + 11 4 Δ Level cost: $\frac{\Delta}{4}$ 4

- Choose side length of grid ℓ to be ζ^{ℓ} for $\zeta = O(n^{1-c})$, so there are only O 1 \overline{c} levels in the quadtree
- Makes nearest-neighbor search much faster

- Can quickly solve a near-optimal clustering problem, generalizing an algorithm of [CLNSS20]
- Additional structural result to quickly approximate constrained clustering problem

Constrained Clustering

▪Subspace embeddings

Upcoming Reserve Life Cuestions?

- 1. Perform online leverage score sampling to *implicitly* create new matrix A'
- 2. In parallel, run merge-and-reduce on A'
- 3. Efficient global encoding on resulting coresets

- Suppose we have a constant-factor subspace embedding M for the matrix A
- How to achieve $(1 + \varepsilon)$ -factor subspace embedding?

- Previously: charged each point to closest center
- Round each coordinate in each row to a power of $(1 + \varepsilon')$ after multiplying by a deterministic preconditioner of M

Crude Leverage Score Approximation

- Suppose we have a constant-factor subspace embedding M for the matrix A
- Let $Z = (M^{\top}M)^{-1/2}$ so that $||Za_t||_2^2$ is a constant-factor approximation to the leverage score
- $||gZa_t||_2^2$ is n^{1-c} approximation to $||Za_t||_2^2$ for random gaussian g
- Compute in $O(d)$ time since qZ does not change much over the stream

Summary

- We achieve one-pass algorithms on insertion-only streams that maintain $(1 + \varepsilon)$ -coreset for (k, z) -clustering and subspace embedding that use:
	- Words of space *independent* of stream length *n* (matching offline coreset constructions)
	- $d \log(k)$ · polylog(log($n\Delta$)) amortized update time for clustering and $O(d)$ amortized update time for subspace embedding

Open Questions

• Does there exist an algorithm for low-rank approximation on insertion-only streams that uses words of space independent of stream length n ?

• Does there exist an algorithm for graph sparsification on insertion-only streams that match the offline coreset constructions?