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Goal: Quickly cluster a stream of 𝑛 points using 𝑂(1) space



𝑘-Clustering

• Goal: Given input dataset 𝑋, find a set 𝐶 of 𝑘 centers that 
implicitly partition 𝑋 into at most 𝑘 different clusters, while 
minimizing some associated cost function of the clustering

𝑘 = 3



𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶  to be a function of 
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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• (𝑘, 𝑧)-clustering: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧
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Euclidean 𝑘-Clustering

• For Euclidean 𝑘-clustering, input points 𝑋 = 𝑥1, … , 𝑥𝑛 are in 
ℝ𝑑 (for us, they will be in [Δ]𝑑≔ 1,2, … , Δ 𝑑)

• dist 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 + ⋯ + 𝑥𝑑 − 𝑦𝑑

2 is the Euclidean 
distance

• (𝑘, 𝑧)-clustering problem:

min
𝐶: 𝐶 ≤𝑘

 Cost 𝑋, 𝐶 = min
𝐶: 𝐶 ≤𝑘

Σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧



A Streaming Model

• Input: Underlying data set 𝑋 arrives sequentially

• Output: Output a “good” set 𝐶𝑡 of 𝑘 centers at each time 𝑡

• Goal: Use space sublinear in the size 𝑛 of the input 𝑋, with 
fast update time



• Weighted (𝑤) subset 𝑋′ of 
representative points of 𝑋 
for a specific clustering 
objective

Coreset

• For all sets 𝐶 with 𝐶 = 𝑘,

1 − ε Cost(𝑋, 𝐶) ≤ Cost(𝑋′, 𝐶, 𝑤) ≤ 1 + ε Cost(𝑋, 𝐶)



Coreset Constructions

• For (𝑘, 𝑧)-clustering, there exist coreset constructions that 

only require ෨𝑂
𝑘

min 𝜀4,𝜀2+𝑧 weighted points of the input 

[CSS21, CLSS22, CLSSS22, BCJKSTW22, BCPSS24]

• Independent of input size 𝑛



Goal #1: Cluster a stream of 𝑛 points using 𝑂 1  space, 
i.e., independent of size 𝑛

Goal #2: Cluster a stream of 𝑛 points using 𝑜 𝑘  amortized 
update time



Our Results (I)

• There exists a one-pass algorithm on insertion-only streams that 
maintains (1 + 𝜀)-coreset for (𝑘, 𝑧)-clustering at all times in the 
stream and uses:

• ෨𝑂
𝑑𝑘

min 𝜀4,𝜀2+𝑧 words of space

• 𝑑 log 𝑘 ⋅ polylog log 𝑛Δ  amortized update time



Corollary

• There exists a one-pass algorithm on insertion-only streams that 
maintains 𝑂 𝑧 -approximation for (𝑘, 𝑧)-clustering at all times 
in the stream and uses:

• ෨𝑂
𝑑𝑘

min 𝜀4,𝜀2+𝑧 words of space

• 𝑑 log 𝑘 ⋅ polylog log 𝑛Δ  amortized update time







Subspace Embedding

1 − 𝜀 𝐴𝑥 2 ≤ 𝑀𝑥 2 ≤ 1 + 𝜀 𝐴𝑥 2

• Subspace embedding: Given 𝜀 > 0 and 𝐴 ∈
𝑅𝑛×𝑑, find matrix 𝑀 ∈ 𝑅𝑚×𝑑  with 𝑚 ≪ 𝑛, such 
that for every 𝑥 ∈ ℝ𝑑,

• Equivalent to 1 − 𝜀 𝐴⊤𝐴 ≼ 𝑀⊤𝑀 ≼
1 + 𝜀 𝐴⊤𝐴

• Can be used to approximate all cuts of a graph 
when rows of 𝐴 correspond to graph edges 

𝑑

𝐴 𝑥
𝑛



Our Results (II)

• There exists a one-pass algorithm on insertion-only streams 
with online condition number 𝜅 and maximum entry 𝑀 that 
maintains (1 + 𝜀)-coreset for subspace embeddings at all times 
in the stream and uses:

• ෨𝑂 𝑑2 log(𝑛𝑀)  +
𝑑2

𝜀2 ⋅ polylog 𝑑,
1

𝜀
, log(𝑛𝜅)  words of space

• 𝑂 𝑑  amortized update time



Our Results (III)

• Structural properties in “efficient encoding” also give improved 
communication bounds for clustering in distributed models 



Questions?Upcoming

▪(𝑘, 𝑧)-Clustering in 𝑂(1) Space



Goal #1: Cluster a stream of 𝑛 points using 𝑂 1  space, 
i.e., independent of size 𝑛

Goal #2: Cluster a stream of 𝑛 points using 𝑜 𝑘  amortized 
update time



(𝑘, 𝑧)-Clustering in the Streaming Model

• Merge-and-reduce framework

• Example: Suppose there exists a (1 + 𝜀)-coreset construction for 

𝑘-means clustering that uses 𝑓 𝑘,
1

𝜀
 weighted input points 

෨𝑂
𝑘

𝜀4



(𝑘, 𝑧)-Clustering in the Streaming Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
 points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block

Reduce
Merge

෨𝑂
𝑘

𝜀4
log2 𝑛



(𝑘, 𝑧)-Clustering in the Streaming Model

• There are 𝑂 log 𝑛  levels

• Each coreset is a 1 +
𝜀

log 𝑛
-coreset of two coresets

• Total approximation is 1 +
𝜀

log 𝑛

log 𝑛
= (1 + 𝑂 𝜀 )



(𝑘, 𝑧)-Clustering in the Streaming Model

• Total space is 𝑓 𝑘,
log 𝑛

𝜀
⋅ 𝑂(log 𝑛) points

For 𝑘-means clustering, this is ෨𝑂
𝑘

𝜀4 ⋅ log3 𝑛  points

Not independent of size 𝑛 of the stream length!



Sensitivity Sampling

• The quantity 𝑠 𝑥 = max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 is called the sensitivity of 

𝑥 and intuitively measures how “important” the point 𝑥 is



Online Sensitivity Sampling

• In a data stream, computing/approximating sensitivity 
𝑠 𝑥 = max

𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 requires seeing the entire dataset 𝑋, 

but then it is too late to sample 𝑥

• We define the online sensitivity of 𝑥𝑡 with respect to a 
stream 𝑥1, … , 𝑥𝑛 to be 𝜑 𝑥𝑡 = max

𝐶

Cost 𝑥𝑡,𝐶

Cost 𝑋𝑡,𝐶
, where 𝑋𝑡 =

𝑥1, … , 𝑥𝑡, which intuitively measures how “important” the 
point 𝑥 is SO FAR



Online Sensitivity Sampling

• Observation: we can use a 1 + 𝜀 -coreset to obtain a  
1 + 𝜀 -approximation to 𝜑 𝑥𝑡

• Use samples obtained from online sensitivity sampling at 
each time 𝑡 − 1 to obtain a 1 + 𝜀 -approximation to 𝜑 𝑥𝑡

• Can then perform online sensitivity sampling at time 𝑡 and 
by induction, at all times in the stream



Online Sensitivity Sampling

• The total online sensitivity of 𝑋 = (𝑥1, … , 𝑥𝑛) is σ𝑡∈ 𝑛 𝜑 𝑥𝑡

• Quantifies how many points will be sampled

• Total online sensitivity is 𝑂 𝑘 log2(𝑛𝑑Δ)  → we get a coreset 

of size σ𝑡 𝑝 𝑥𝑡 =
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ  (after a union bound)

• Sampling is done online, can view as a new stream 𝑋′



Insertion-Only Algorithm [CWZ23]

1. Perform online sensitivity sampling to 
implicitly create new stream 𝑋′

2. In parallel, run merge-and-reduce on 𝑋′



Insertion-Only Algorithm [CWZ23]

• New stream 𝑋′ has length 
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ

• Run merge-and-reduce on 𝑋′

• Recall: merge-and-reduce for 𝑘-means stored ෨𝑂
𝑘

𝜀4 ⋅ log3 𝑛  

points, but 𝑛 was the length of the stream

• Total number of points now is ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ)



Insertion-Only Algorithm

• Total number of points now is ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ)

• Specifically, there are polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ)  groups 

𝐺1, … , 𝐺ℓ of ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ)  points

• If we want independence of size 𝑛 of the stream length, cannot 
afford to store all points explicitly



𝑋

Stream

𝑋′

Online sensitivity sampling

𝐺1, … , 𝐺ℓ



Efficient Local Encoding

• Look at a specific group 𝐺𝑖 and compute a near-optimal solution 𝑆𝑖

• Store offset of each point from one of the centers of 𝑆𝑖

• For each point 𝑥 ∈ 𝐺𝑖, let 𝑐𝑥 be the closest center of 𝑆𝑖  and 𝑦 =
𝑐𝑥 − 𝑥

• Round 𝑦 coordinate-wise to nearest power of 1 + 𝜀′ and store the 
vector of exponents ෤𝑦



Efficient Local Encoding

𝑥

𝑐𝑥



Efficient Local Encoding

𝑥

𝑐𝑥

𝑦 = 𝑐𝑥 − 𝑥



Efficient Local Encoding

𝑥

𝑐𝑥

෤𝑦



Efficient Local Encoding

• Round 𝑦 coordinate-wise to nearest power of 1 + 𝜀′ and store the 
vector of exponents ෤𝑦

• For 𝜀′ = poly
𝜀

log(𝑛𝑑Δ)
:

• Results in a 1 + 𝑂 𝜀 -coreset of 𝐺𝑖

• Encoding each point uses 𝑑 ⋅ polylog
1

𝜀
, log(𝑛𝑑Δ)  bits

• Encoding each group 𝐺𝑖 uses ෨𝑂
𝑑𝑘

𝜀4  words of space, e.g., for 𝑆𝑖  

• However, there are polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ)  groups 𝐺1, … , 𝐺ℓ 



𝑋

Stream

𝑋′

Online sensitivity sampling

𝑆1, … , 𝑆ℓ

𝐺1, … , 𝐺ℓ

Encoding



Global Encoding

• Instead of storing a near-optimal solution 𝑆𝑖  for each group 𝐺𝑖, 
store a single near-optimal global solution 𝑆

• Store offset of each point from one of the centers of 𝑆

• For each point 𝑥 ∈ 𝐺𝑖, let 𝑐𝑥 be the closest center of 𝑆 and 𝑦 =
𝑐𝑥 − 𝑥

• Round 𝑦 coordinate-wise to nearest power of 1 + 𝜀′ and store the 
vector of exponents ෤𝑦



Global Encoding

• For 𝜀′ = poly
𝜀

log(𝑛𝑑Δ)
:

• Rounded points no longer provide a 1 + 𝑂 𝜀 -coreset of each 
𝐺𝑖, but give 𝑂 𝜀 ⋅ OPT additive error, so 1 + 𝑂 𝜀 -
approximation overall

• Global encoding uses ෨𝑂
𝑑𝑘

𝜀4  total words of space



𝑋Stream

𝑋′
Online sensitivity sampling

𝑆

𝐺1, … , 𝐺ℓ

Global 
Encoding

1. Perform online sensitivity sampling to implicitly 
create new stream 𝑋′

2. In parallel, run merge-and-reduce on 𝑋′

3. Efficient global encoding on resulting coresets



Questions?Upcoming

▪(𝑘, 𝑧)-Clustering in 𝑜(𝑘) 
Amortized Update Time



Fast Clustering

• Algorithm bottleneck: approximation of online sensitivities 
for the sampling process to form the stream 𝑋′

• Computing a “good” approximation to sensitivities is often as 
hard as computing a “good” approximation to clustering

• Constant-factor approximation in time 𝑂 𝑑𝑛2  [GT08]

• We can view 𝑛 = ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑑, log(𝑛Δ)



Fast Clustering

• Insight: Previous algorithm utilized a significantly smaller 

stream 𝑋′ with length 
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ

• Repeat this idea another level!

• Create stream ෨𝑋 with length 𝑛1−𝑐 ⋅
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ



Fast Clustering

• Create stream ෨𝑋 with length 𝑛1−𝑐 ⋅
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ

• Can again use online sensitivity sampling of 𝑋 to form ෨𝑋 

• Now just need 𝑛1−𝑐-approximations for sensitivities



Fast Clustering

• Theorem: For any constant 𝑐 ∈ (0,1), there exists an 
algorithm that computes 𝑛1−𝑐-approximations to the 
sensitivities of a batch of 𝑘 points of 𝑋 using 𝑑 log 𝑘 ⋅
polylog log 𝑛Δ  amortized update time



Structural Property

• Both clustering costs and sensitivities are distorted by a 𝑂 1  
when the cluster centers is among the input points

• 𝑠 𝑥 = max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 is an optimization problem

• Fast enumeration over the center serving a point that realizes 

the sensitivity when X = ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑑, log(𝑛Δ)



Structural Property

• Fast enumeration over the center serving a point that realizes 

the sensitivity when X = ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑑, log(𝑛Δ)

• For a fixed center 𝑐 serving a point 𝑥, max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 is now a 

constrained optimization problem for minimizing Cost 𝑋, 𝐶 , 
since no center in 𝐶 can be closer to 𝑥 than 𝑐



Quadtree Embedding

Δ



Quadtree Embedding

Δ



Quadtree Embedding

Δ



Quadtree Embedding

Δ

Total cost: 0
Level cost: 0
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6 6



Quadtree Embedding

Δ

Total cost: 
Δ

2
⋅ 7

Level cost:
Δ

2
⋅ 7

7

6 6



Quadtree Embedding

Δ

Total cost: 
7

2
+

11

4
Δ

Level cost:
Δ

4
⋅ 11

7

6 6



Fast Clustering

• Choose side length of grid ℓ to be 𝜁ℓ for 𝜁 = 𝑂(𝑛1−𝑐) , so 

there are only 𝑂
1

𝑐
 levels in the quadtree 

• Makes nearest-neighbor search much faster

• Can quickly solve a near-optimal clustering problem, 
generalizing an algorithm of [CLNSS20]

• Additional structural result to quickly approximate 
constrained clustering problem



Constrained Clustering

6 6
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Constrained Clustering

6 6
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Constrained Clustering

6 6

7



Questions?Upcoming

▪Subspace embeddings



1. Perform online leverage score sampling to 
implicitly create new matrix 𝐴′

2. In parallel, run merge-and-reduce on 𝐴′

3. Efficient global encoding on resulting coresets



Efficient Local Encoding

• Suppose we have a constant-factor subspace embedding 𝑀 for the 
matrix 𝐴

• How to achieve (1 + 𝜀)-factor subspace embedding?

• Previously: charged each point to closest center 

• Round each coordinate in each row to a power of (1 + 𝜀′) after 
multiplying by a deterministic preconditioner of 𝑀



Crude Leverage Score Approximation

• Suppose we have a constant-factor subspace embedding 𝑀 for the 
matrix 𝐴

• Let 𝑍 = 𝑀⊤𝑀 −1/2 so that 𝑍𝑎𝑡 2
2 is a constant-factor 

approximation to the leverage score

• 𝑔𝑍𝑎𝑡 2
2 is 𝑛1−𝑐 approximation to 𝑍𝑎𝑡 2

2 for random gaussian 𝑔

• Compute in 𝑂(𝑑) time since 𝑔𝑍 does not change much over the 
stream



Summary

• We achieve one-pass algorithms on insertion-only streams that 
maintain (1 + 𝜀)-coreset for (𝑘, 𝑧)-clustering and subspace 
embedding that use:

• Words of space independent of stream length 𝑛 (matching 
offline coreset constructions)

• 𝑑 log 𝑘 ⋅ polylog log 𝑛Δ  amortized update time for 
clustering and 𝑂 𝑑  amortized update time for subspace 
embedding



Open Questions

• Does there exist an algorithm for low-rank approximation on 
insertion-only streams that uses words of space independent of 
stream length 𝑛?

• Does there exist an algorithm for graph sparsification on 
insertion-only streams that match the offline coreset 
constructions?
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