Fast and Space-Optimal Streaming
Algorithms for Euclidean Clustering

c‘ Vincent Cohen-Addad

Liudeng Wang AI‘M

Carnegie David P. Woodruff
Mellon
University

Samson Zhou

Goal: Quickly cluster a stream of n points using O (1) space

k-Clustering

* Goal: Given input dataset X, find a set C of k centers that
implicitly partition X into at most k different clusters, while
minimizing some associated cost function of the clustering

k-Clustering

* Define clustering cost Cost(X, C) to be a function of
tdist(x, C)}yex

* k-median: Cost(X,C) = Y, ex dist(x, C)
* k-means: Cost(X, C) = Y,ex(dist(x, C))Z .
» (k, z)-clustering: Cost(X, C) = Y ex(dist(x, €))”

9

(1)?

()*

Euclidean k-Clustering

* For Euclidean k-clustering, input points X = x4, ..., x,, are in
R? (for us, they will be in [A]%:= {1,2, ..., A}%)

o dist(x,y) = \/(xl —v.)? + -+ (xg — y4)? is the Euclidean
distance

* (k, z)-clustering problem:

. . .] Z
S, Cost(X,C) = C:rlréllrslkilxex(dlst(x, C))

A Streaming Model

* Input: Underlying data set X arrives sequentially
* Qutput: Output a “good” set C; of k centers at each time ¢t

* Goal: Use space sublinear in the size n of the input X, with
fast update time

Coreset

o
©C o
* Weighted (w) subset X' of ©® o
representative points of X o
for a specific clustering o e° A

objective o©

* Forall sets C with |C| = k,
(1 —¢)Cost(X,C) < Cost(X',C,w) < (1 + ¢)Cost(X, C)

Coreset Constructions

* For (k, z)-clustering, there exist coreset constructions that

only require O (min(efg%Z)) weighted points of the input

[CSS21, CLSS22, CLSSS22, BCJIKSTW22, BCPSS24]

* Independent of input size n

Goal #1: Cluster a stream of n points using O(1) space,
l.e., independent of size n

Goal #2: Cluster a stream of n points using o(k) amortized
update time

Our Results (1)

* There exists a one-pass algorithm on insertion-only streams that
maintains (1 + ¢)-coreset for (k, z)-clustering at all times in the
stream and uses:

X0, (ar) words of space

min(g4,e2+2)

* dlog(k) - polylog(log(nA)) amortized update time

Corollary

* There exists a one-pass algorithm on insertion-only streams that
maintains O (z)-approximation for (k, z)-clustering at all times
in the stream and uses:

0, (ar) words of space

min(e%,e212)

* dlog(k) - polylog(log(nA)) amortized update time

Streaming algorithm Words of Memory

[HKO07], z € {1,2} O (fg;j logdt* n)
(HMO04], z € {1,2} O (g—ﬁ log2d+2 n)
[Che09)], z € {1,2} O (L5 10g°n)
[FL]I].}, z € {1,2} (Egk 1gg1+22)
Sensitivity and rejection sampling [BFLR19] O ()
. s e s . A [d2E2
Online sensitivity sampling (9(— log? n)
Merge-and-reduce with coreset of [CLSS22] O (min(ﬁ‘?ﬁ = log* n)
[CWZ23] O (s) - polylog(log)

Fig. 1: Table of (k, z)-clustering algorithms on insertion-only streams. We summarize existing results
with 2 = O (1), A = poly(n), and the assumption that k > Eiz for the purpose of presentation.

Streaming algorithm Amortized Update Time
[HK20] k? - polylog(nA)

IBCLP23] k - polylog(nA)

Fig. 2: Table of (k, z)-clustering algorithms on data streams, omitting linear dependencies in the
dimension d. We remark that [HK20, BCLP23| can handle the fully-dynamic setting, whereas ours
cannot. On the other hand, our algorithm uses sublinear space while theirs does not.

>
reemmmEmmmm———=

Subspace Embedding

- —
o2

* Subspace embedding: Given € > 0and A €
R™2 find matrix M € R™*4 with m « n, such
that for every x € R%,

(1 - o)llAx]l; < [[Mx]l; < (1 + &)llAx]l

e Equivalentto (1 — &)ATAS M™M <
(1+e)ATA

e Can be used to approximate all cuts of a graph
when rows of A correspond to graph edges

Our Results (II)

* There exists a one-pass algorithm on insertion-only streams
with online condition number k and maximum entry M that
maintains (1 + €)-coreset for subspace embeddings at all times
in the stream and uses:

* 0(d?log(nM)) + polylog (d = log(mc)) words of space

* 0(d) amortized update time

Our Results (Il)

e Structural properties in “efficient encoding” also give improved
communication bounds for clustering in distributed models

Upcoming Questions?

" (k, z)-Clustering in O(1) Space

Goal #1: Cluster a stream of n points using O(1) space,
l.e., independent of size n

Goal #2: Cluster a stream of n points using o(k) amortized
update time

(k, z)-Clustering in the Streaming Model

* Merge-and-reduce framework

* Example: Suppose there exists a (1 + €)-coreset construction for
. 1 . . .
k-means clustering that uses f (k, —) weighted input points

g

84

(k, z)-Clustering in the Streaming Model

g : . 1 :
* Partition the stream into blocks containing f (k, Oi n) points
* Create a (1 + —)-coreset for each block 0 (ilogz n)
logn gt

E

* Create a (1 + og n)-coreset for the set of points formed by

/the union of two coresets for each block
——

Merge C1

Reduce o - T Cas

(k, z)-Clustering in the Streaming Model

* There are O(log n) levels

E

 Each coresetis a (1 | oz n)-coreset of two coresets

¢ \logn
* Total approximation is (1 +) = (14 0(¢))

logn

C3 1 (:3,2 (_-.:'3_13 [:'3;4

(k, z)-Clustering in the Streaming Model

logn

* Total spaceis f (k,) - 0(logn) points

Y

E

For k-means clustering, this is O (854 - log?3 n) points

Not independent of size n of the stream length!

Sensitivity Sampling

. : . Cost(x,C) . o
The quantity s(x) = max o IS called the sensitivity of

x and intuitively measures how “important” the point x is

Online Sensitivity Sampling

* [n a data stream, computing/approximating sensitivity

- Cost(x,C) . : :
s(x) = max - o) reduires seeing the entire dataset X,

but then it is too late to sample x

* We define the online sensitivity of x; with respect to a
Cost(x,C)
stream x4, ..., X,, to be @(x;) = max where X; =

S o C Cost(XF,C)’
X1, ..., X¢, Which intuitively measures how “important” the

point x is SO FAR

Online Sensitivity Sampling

* Observation: we can use a (1 + €)-coreset to obtain a
(1 + &)-approximation to @ (x;)

* Use samples obtained from online sensitivity sampling at
each time t — 1 to obtain a (1 + €)-approximation to ¢ (x;)

* Can then perform online sensitivity sampling at time ¢ and
by induction, at all times in the stream

Online Sensitivity Sampling

* The total online sensitivity of X = (xq, ..., Xp) iS Lpefn] @ (X¢)

* Quantifies how many points will be sampled

» Total online sensitivity is O (k log?(ndA)) - we get a coreset
2
of size)., p(x;) = ’;—zd - polylog(nA) (after a union bound)

« Sampling is done online, can view as a new stream X'

Insertion-Only Algorithm [CWZ23]

1. Perform online sensitivity sampling to
implicitly create new stream X’

2. In parallel, run merge-and-reduce on X'

Insertion-Only Algorithm [CWZ23]

2

* New stream X' has length —- k - polylog(nA)

* Run merge-and-reduce on X’
K
84

* Recall: merge-and-reduce for k-means stored O (- log3 n)

points, but n was the length of the stream

» Total number of points now is O (k) polylog (k d,- log(nA))

Insertion-Only Algorithm

» Total number of points now is O (k) polylog (k d,- log(nA))

* Specifically, there are polylog (k d,- - =) log(nA)) groups
Gy, ...,Gpof O () polylog (k d,- ,log(nA)) points

* If we want independence of size n of the stream length, cannot
afford to store all points explicitly

Online sensitivity sampling

X

Stream

Efficient Local Encoding

* Look at a specific group G; and compute a near-optimal solution S;
* Store offset of each point from one of the centers of §;

* For each point x € G, let ¢, be the closest center of S5; and y =
C — X

* Round y coordinate-wise to nearest power of 1 + &' and store the
vector of exponents y

Efficient Local Encoding

Efficient Local Encoding

X
V=C —X
OO'(N
OO0 o7 ¢
o X
O o
OO0 A

Efficient Local Encoding

Efficient Local Encoding

* Round y coordinate-wise to nearest power of 1 + &' and store the
vector of exponents y

I ___ € .
*Fore” = poly (log(ndA))
* Results in a (1 + 0(8))-coreset of G;

* Encoding each point uses d - polylog G, log(ndA)) bits

* Encoding each group G; uses O (g) words of space, e.g., for §;

* However, there are polylog (k, d,é, log(nA)) groups G4, ..., Gy

S1, ., Sp
Y Encoding R - S

Gl, R G,g {T.-Yg_:1._ _'C:-.‘_':;,Z (:3_-,3'_

Online sensitivity sampling

| X

Stream

Global Encoding

* Instead of storing a near-optimal solution S; for each group G;,
store a single near-optimal global solution S

e Store offset of each point from one of the centers of S

* For each point x € G;, let ¢, be the closest center of S and y =
C, — X

* Round y coordinate-wise to nearest power of 1 + &' and store the
vector of exponents y

Global Encoding

/ &E
*For&” = poly (log(ndA)):
* Rounded points no longer provide a (1 + 0(8))-coreset of each
G;, but give O(¢) - OPT additive error, so (1 + 0(8))-
approximation overall

» Global encoding uses O (g) total words of space

S Global
‘ Encoding o

1. Perform online sensitivity sampling to implicitly
create new stream X'

2. In parallel, run merge-and-reduce on X'
Efficient global encoding on resulting coresets

Upcoming Questions?

" (k, z)-Clustering in o(k)
Amortized Update Time

Fast Clustering

* Algorithm bottleneck: approximation of online sensitivities
for the sampling process to form the stream X’

* Computing a “good” approximation to sensitivities is often as
hard as computing a “good” approximation to clustering

» Constant-factor approximation in time 0(dn?) [GT08]

* We can viewn = 0 (854) - polylog(d,log(nA))

Fast Clustering

* Insight: Previous algorithm utilized a significantly smaller
kzd
- polylog(nA)

* Repeat this idea another level!

stream X' with Iength

c kzd

* Create stream X with length n'~¢ - —- - polylog(nA)

Fast Clustering

_c k4d

* Create stream X with length n'~¢ - — polylog(nA)

» Can again use online sensitivity sampling of X to form X

* Now just need n'~¢-approximations for sensitivities

Fast Clustering

* Theorem: For any constant ¢ € (0,1), there exists an
algorithm that computes n'~¢-approximations to the
sensitivities of a batch of k points of X using d log(k) -
polylog(log(nA)) amortized update time

Structural Property

* Both clustering costs and sensitivities are distorted by a O(1)
when the cluster centers is among the input points

Cost(x,C) . Ce
e s(x) = max is an optimization problem
() c Cost(X,C) P P

* Fast enumeration over the center serving a point that realizes

the sensitivity when |X| = O (534) - polylog(d, log(nA))

Structural Property

* Fast enumeration over the center serving a point that realizes

the sensitivity when |X| = O (8%) - polylog(d, log(nA))

: : : Cost(x,C) .
* For a fixed center c serving a point x, max iSs now a
¢ Cost(X,C)

constrained optimization problem for minimizing Cost(X, C),
since no centerin C can be closer to x than ¢

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

Total cost: O
Level cost: 0

Quadtree Embedding

A
Total cost: > 7

A
Level cost: = 7

Quadtree Embedding

Total cost:

G+3)

A
Level cost: e 11

Fast Clustering

» Choose side length of grid £ to be ¢* for { = 0(n'~¢), so

1 .
there are only O (Z) evels in the quadtree

* Makes nearest-neighbor search much faster

* Can quickly solve a near-optimal clustering problem,
generalizing an algorithm of [CLNSS20]

* Additional structural result to quickly approximate
constrained clustering problem

Constrained Clustering

Oo
0
oA7

Constrained Clustering

Constrained Clustering

Upcoming Questions?

= Subspace embeddings @
NS

Perform online leverage score sampling to
implicitly create new matrix 4’

In parallel, run merge-and-reduce on 4’
Efficient global encoding on resulting coresets

Efficient Local Encoding

e Suppose we have a constant-factor subspace embedding M for the
matrix A

* How to achieve (1 + ¢)-factor subspace embedding?
* Previously: charged each point to closest center

* Round each coordinate in each row to a power of (1 + ¢') after
multiplying by a deterministic preconditioner of M

Crude Leverage Score Approximation

e Suppose we have a constant-factor subspace embedding M for the
matrix A

eLlet Z = (MTM)~1/? so that ||Za,||% is a constant-factor
approximation to the leverage score

* |lgZa;||5 is n' ¢ approximation to ||Za,||5 for random gaussian g

* Compute in O(d) time since gZ does not change much over the
stream

Summary

* We achieve one-pass algorithms on insertion-only streams that
maintain (1 + €)-coreset for (k, z)-clustering and subspace
embedding that use:

* Words of space independent of stream length n (matching
offline coreset constructions)

*dlog(k) - polylog(log(nA)) amortized update time for
clustering and O(d) amortized update time for subspace
embedding

a1=s1 NOiyabonga

5 thanlé””nu@'%'%~~

0 1aibh maith agat *
gukn akﬂ khun Ia[g = wi
gadﬂ ‘ tglmakasm et

MEICl

padh leat

Open Questions

dhedénkl-z-

* Does there exist an algorithm for low-rank approximation on

insertion-only streams that uses words of space independent of
stream length n?

* Does there exist an algorithm for graph sparsification on

insertion-only streams that match the offline coreset
constructions?

	Slide 1: Fast and Space-Optimal Streaming Algorithms for Euclidean Clustering
	Slide 2
	Slide 3: k-Clustering
	Slide 4: k-Clustering
	Slide 5: Euclidean k-Clustering
	Slide 6: A Streaming Model
	Slide 7: Coreset
	Slide 8: Coreset Constructions
	Slide 9
	Slide 10: Our Results (I)
	Slide 11: Corollary
	Slide 12
	Slide 13
	Slide 14: Subspace Embedding
	Slide 15: Our Results (II)
	Slide 16: Our Results (III)
	Slide 17: Questions?
	Slide 18
	Slide 19: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 20: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 21: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 22: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 23: Sensitivity Sampling
	Slide 24: Online Sensitivity Sampling
	Slide 25: Online Sensitivity Sampling
	Slide 26: Online Sensitivity Sampling
	Slide 27: Insertion-Only Algorithm [CWZ23]
	Slide 28: Insertion-Only Algorithm [CWZ23]
	Slide 29: Insertion-Only Algorithm
	Slide 30
	Slide 31: Efficient Local Encoding
	Slide 32: Efficient Local Encoding
	Slide 33: Efficient Local Encoding
	Slide 34: Efficient Local Encoding
	Slide 35: Efficient Local Encoding
	Slide 36
	Slide 37: Global Encoding
	Slide 38: Global Encoding
	Slide 39
	Slide 40: Questions?
	Slide 41: Fast Clustering
	Slide 42: Fast Clustering
	Slide 43: Fast Clustering
	Slide 44: Fast Clustering
	Slide 45: Structural Property
	Slide 46: Structural Property
	Slide 47: Quadtree Embedding
	Slide 48: Quadtree Embedding
	Slide 49: Quadtree Embedding
	Slide 50: Quadtree Embedding
	Slide 51: Quadtree Embedding
	Slide 52: Quadtree Embedding
	Slide 53: Fast Clustering
	Slide 54: Constrained Clustering
	Slide 55: Constrained Clustering
	Slide 56: Constrained Clustering
	Slide 57: Questions?
	Slide 58
	Slide 59: Efficient Local Encoding
	Slide 60: Crude Leverage Score Approximation
	Slide 61: Summary
	Slide 62: Open Questions

