
Fast and Space-Optimal Streaming
Algorithms for Euclidean Clustering

Vincent Cohen-Addad

Liudeng Wang

David P. Woodruff

Samson Zhou

Goal: Quickly cluster a stream of 𝑛 points using 𝑂(1) space

𝑘-Clustering

• Goal: Given input dataset 𝑋, find a set 𝐶 of 𝑘 centers that
implicitly partition 𝑋 into at most 𝑘 different clusters, while
minimizing some associated cost function of the clustering

𝑘 = 3

𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
2

• (𝑘, 𝑧)-clustering: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

Euclidean 𝑘-Clustering

• For Euclidean 𝑘-clustering, input points 𝑋 = 𝑥1, … , 𝑥𝑛 are in
ℝ𝑑 (for us, they will be in [Δ]𝑑≔ 1,2, … , Δ 𝑑)

• dist 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 + ⋯ + 𝑥𝑑 − 𝑦𝑑

2 is the Euclidean
distance

• (𝑘, 𝑧)-clustering problem:

min
𝐶: 𝐶 ≤𝑘

 Cost 𝑋, 𝐶 = min
𝐶: 𝐶 ≤𝑘

Σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧

A Streaming Model

• Input: Underlying data set 𝑋 arrives sequentially

• Output: Output a “good” set 𝐶𝑡 of 𝑘 centers at each time 𝑡

• Goal: Use space sublinear in the size 𝑛 of the input 𝑋, with
fast update time

• Weighted (𝑤) subset 𝑋′ of
representative points of 𝑋
for a specific clustering
objective

Coreset

• For all sets 𝐶 with 𝐶 = 𝑘,

1 − ε Cost(𝑋, 𝐶) ≤ Cost(𝑋′, 𝐶, 𝑤) ≤ 1 + ε Cost(𝑋, 𝐶)

Coreset Constructions

• For (𝑘, 𝑧)-clustering, there exist coreset constructions that

only require ෨𝑂
𝑘

min 𝜀4,𝜀2+𝑧 weighted points of the input

[CSS21, CLSS22, CLSSS22, BCJKSTW22, BCPSS24]

• Independent of input size 𝑛

Goal #1: Cluster a stream of 𝑛 points using 𝑂 1 space,
i.e., independent of size 𝑛

Goal #2: Cluster a stream of 𝑛 points using 𝑜 𝑘 amortized
update time

Our Results (I)

• There exists a one-pass algorithm on insertion-only streams that
maintains (1 + 𝜀)-coreset for (𝑘, 𝑧)-clustering at all times in the
stream and uses:

• ෨𝑂
𝑑𝑘

min 𝜀4,𝜀2+𝑧 words of space

• 𝑑 log 𝑘 ⋅ polylog log 𝑛Δ amortized update time

Corollary

• There exists a one-pass algorithm on insertion-only streams that
maintains 𝑂 𝑧 -approximation for (𝑘, 𝑧)-clustering at all times
in the stream and uses:

• ෨𝑂
𝑑𝑘

min 𝜀4,𝜀2+𝑧 words of space

• 𝑑 log 𝑘 ⋅ polylog log 𝑛Δ amortized update time

Subspace Embedding

1 − 𝜀 𝐴𝑥 2 ≤ 𝑀𝑥 2 ≤ 1 + 𝜀 𝐴𝑥 2

• Subspace embedding: Given 𝜀 > 0 and 𝐴 ∈
𝑅𝑛×𝑑, find matrix 𝑀 ∈ 𝑅𝑚×𝑑 with 𝑚 ≪ 𝑛, such
that for every 𝑥 ∈ ℝ𝑑,

• Equivalent to 1 − 𝜀 𝐴⊤𝐴 ≼ 𝑀⊤𝑀 ≼
1 + 𝜀 𝐴⊤𝐴

• Can be used to approximate all cuts of a graph
when rows of 𝐴 correspond to graph edges

𝑑

𝐴 𝑥
𝑛

Our Results (II)

• There exists a one-pass algorithm on insertion-only streams
with online condition number 𝜅 and maximum entry 𝑀 that
maintains (1 + 𝜀)-coreset for subspace embeddings at all times
in the stream and uses:

• ෨𝑂 𝑑2 log(𝑛𝑀) +
𝑑2

𝜀2 ⋅ polylog 𝑑,
1

𝜀
, log(𝑛𝜅) words of space

• 𝑂 𝑑 amortized update time

Our Results (III)

• Structural properties in “efficient encoding” also give improved
communication bounds for clustering in distributed models

Questions?Upcoming

▪(𝑘, 𝑧)-Clustering in 𝑂(1) Space

Goal #1: Cluster a stream of 𝑛 points using 𝑂 1 space,
i.e., independent of size 𝑛

Goal #2: Cluster a stream of 𝑛 points using 𝑜 𝑘 amortized
update time

(𝑘, 𝑧)-Clustering in the Streaming Model

• Merge-and-reduce framework

• Example: Suppose there exists a (1 + 𝜀)-coreset construction for

𝑘-means clustering that uses 𝑓 𝑘,
1

𝜀
 weighted input points

෨𝑂
𝑘

𝜀4

(𝑘, 𝑧)-Clustering in the Streaming Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
 points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by

the union of two coresets for each block

Reduce
Merge

෨𝑂
𝑘

𝜀4
log2 𝑛

(𝑘, 𝑧)-Clustering in the Streaming Model

• There are 𝑂 log 𝑛 levels

• Each coreset is a 1 +
𝜀

log 𝑛
-coreset of two coresets

• Total approximation is 1 +
𝜀

log 𝑛

log 𝑛
= (1 + 𝑂 𝜀)

(𝑘, 𝑧)-Clustering in the Streaming Model

• Total space is 𝑓 𝑘,
log 𝑛

𝜀
⋅ 𝑂(log 𝑛) points

For 𝑘-means clustering, this is ෨𝑂
𝑘

𝜀4 ⋅ log3 𝑛 points

Not independent of size 𝑛 of the stream length!

Sensitivity Sampling

• The quantity 𝑠 𝑥 = max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 is called the sensitivity of

𝑥 and intuitively measures how “important” the point 𝑥 is

Online Sensitivity Sampling

• In a data stream, computing/approximating sensitivity
𝑠 𝑥 = max

𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 requires seeing the entire dataset 𝑋,

but then it is too late to sample 𝑥

• We define the online sensitivity of 𝑥𝑡 with respect to a
stream 𝑥1, … , 𝑥𝑛 to be 𝜑 𝑥𝑡 = max

𝐶

Cost 𝑥𝑡,𝐶

Cost 𝑋𝑡,𝐶
, where 𝑋𝑡 =

𝑥1, … , 𝑥𝑡, which intuitively measures how “important” the
point 𝑥 is SO FAR

Online Sensitivity Sampling

• Observation: we can use a 1 + 𝜀 -coreset to obtain a
1 + 𝜀 -approximation to 𝜑 𝑥𝑡

• Use samples obtained from online sensitivity sampling at
each time 𝑡 − 1 to obtain a 1 + 𝜀 -approximation to 𝜑 𝑥𝑡

• Can then perform online sensitivity sampling at time 𝑡 and
by induction, at all times in the stream

Online Sensitivity Sampling

• The total online sensitivity of 𝑋 = (𝑥1, … , 𝑥𝑛) is σ𝑡∈ 𝑛 𝜑 𝑥𝑡

• Quantifies how many points will be sampled

• Total online sensitivity is 𝑂 𝑘 log2(𝑛𝑑Δ) → we get a coreset

of size σ𝑡 𝑝 𝑥𝑡 =
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ (after a union bound)

• Sampling is done online, can view as a new stream 𝑋′

Insertion-Only Algorithm [CWZ23]

1. Perform online sensitivity sampling to
implicitly create new stream 𝑋′

2. In parallel, run merge-and-reduce on 𝑋′

Insertion-Only Algorithm [CWZ23]

• New stream 𝑋′ has length
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ

• Run merge-and-reduce on 𝑋′

• Recall: merge-and-reduce for 𝑘-means stored ෨𝑂
𝑘

𝜀4 ⋅ log3 𝑛

points, but 𝑛 was the length of the stream

• Total number of points now is ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ)

Insertion-Only Algorithm

• Total number of points now is ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ)

• Specifically, there are polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ) groups

𝐺1, … , 𝐺ℓ of ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ) points

• If we want independence of size 𝑛 of the stream length, cannot
afford to store all points explicitly

𝑋

Stream

𝑋′

Online sensitivity sampling

𝐺1, … , 𝐺ℓ

Efficient Local Encoding

• Look at a specific group 𝐺𝑖 and compute a near-optimal solution 𝑆𝑖

• Store offset of each point from one of the centers of 𝑆𝑖

• For each point 𝑥 ∈ 𝐺𝑖, let 𝑐𝑥 be the closest center of 𝑆𝑖 and 𝑦 =
𝑐𝑥 − 𝑥

• Round 𝑦 coordinate-wise to nearest power of 1 + 𝜀′ and store the
vector of exponents 𝑦

Efficient Local Encoding

𝑥

𝑐𝑥

Efficient Local Encoding

𝑥

𝑐𝑥

𝑦 = 𝑐𝑥 − 𝑥

Efficient Local Encoding

𝑥

𝑐𝑥

𝑦

Efficient Local Encoding

• Round 𝑦 coordinate-wise to nearest power of 1 + 𝜀′ and store the
vector of exponents 𝑦

• For 𝜀′ = poly
𝜀

log(𝑛𝑑Δ)
:

• Results in a 1 + 𝑂 𝜀 -coreset of 𝐺𝑖

• Encoding each point uses 𝑑 ⋅ polylog
1

𝜀
, log(𝑛𝑑Δ) bits

• Encoding each group 𝐺𝑖 uses ෨𝑂
𝑑𝑘

𝜀4 words of space, e.g., for 𝑆𝑖

• However, there are polylog 𝑘, 𝑑,
1

𝜀
, log(𝑛Δ) groups 𝐺1, … , 𝐺ℓ

𝑋

Stream

𝑋′

Online sensitivity sampling

𝑆1, … , 𝑆ℓ

𝐺1, … , 𝐺ℓ

Encoding

Global Encoding

• Instead of storing a near-optimal solution 𝑆𝑖 for each group 𝐺𝑖,
store a single near-optimal global solution 𝑆

• Store offset of each point from one of the centers of 𝑆

• For each point 𝑥 ∈ 𝐺𝑖, let 𝑐𝑥 be the closest center of 𝑆 and 𝑦 =
𝑐𝑥 − 𝑥

• Round 𝑦 coordinate-wise to nearest power of 1 + 𝜀′ and store the
vector of exponents 𝑦

Global Encoding

• For 𝜀′ = poly
𝜀

log(𝑛𝑑Δ)
:

• Rounded points no longer provide a 1 + 𝑂 𝜀 -coreset of each
𝐺𝑖, but give 𝑂 𝜀 ⋅ OPT additive error, so 1 + 𝑂 𝜀 -
approximation overall

• Global encoding uses ෨𝑂
𝑑𝑘

𝜀4 total words of space

𝑋Stream

𝑋′
Online sensitivity sampling

𝑆

𝐺1, … , 𝐺ℓ

Global
Encoding

1. Perform online sensitivity sampling to implicitly
create new stream 𝑋′

2. In parallel, run merge-and-reduce on 𝑋′

3. Efficient global encoding on resulting coresets

Questions?Upcoming

▪(𝑘, 𝑧)-Clustering in 𝑜(𝑘)
Amortized Update Time

Fast Clustering

• Algorithm bottleneck: approximation of online sensitivities
for the sampling process to form the stream 𝑋′

• Computing a “good” approximation to sensitivities is often as
hard as computing a “good” approximation to clustering

• Constant-factor approximation in time 𝑂 𝑑𝑛2 [GT08]

• We can view 𝑛 = ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑑, log(𝑛Δ)

Fast Clustering

• Insight: Previous algorithm utilized a significantly smaller

stream 𝑋′ with length
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ

• Repeat this idea another level!

• Create stream ෨𝑋 with length 𝑛1−𝑐 ⋅
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ

Fast Clustering

• Create stream ෨𝑋 with length 𝑛1−𝑐 ⋅
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ

• Can again use online sensitivity sampling of 𝑋 to form ෨𝑋

• Now just need 𝑛1−𝑐-approximations for sensitivities

Fast Clustering

• Theorem: For any constant 𝑐 ∈ (0,1), there exists an
algorithm that computes 𝑛1−𝑐-approximations to the
sensitivities of a batch of 𝑘 points of 𝑋 using 𝑑 log 𝑘 ⋅
polylog log 𝑛Δ amortized update time

Structural Property

• Both clustering costs and sensitivities are distorted by a 𝑂 1
when the cluster centers is among the input points

• 𝑠 𝑥 = max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 is an optimization problem

• Fast enumeration over the center serving a point that realizes

the sensitivity when X = ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑑, log(𝑛Δ)

Structural Property

• Fast enumeration over the center serving a point that realizes

the sensitivity when X = ෨𝑂
𝑘

𝜀4 ⋅ polylog 𝑑, log(𝑛Δ)

• For a fixed center 𝑐 serving a point 𝑥, max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 is now a

constrained optimization problem for minimizing Cost 𝑋, 𝐶 ,
since no center in 𝐶 can be closer to 𝑥 than 𝑐

Quadtree Embedding

Δ

Quadtree Embedding

Δ

Quadtree Embedding

Δ

Quadtree Embedding

Δ

Total cost: 0
Level cost: 0

7

6 6

Quadtree Embedding

Δ

Total cost:
Δ

2
⋅ 7

Level cost:
Δ

2
⋅ 7

7

6 6

Quadtree Embedding

Δ

Total cost:
7

2
+

11

4
Δ

Level cost:
Δ

4
⋅ 11

7

6 6

Fast Clustering

• Choose side length of grid ℓ to be 𝜁ℓ for 𝜁 = 𝑂(𝑛1−𝑐) , so

there are only 𝑂
1

𝑐
 levels in the quadtree

• Makes nearest-neighbor search much faster

• Can quickly solve a near-optimal clustering problem,
generalizing an algorithm of [CLNSS20]

• Additional structural result to quickly approximate
constrained clustering problem

Constrained Clustering

6 6

7

Constrained Clustering

6 6

7

Constrained Clustering

6 6

7

Questions?Upcoming

▪Subspace embeddings

1. Perform online leverage score sampling to
implicitly create new matrix 𝐴′

2. In parallel, run merge-and-reduce on 𝐴′

3. Efficient global encoding on resulting coresets

Efficient Local Encoding

• Suppose we have a constant-factor subspace embedding 𝑀 for the
matrix 𝐴

• How to achieve (1 + 𝜀)-factor subspace embedding?

• Previously: charged each point to closest center

• Round each coordinate in each row to a power of (1 + 𝜀′) after
multiplying by a deterministic preconditioner of 𝑀

Crude Leverage Score Approximation

• Suppose we have a constant-factor subspace embedding 𝑀 for the
matrix 𝐴

• Let 𝑍 = 𝑀⊤𝑀 −1/2 so that 𝑍𝑎𝑡 2
2 is a constant-factor

approximation to the leverage score

• 𝑔𝑍𝑎𝑡 2
2 is 𝑛1−𝑐 approximation to 𝑍𝑎𝑡 2

2 for random gaussian 𝑔

• Compute in 𝑂(𝑑) time since 𝑔𝑍 does not change much over the
stream

Summary

• We achieve one-pass algorithms on insertion-only streams that
maintain (1 + 𝜀)-coreset for (𝑘, 𝑧)-clustering and subspace
embedding that use:

• Words of space independent of stream length 𝑛 (matching
offline coreset constructions)

• 𝑑 log 𝑘 ⋅ polylog log 𝑛Δ amortized update time for
clustering and 𝑂 𝑑 amortized update time for subspace
embedding

Open Questions

• Does there exist an algorithm for low-rank approximation on
insertion-only streams that uses words of space independent of
stream length 𝑛?

• Does there exist an algorithm for graph sparsification on
insertion-only streams that match the offline coreset
constructions?

	Slide 1: Fast and Space-Optimal Streaming Algorithms for Euclidean Clustering
	Slide 2
	Slide 3: k-Clustering
	Slide 4: k-Clustering
	Slide 5: Euclidean k-Clustering
	Slide 6: A Streaming Model
	Slide 7: Coreset
	Slide 8: Coreset Constructions
	Slide 9
	Slide 10: Our Results (I)
	Slide 11: Corollary
	Slide 12
	Slide 13
	Slide 14: Subspace Embedding
	Slide 15: Our Results (II)
	Slide 16: Our Results (III)
	Slide 17: Questions?
	Slide 18
	Slide 19: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 20: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 21: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 22: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 23: Sensitivity Sampling
	Slide 24: Online Sensitivity Sampling
	Slide 25: Online Sensitivity Sampling
	Slide 26: Online Sensitivity Sampling
	Slide 27: Insertion-Only Algorithm [CWZ23]
	Slide 28: Insertion-Only Algorithm [CWZ23]
	Slide 29: Insertion-Only Algorithm
	Slide 30
	Slide 31: Efficient Local Encoding
	Slide 32: Efficient Local Encoding
	Slide 33: Efficient Local Encoding
	Slide 34: Efficient Local Encoding
	Slide 35: Efficient Local Encoding
	Slide 36
	Slide 37: Global Encoding
	Slide 38: Global Encoding
	Slide 39
	Slide 40: Questions?
	Slide 41: Fast Clustering
	Slide 42: Fast Clustering
	Slide 43: Fast Clustering
	Slide 44: Fast Clustering
	Slide 45: Structural Property
	Slide 46: Structural Property
	Slide 47: Quadtree Embedding
	Slide 48: Quadtree Embedding
	Slide 49: Quadtree Embedding
	Slide 50: Quadtree Embedding
	Slide 51: Quadtree Embedding
	Slide 52: Quadtree Embedding
	Slide 53: Fast Clustering
	Slide 54: Constrained Clustering
	Slide 55: Constrained Clustering
	Slide 56: Constrained Clustering
	Slide 57: Questions?
	Slide 58
	Slide 59: Efficient Local Encoding
	Slide 60: Crude Leverage Score Approximation
	Slide 61: Summary
	Slide 62: Open Questions

