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Cut queries — Min Cut

Given G = (V,E), access via cut queries:

[ ScV=|ES,V\S) ]

Goal: find a minimum cut, denoted C.

* 6 - minimum degree

A — edge connectivity




Cut queries — Min Cut

 Given G = (V,E), access via cut queries:

[ ScV=|ES,V\S) ]

e Goal: find a minimum cut, denoted C.

[Trivial: 0(n?), learn the graph. |E(S,T)| in 0(1) queries. }




Motivation — Submodular function minimization

« F:2V > Ris sub-modularif vS,T € 2V, F(S) + F(T) > F(SUT)+ F(SNT)
* Query access.
* Goal: find arg min F(S).

Se2V

Examples:

Graph cuts, F(S) = |9S]|
Entropy

Mutual Information
Matroid rank

Diminishing marginal gain

Wr% W%—%

A B
F(AUs) - F(A) > F(BUs)— F(B)
extra cost: extra cost:
one drink free refill ©

Slides inspired by and figures taken from https://people.csail.mit.edu/stefje/mlss/kyoto_mlss_lecturel.pdf




Motivation — Submodular function minimization

« F:2V > Ris sub-modularif vS,T € 2V, F(S) + F(T) > F(SUT)+ F(SNT)
* Query access.

* Goal: find in F(S).
oal: fin arggrel;r‘} (S)

Cut(4) + Cut(B) > Cut(AnB)+ Cut(AUB)
7 3 3 5




Motivation - Symm Submodular function minimization

Cut(4) = Cut(V —A)

Global Min-cut: Goal is non-trivial minimizer

Cut(A) # Cut(V — A)

(s, t)-Min-cut = Max-Flow < Bipartite matching




SFM - Previous work, upper bounds

Grotschel, Lovasz, 0(n>) Det
Schrijver, 1988

lwata, Fleischer, Fujishige 0(n”) Det Yes SFM
2001
lwata, Orlin 2009 0(n°) Det Yes SFM

Jiang 2021 O(n?logn) Det No SFM




SFM - Previous work, upper bounds

Grotschel, Lovasz, 0(n>) Det
Schrijver, 1988

lwata, Fleischer, Fujishige 0(n”) Det Yes SFM
2001

lwata, Orlin 2009 0(n°) Det Yes SFM
Jiang 2021 O(n?logn) Det No SFM
Jiang 2021+[MN, CQ21] 0(n?) Ran No* symSFM

Queyranne 1998 0(n?) Det Yes symSFM




SFM - Previous work, Lower bounds

cut?

Hajnal, Mass, Turan 1988, Q(n) symSFM

Harvey 2008

Babai, Frankl, Simon 1986 Q( n ) Ran Yes symSFM
logn

Chakrabarty, Graur, Jiang, Q(nlogn) Det No SFM

Sidford 2022

Lower bound situation is dire!

What problems are suitable for proving high SFM lower bound?




Previous Work

« Connectivity in O(nlogn) cut queries [Harvey 2008]

« Unweighted minimum cut in O(nlog> n) cut queries : :
[Rubinstein, Schramm, Weinberg 2018] CO m b' natoria I '

 Multigraph minimum cut in 0(n log*n) cut queries
[M, Nanongkai 2020]

¢« 0 (logn) cut queries for Connectivity, (0(n) assuming communication

complexity conjecture of [Babai, Frankl, Simon 1986]

nloglogn . . .
Q( lfgng ) cut queries for minimum cut on simple graphs

[Assadi, Dudeja 2021]







Main Result

Theorem. Randomised cut-query algorithm for min-cut in simple
graphs has 0(n) complexity.

Improves state of the art even for connectivity!
Tight under conjecture of [Babai, Frankl, Simon 1986]

Other applications: Matrix-vector queries, semi streaming etc.




Main Result

Theorem. Randomised cut-query algorithm for min-cut in simple
graphs has 0(n) complexity.

Star Contraction Separating Matrices

| |

O(n) min cut < O (n) connectivity
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Background: Cut Query Primitives

 Cancheckifanedge (u,v)is
present
3 queries

* Can find an edge between v and S
O (log n) queries

Spanning tree: 0(n)
queries

 Canrandomly sample an edge
Incident on v: O(log n) queries

Any: O(nlogn) queries

 Can work on graph minors.*




Background: Basic Algorithm

* Pack 6 spanning trees.

Spanning tree: 0(n) « Each tree must cross every
queries cut at least once.

o= A

» Complexity: 0(né) — 0(né).

[—Sepaﬂng matrices }

« Can we do any better?




Background: Min-cut Preserving Clustering awarabayashi, horup 20151

 Simple graph G with min deg
d.

e Contract: G = G' such that

* G hasO (%) vertices and O (n)
edges.

 All nhon-trivial min-cuts are
preserved.

Min-cut (G) = Min-cut (G")

« Pack 6 spanning trees in G’
* Linear complexity

G = (V,E)




Background: One-out contraction

 Let C be some min cut. Every vertex v
chooses uniformly random neighbor
u € N(v).




Background: One-out contraction

 Let C be some min cut. Every vertex v
chooses uniformly random neighbor

u € N(v).
 S-sampled edges.
e Pr[SNncC =09]?

* Constant Prob!




Background: One-out contraction

 Let C be some min cut. Every vertex v
chooses uniformly random neighbor

u € N(v).
 S-sampled edge

- prsnc=9¢]= |] (1_28>

veEN(C)

1
> —
16




Background: One-out contraction
G =(V,E)

1-out sample + contract edges

\4

G'= (V' E"

* With constant probability, A(G) = A(G")
* Solve on multigraph G'?

* One can show: Exists graphs s.t. V'| =06 (%) w.h.p.

We want: O (%)




Background: Two-out contraction [Ghaffari, Nowicki, Thorup 2020]
G = (V,E)

Room for improvement:

2-out sample + contract edges * Cluster diameter ©(log* n)
* Analysis made simpler

\4

G'= (V' E"

2-out sample
-~ complexity: O(nlogn).

* With constant probability, A(G) = A(G")

« Solve on multigraph G'.
2 /

* Non-trivial analysis: |[V'| = 0 (5) w.h.p.

No logs!!

{ Complexity: O (% .6) = 0(n). }




Star-Contraction

* |dea: Sample from a subset of neighbors

« Construct set R witheachv € Rw.p.p = 0 (l°§ ")

« Eachu ¢ R independently samples neighbor v
€ Np(u)

* Contract sampled edges SintoG' = (V', E").




Star-Contraction

* |dea: Sample from a subset of neighbors

« Construct set R witheachv € Rw.p.p = 0 (l°§ ")

« Eachu ¢ R independently samples neighbor v
€ Np(u)

* Contract sampled edges SintoG' = (V', E").

* Immediate: |V'| =0 (nl(;gn) w.h.p.

. Pr[SNnC=0¢]= Q).
 A(G") = A(G) with constant probability!

{ Complexity: O (%logn.c?) = 0(nlogn). }




Beyond n log n step 1: Refined star contraction
* |R| and therefore |V'| are too large
* Replacep =0 ( ) withp = 0 (log 6)

nlog 6)
)

 Immediate: |R| = 0(

. V| =|veV N(v)nR=®|=0(f)

5
« V'=RUV"
 Eachu & V', independently samples neighbor
v € Np(u) No neighbor in R

 ContractintoG' = (V',E")
If 6 = polylog(n), use

e 0 (n log 5) = 0 (Tl log log n) d uel’ieS. ﬁ [Mukhopadhyay, Nanongkai 2020]




Beyond n log n step 1: Refined star contraction

|R| and therefore |V'| are too large
Replacep =0 ( ) withp =0 (log 6)

nlog 6)
)

Immediate: |R| = 0(

V| = |fveV N(v)nR=®|=0(2)

5
V'=RUV"
Eachu ¢ V', independently samples NeighbOr q— HOW?
v € Np(u) Trivial: O(nlogn) Separating Matrices

Contractinto ¢G' = (V',E")
If 6 = polylog(n), use

O(nlogd) = O(nloglogn) queries, ==l [Mukhopadhyay, Nanongkai 2020]




The Problem Eachu € V' independently samples neighbor v € Ny (u)

Pri[SNnC = @] = H ( —%)>1—16aslongas

veEN(C) ( )
m 1/2 for every v € N(C)
v 910 oy
UE%(:C) 1) = “3(@) =

qu = Pry.(uvycal{u,v} € C] (a,B)-good for contraction if:

mm) PriSnc=¢]=(1- o) !B/l

1. max property: max, q, < «, and

2. sum property: > . qu < S.




The Problem Eachu € V' independently samples neighbor v € Ny (u)
V'i=RUV"*

G=(RUV*UV\V,E)

e
%

R $O V\V,

Sample uniform v € Ni(u)
forallu € V\V'




The Problem Eachu € V' independently samples neighbor v € Ny (u)
V'i=RUV"*
R V\V’

Sample uniform v € Ny (u)
forallu € V\V'




The Problem Eachu € S independently samples neighbor v € T

T

Sample uniform v € N (u)
forallu € §




The Problem Eachu € S independently samples neighbor v € T

T

Sample uniform v € N (u)
forallu € §
Trivial: O(nlogn)




The (Easy) Problem Eachu € S finds a neighbor v € T

T

Findv € Ny(u) forallu e §




The (Easy) Problem Eachu € S finds a neighbor v € T
T

Assume degr(u) < ¢

Findv € N;(u) forallu e §

* |S|X|T| Boolean matrix M,M[u,v] =1 o (u,v) € E
M has row sparsity ¢
 Goal, learn M!

[Seperating Matrices: Learn M € {0,1}"*" of row sparsity £ with 0(£n) cut
queries




The (Easy) Problem Eachu € S finds a neighbor v € T
T

Assume degr(u) < ¢

Findv € N;(u) forallu e §

[Seperating Matrices: Learn M € {0,1}"*™ of row sparsity £ with 0(¢n) cut
queries

« Trivial: 0(¥n log n) cut queries using binary search.
* A cut query provides Q(log n) bit of information.
 Can be used to shave the log factor.




The (Easy) Problem Eachu € S finds a neighbor v € T
T

Findv € N;(u) forallu e §
Trivial: O(n log n)

Learn M € {0, 1}"™”*" of row sparsity ¢ with 0(fn) cut queries
Sampling Lemma: Solve The (Easy) Problem in O(|S|) cut

queries, in expectation .
Immediate corollary: Connectivity in expected 0(n) cut queries! sparsity
Lemma solves The Problem as well in expected O(n) cut queries! < ¢ e

Degree buckets [2¢,2¢+1]
Sample w.p. % for 0(1)

Remains (a, f)-
good




Beyond n log n step 1: Refined star contraction
* |R| and therefore |V'| are too large

* Replacep =0 (10%) withp = 0 (log 6)

o)
nlog 6)
o)

 Immediate: |R| = 0(

n

c V| =|weVIN@W)NR=0|=0(3)

o
« VV=RUV"
v € Np(u) 0(n) expected queries

 ContractintoG' = (V',E")
If 6 = polylog(n), use

* O(nlogd) = O(nloglogn) queries, =l [Mukhopadhyay, Nanongkai 2020]




Beyond n log logn

* Needto have O (g) vertices within O(n) complexity.

* FromO (n l(;g 6) to O (%):

* Learn a dense enough subgraph with O(n) queries.

e Do 2-out contraction within it.




Summary

Theorem. Randomised cut-query algorithm for min-cut in simple
graphs has 0(n) complexity.

Open Questions:

 Randomised communication complexity of edge connectivity?
« SOTA:Q(nloglogn) [AD21]

» Zero-error/Deterministic edge connectivity with O(n) cut queries?
* Weighted graph: O(n) cut query?

* In general: SFM needs w(n) evaluation query accesses?

Thank you!




