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Model of Computation



Cut queries – Min Cut 

• Given 𝐺 = (𝑉, 𝐸), access via cut queries:

• Goal: find a minimum cut, denoted 𝐶.

• 𝛿 – minimum degree

• 𝜆 – edge connectivity

4

𝑆 ⊆ 𝑉 ⇒ |𝐸 𝑆, 𝑉\S |



• Given 𝐺 = (𝑉, 𝐸), access via cut queries:

• Goal: find a minimum cut, denoted 𝐶.

4

𝑆 ⊆ 𝑉 ⇒ |𝐸 𝑆, 𝑉\S |

Trivial: 𝑂 𝑛! , learn the graph. 𝐸 𝑆, 𝑇  in 𝑂 1  queries.

Cut queries – Min Cut 



Motivation – Submodular function minimization

• 𝐹: 2" → ℝ	is  sub-modular if ∀𝑆, 𝑇 ∈ 2", 𝐹 𝑆 + 𝐹 𝑇 ≥ 𝐹 𝑆 ∪ 𝑇 + 𝐹(𝑆 ∩ 𝑇)
• Query access.

• Goal: find arg min
#∈!!

𝐹(𝑆).

• Examples:
• Graph cuts, 𝐅 𝑺 = |𝝏𝑺|
• Entropy
• Mutual Information
• Matroid rank

Diminishing marginal gain

Slides inspired by and figures taken from https://people.csail.mit.edu/stefje/mlss/kyoto_mlss_lecture1.pdf



Motivation – Submodular function minimization

• 𝐹: 2" → ℝ	is  sub-modular if ∀𝑆, 𝑇 ∈ 2", 𝐹 𝑆 + 𝐹 𝑇 ≥ 𝐹 𝑆 ∪ 𝑇 + 𝐹(𝑆 ∩ 𝑇)
• Query access.

• Goal: find arg min
#∈!!

𝐹(𝑆).
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Motivation – Symm Submodular function minimization

Global Min-cut: Goal is non-trivial minimizer



SFM – Previous work, upper bounds
Upper bound Det/Ran Combinatorial? SymSFM/SFM

Grotschel, Lovasz, 
Schrijver, 1988

%𝑂(𝑛!) Det No SFM

Iwata, Fleischer, Fujishige 
2001

%𝑂(𝑛") Det Yes SFM

Iwata, Orlin 2009 %𝑂(𝑛!) Det Yes SFM

Jiang 2021 𝑂 𝑛# log 𝑛 Det No SFM



SFM – Previous work, upper bounds
Upper bound Det/Ran Combinatorial? SymSFM/SFM

Grotschel, Lovasz, 
Schrijver, 1988

%𝑂(𝑛!) Det No SFM

Iwata, Fleischer, Fujishige 
2001

%𝑂(𝑛") Det Yes SFM

Iwata, Orlin 2009 %𝑂(𝑛!) Det Yes SFM

Jiang 2021 𝑂 𝑛# log 𝑛 Det No SFM

Jiang 2021+[MN, CQ21] %𝑂 𝑛# Ran No* symSFM

Queyranne 1998 𝑂 𝑛$ Det Yes symSFM



SFM – Previous work, Lower bounds
Lower bound Det/Ran Applies to min 

cut?
SymSFM/SFM

Hajnal, Mass, Turán 1988, 
Harvey 2008

Ω(𝑛) Det Yes symSFM

Babai, Frankl, Simon 1986 Ω
𝑛

log 𝑛
Ran Yes symSFM

Chakrabarty, Graur, Jiang, 
Sidford 2022

Ω(𝑛 log 𝑛) Det No SFM

Lower bound situation is dire!

What problems are suitable for proving high SFM lower bound?



Previous Work

• Connectivity in 𝑂 𝑛 log 𝑛  cut queries [Harvey 2008]

• Unweighted minimum cut in 𝑂 𝑛 log. 𝑛  cut queries              
[Rubinstein, Schramm, Weinberg 2018]

• Multigraph minimum cut in 𝑂 𝑛	log/𝑛  cut queries                                    
[M, Nanongkai 2020]

• Ω 0
123 0  cut queries for Connectivity, Ω 𝑛  assuming communication 

complexity conjecture of [Babai, Frankl, Simon 1986]

• Ω 0 123 123 0
123 0  cut queries for minimum cut on simple graphs                   

[Assadi, Dudeja 2021]

} Combinatorial!



Results



Main Result

Improves state of the art even for connectivity!

Tight under conjecture of [Babai, Frankl, Simon 1986]

Other applications: Matrix-vector queries, semi streaming etc.

Theorem. Randomised cut-query algorithm for min-cut in simple 
graphs has 𝑂(𝑛) complexity.



Main Result

Star Contraction Separating Matrices 

𝑶(𝒏) connectivity𝑶 𝒏  min cut

Theorem. Randomised cut-query algorithm for min-cut in simple 
graphs has 𝑂(𝑛) complexity.



Techniques



Background: Cut Query Primitives
• Can check if an edge (𝑢, 𝑣) is 

present
• 3 queries

• Can find an edge between 𝑣 and 𝑆
• 𝑂(log	𝑛) queries

• Can randomly sample an edge
• Incident on 𝑣: O(log	𝑛) queries
• Any: 𝑂(𝑛	log	𝑛) queries

• Can work on graph minors.*

Spanning tree: %𝑂(𝑛) 
queries



Background: Basic Algorithm
• Pack 𝛿 spanning trees.

• Each tree must cross every 
cut at least once.

• 𝛿 ≥ 𝜆.

• Complexity: G𝑂(𝑛𝛿) → 𝑂(𝑛𝛿).

• Can we do any better?

Spanning tree: %𝑂(𝑛) 
queries

Separating matrices



Background: Min-cut Preserving Clustering [Kawarabayashi, Thorup 2015]

• Simple graph 𝐺 with min deg 
𝛿.

• Contract: 𝐺 → 𝐺′ such that
• 𝐺′ has 5𝑂 !

"
 vertices and 5𝑂(𝑛) 

edges.
• All non-trivial min-cuts are 

preserved.

• Pack 𝛿 spanning trees in 𝐺′
• Linear complexity

𝐺 = (𝑉, 𝐸)

𝑉% 𝑉#

𝑉&

𝑉!

𝑉$

Min-cut (𝐺) = Min-cut (𝐺′)



Background: One-out contraction
• Let 𝐶 be some min cut. Every vertex 𝑣 

chooses uniformly random neighbor           
𝑢 ∈ 𝑁(𝑣).



Background: One-out contraction
• Let 𝐶 be some min cut. Every vertex 𝑣 

chooses uniformly random neighbor           
𝑢 ∈ 𝑁(𝑣).

• 𝑺- sampled edges. 

• Pr 𝑆 ∩ 𝐶 = ∅ ?

• Pr 𝑆 ∩ 𝐶 = ∅ ≥ 9
!

/
= 9

9: 

• Constant Prob!



Background: One-out contraction
• Let 𝐶 be some min cut. Every vertex 𝑣 

chooses uniformly random neighbor           
𝑢 ∈ 𝑁(𝑣).

• 𝑺- sampled edges. 

• Pr 𝑆 ∩ 𝐶 = ∅ =

≥
1
16



Background: One-out contraction
𝐺 = (𝑉, 𝐸)

1-out sample + contract edges

𝐺> = (𝑉>, 𝐸>)

• With constant probability, 𝜆 𝐺 = 𝜆(𝐺>)
• Solve on multigraph 𝐺′? 

• One can show: Exists graphs s.t. 𝑉> = Θ 0
?

 w.h.p.

We want: 𝑶 𝒏
𝜹



Background: Two-out contraction [Ghaffari, Nowicki, Thorup 2020]

𝐺 = (𝑉, 𝐸)

2-out sample + contract edges

𝐺> = (𝑉>, 𝐸>)

• With constant probability, 𝜆 𝐺 = 𝜆(𝐺>)
• Solve on multigraph 𝐺′. 
• Non-trivial analysis: 𝑉> = 𝑂 0

?  w.h.p.

Room for improvement:
• Cluster diameter Θ log# 𝑛
• Analysis made simpler

No logs!!

Complexity: 𝑂 0
? 	 . 𝛿 = 𝑂(𝑛).

2-out sample 
complexity: 𝑂(𝑛	log	𝑛).



Star-Contraction
• Idea: Sample from a subset of neighbors

• Construct set 𝑹 with each 𝒗 ∈ 𝑹 w.p. 𝒑 = 𝚯 𝐥𝐨𝐠 𝒏
𝜹

• Each 𝒖 ∉ 𝑹  independently samples neighbor 𝒗
∈ 𝑵𝑹(𝒖)

• Contract sampled edges 𝑺 into 𝐺> = 𝑉>, 𝐸> .



Star-Contraction
• Idea: Sample from a subset of neighbors

• Construct set 𝑹 with each 𝒗 ∈ 𝑹 w.p. 𝒑 = 𝚯 𝐥𝐨𝐠 𝒏
𝜹

• Each 𝒖 ∉ 𝑹  independently samples neighbor 𝒗
∈ 𝑵𝑹(𝒖)

• Contract sampled edges 𝑺 into 𝐺> = 𝑉>, 𝐸> .

• Immediate: 𝑉> = 𝑂 0 123 0
? w.h.p.

• Pr[𝑆 ∩ 𝐶 = ∅] = 	Ω(1).
• 𝜆 𝐺> = 𝜆 𝐺  with constant probability!

2

2
1

Complexity: 𝑂 0
?
log	𝑛	. 𝛿 = 𝑂(𝑛	log	𝑛).



Beyond 𝑛	log	𝑛	step 1: Refined star contraction
• |𝑅| and therefore |𝑉′| are too large

• Replace 𝑝 = Θ 123 0
? with 𝑝 = Θ 123 ?

?

• Immediate: 𝑅 = 𝑂 0 123 ?
?

• |𝑽∗| = |{𝒗 ∈ 𝑽 ∣ 𝑵 𝒗 ∩ 𝑹 = ∅| = 𝑶 𝒏
𝜹

• 𝑉> = 𝑹 ∪ 𝑽∗

• Each 𝑢 ∉ 𝑉′,  independently samples neighbor 
𝑣 ∈ 𝑁H(𝑢)

• Contract into 𝐺> = 𝑉>, 𝐸>

• 𝑂 𝑛 log 𝛿 ⇒ 𝑂 𝑛 log log 𝑛  queries.
If 𝛿 ≥ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛), use 
[Mukhopadhyay, Nanongkai 2020]

No neighbor in 𝑹



• |𝑅| and therefore |𝑉′| are too large

• Replace 𝑝 = Θ 123 0
? with 𝑝 = Θ 123 ?

?

• Immediate: 𝑅 = 𝑂 0 123 ?
?

• |𝑽∗| = |{𝒗 ∈ 𝑽 ∣ 𝑵 𝒗 ∩ 𝑹 = ∅| = 𝑶 𝒏
𝜹

• 𝑉> = 𝑹 ∪ 𝑽∗

• Each 𝑢 ∉ 𝑉′,  independently samples neighbor 
𝑣 ∈ 𝑁H(𝑢)

• Contract into 𝐺> = 𝑉>, 𝐸>

• 𝑂 𝑛 log 𝛿 ⇒ 𝑂 𝑛 log log 𝑛  queries.
If 𝛿 ≥ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛), use 
[Mukhopadhyay, Nanongkai 2020]

How?
Separating MatricesTrivial: 𝑶 𝒏 𝐥𝐨𝐠𝒏

Beyond 𝑛	log	𝑛	step 1: Refined star contraction



The Problem Each 𝑢 ∉ 𝑉′  independently samples neighbor 𝑣 ∈ 𝑁H(𝑢)

Pr 𝑆 ∩ 𝐶 = ∅ = > 9
9:

 as long as

(𝛼, 𝛽)-good for contraction if:

Pr 𝑆 ∩ 𝐶 = ∅ =



The Problem Each 𝑢 ∉ 𝑉′  independently samples neighbor 𝑣 ∈ 𝑁H(𝑢)

𝐺 = (𝑅 ∪ 𝑉∗ ∪ 𝑉\V′, 𝐸)
𝑉> = 𝑅 ∪ 𝑉∗

𝑅 𝑉\V′

𝑉∗

No edges

Sample uniform 𝑣 ∈ 𝑁?(𝑢) 
for all 𝑢 ∈ 𝑉\V′



The Problem Each 𝑢 ∉ 𝑉′  independently samples neighbor 𝑣 ∈ 𝑁H(𝑢)

𝑉> = 𝑅 ∪ 𝑉∗

𝑅 𝑉\V′

Sample uniform 𝑣 ∈ 𝑁?(𝑢) 
for all 𝑢 ∈ 𝑉\V′



The Problem Each 𝑢 ∈ 𝑆  independently samples neighbor 𝑣 ∈ 𝑇

𝑆𝑇

Sample uniform 𝑣 ∈ 𝑁@(𝑢) 
for all 𝑢 ∈ 𝑆



The Problem Each 𝑢 ∈ 𝑆  independently samples neighbor 𝑣 ∈ 𝑇

𝑆𝑇

Sample uniform 𝑣 ∈ 𝑁@(𝑢) 
for all 𝑢 ∈ 𝑆

Trivial: 𝑂(𝑛 log 𝑛)



The (Easy) Problem Each 𝑢 ∈ 𝑆  finds a neighbor 𝑣 ∈ 𝑇

𝑆𝑇

Find 𝑣 ∈ 𝑁@(𝑢) for all 𝑢 ∈ 𝑆



The (Easy) Problem Each 𝑢 ∈ 𝑆  finds a neighbor 𝑣 ∈ 𝑇

𝑆𝑇

Find 𝑣 ∈ 𝑁@(𝑢) for all 𝑢 ∈ 𝑆

Assume degO 𝒖 ≤ ℓ

• 𝑆 ×|𝑇| Boolean matrix 𝑀,𝑀 𝑢, 𝑣 = 1 ↔ 𝑢, 𝑣 ∈ 𝐸	
• 𝑀 has row sparsity ℓ
• Goal, learn 𝑀!

𝒖

Seperating Matrices: Learn 𝑀 ∈ 0,1 0×0 of row sparsity ℓ with 𝑂 ℓ𝑛  cut 
queries



The (Easy) Problem Each 𝑢 ∈ 𝑆  finds a neighbor 𝑣 ∈ 𝑇

𝑆𝑇

Find 𝑣 ∈ 𝑁@(𝑢) for all 𝑢 ∈ 𝑆

Assume degO 𝒖 ≤ ℓ 𝒖

Seperating Matrices: Learn 𝑀 ∈ 0,1 0×0 of row sparsity ℓ with 𝑂 ℓ𝑛  cut 
queries

• Trivial: 𝑂 ℓ𝑛	log	𝑛  cut queries using binary search.
• A cut query provides Ω(log	𝑛) bit of information.
• Can be used to shave the log factor.



The (Easy) Problem Each 𝑢 ∈ 𝑆  finds a neighbor 𝑣 ∈ 𝑇

𝑆𝑇

Find 𝑣 ∈ 𝑁@(𝑢) for all 𝑢 ∈ 𝑆
Trivial: 𝑂(𝑛	log	𝑛)

• Learn 𝑴 ∈ 𝟎, 𝟏 𝒏×𝒏 of row sparsity ℓ with 𝑶 ℓ𝒏  cut queries
• Sampling Lemma: Solve The (Easy) Problem in 𝑂( 𝑆 ) cut 

queries, in expectation
• Immediate corollary: Connectivity in expected 𝑶(𝒏) cut queries!
• Lemma solves The Problem as well in expected 𝑶(𝒏) cut queries!

Degree buckets [2%, 2%&']
Sample w.p. '

(!
 for 𝑂 1  

sparsity

Remains (𝛼, 𝛽)-
good



• |𝑅| and therefore |𝑉′| are too large

• Replace 𝑝 = Θ 123 0
? with 𝑝 = Θ 123 ?

?

• Immediate: 𝑅 = 𝑂 0 123 ?
?

• |𝑽∗| = |{𝒗 ∈ 𝑽 ∣ 𝑵 𝒗 ∩ 𝑹 = ∅| = 𝑶 𝒏
𝜹

• 𝑉> = 𝑹 ∪ 𝑽∗

• Each 𝑢 ∉ 𝑉′,  independently samples neighbor 
𝑣 ∈ 𝑁H(𝑢)

• Contract into 𝐺> = 𝑉>, 𝐸>

• 𝑂 𝑛 log 𝛿 ⇒ 𝑂 𝑛 log log 𝑛  queries.
If 𝛿 ≥ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛), use 
[Mukhopadhyay, Nanongkai 2020]

Solved!𝑶 𝒏  expected queries

Beyond 𝑛	log	𝑛	step 1: Refined star contraction



Beyond 𝑛	log	log	𝑛

• Need to have 𝑂 0
?  vertices within 𝑂(𝑛) complexity.

• From 𝑂 0	123	?
?  to 𝑂 0

? : 

• Learn a dense enough subgraph with 𝑂(𝑛) queries.
• Do 2-out contraction within it.



Summary

Open Questions:

• Randomised communication complexity of edge connectivity?
• SOTA: Ω(𝑛	log	log	𝑛) [AD21]

• Zero-error/Deterministic edge connectivity with 𝑂(𝑛) cut queries?

• Weighted graph: 𝑂(𝑛) cut query?

• In general: SFM needs 𝜔(𝑛) evaluation query accesses? 

Theorem. Randomised cut-query algorithm for min-cut in simple 
graphs has 𝑂(𝑛) complexity.

Thank you!


