Graph Connectivity Using Star Contraction (logs Matter)

Sagnik Mukhopadhyay

UNIVERSITYOF BIRMINGHAM .

Joint work with Simon, Troy, Yuval, Pawel and Danupon. Appeared in FOCS 2022.

Model of Computation

Cut queries – Min Cut

• Given $G = (V, E)$, access via *cut queries:*

 $S \subseteq V \Rightarrow |E(S, V \setminus S)|$

- \cdot **Goal**: find a minimum cut, denoted C .
- δ minimum degree
- λ edge connectivity

Cut queries – Min Cut

• Given $G = (V, E)$, access via *cut queries:*

 $S \subseteq V \Rightarrow |E(S, V \setminus S)|$

 \cdot **Goal**: find a minimum cut, denoted C .

Trivial: $O(n^2)$, learn the graph. $|E(S,T)|$ in $O(1)$ queries.

Motivation – Submodular function minimization

- $F: 2^V \to \mathbb{R}$ is sub-modular if $\forall S, T \in 2^V, F(S) + F(T) \geq F(S \cup T) + F(S \cap T)$
- Query access.
- Goal: find arg ming $\overline{\text{SE2}^V}$ $F(S).$
- Examples:
	- **Graph cuts,** $F(S) = |\partial S|$
	- Entropy
	- Mutual Information
	- Matroid rank

Diminishing marginal gain

Slides inspired by and figures taken from https://people.csail.mit.edu/stefje/mlss/kyoto_mlss_lecture1.pdf

Motivation – Submodular function minimization

- $F: 2^V \to \mathbb{R}$ is sub-modular if $\forall S, T \in 2^V, F(S) + F(T) \geq F(S \cup T) + F(S \cap T)$
- Query access.

Motivation – Symm Submodular function minimization

 $Cut(A) = Cut(V - A)$

Global Min-cut: Goal is **non-trivial minimizer**

 \boldsymbol{S}

 $Cut(A) \neq Cut(V - A)$

 (s, t) -Min-cut = Max-Flow \Leftarrow Bipartite matching

SFM – Previous work, upper bounds

SFM – Previous work, upper bounds

SFM – Previous work, Lower bounds

Lower bound situation is dire!

What problems are suitable for proving high SFM lower bound?

Previous Work

- **Connectivity** in $O(n \log n)$ cut queries **[Harvey 2008]**
- Unweighted minimum cut in $O(n \log^3 n)$ cut queries **[Rubinstein, Schramm, Weinberg 2018]**
- **Multigraph** minimum cut in $O(n \log^4 n)$ cut queries **[M, Nanongkai 2020]**

- $\Omega\left(\frac{n}{\log n}\right)$ $\left(\frac{n}{\log n}\right)$ cut queries for **Connectivity**, $\Omega(n)$ assuming communication complexity conjecture of **[Babai, Frankl, Simon 1986]**
- $\Omega\left(\frac{n\log\log n}{\log n}\right)$ $\frac{\log \log n}{\log n}$) cut queries for minimum cut on simple graphs. **[Assadi, Dudeja 2021]**

Main Result

Theorem. Randomised cut-query algorithm for min-cut in simple graphs has $O(n)$ complexity.

Improves state of the art even for connectivity!

Tight under conjecture of **[Babai, Frankl, Simon 1986]**

Other applications: Matrix-vector queries, semi streaming etc.

Main Result

Theorem. Randomised cut-query algorithm for min-cut in simple graphs has $O(n)$ complexity.

Background: Cut Query Primitives

Background: Basic Algorithm

- Pack δ spanning trees.
	- Each tree must cross every cut at least once.
	- $\delta \geq \lambda$.
- Complexity: $\tilde{O}(n\delta) \rightarrow O(n\delta)$.

Separating matrices

• Can we do any better?

Background: Min-cut Preserving Clustering **[Kawarabayashi, Thorup 2015]**

- Simple graph G with min deg δ .
- Contract: $G \rightarrow G'$ such that
	- G' has $\tilde{O}\left(\frac{n}{\delta}\right)$ vertices and $\tilde{O}(n)$ edges.
	- All non-trivial min-cuts are preserved.

Min-cut (G) = Min-cut (G')

- Pack δ spanning trees in G'
	- Linear complexity

• Let C be some min cut. Every vertex v chooses uniformly random neighbor $u \in N(v)$.

- Let C be some min cut. Every vertex v chooses uniformly random neighbor $u \in N(v)$.
- **- sampled edges.**
- Pr $[S \cap C = \emptyset]$?

•
$$
\Pr[S \cap C = \emptyset] \ge \frac{1^4}{2} = \frac{1}{16}
$$

• Constant Prob!

- Let C be some min cut. Every vertex v chooses uniformly random neighbor $u \in N(v)$.
- S- sampled edge

•
$$
Pr[S \cap C = \emptyset] =
$$

$$
\prod_{v \in N(C)} \left(1 - \frac{c(v)}{d(v)}\right)^{\sum}
$$

≥

1

16

$$
\frac{c(v)}{d(v)} \le 1/2 \text{ for every } v \in N(C)
$$

$$
\sum_{v \in N(C)} \frac{c(v)}{d(v)} \le 2\frac{|C|}{\delta(G)} \le 2.
$$

$$
G = (V, E)
$$

1-out sample + contract edges

$$
G' = (V', E')
$$

- With constant probability, $\lambda(G) = \lambda(G')$
- Solve on multigraph G' ?
- One can show: Exists graphs s.t. $=\Theta\left(\frac{n}{\sqrt{2}}\right)$ $\frac{\epsilon}{\delta}$) w.h.p.

We want:
$$
O\left(\frac{n}{\delta}\right)
$$

Background: **Two**-out contraction **[Ghaffari, Nowicki, Thorup 2020]**

Star-Contraction

- Idea: Sample from a subset of neighbors
- **Construct set** *R* **with each** $v \in R$ **w.p.** $p = \Theta\left(\frac{\log n}{s}\right)$
- Each $u \notin R$ independently samples neighbor v $\in N_R(u)$
- Contract sampled edges S into $G' = (V', E').$

$$
\mathbb{E}_R\left[\frac{c_R(v)}{d_R(v)}\middle| d_R(v) > 0\right] = \frac{c(v)}{d(v)}
$$

Star-Contraction

- Idea: Sample from a subset of neighbors
- **Construct set** *R* **with each** $v \in R$ **w.p.** $p = \Theta\left(\frac{\log n}{s}\right)$ $\boldsymbol{\delta}$
- **Each** $u \notin R$ independently samples neighbor v $\in N_R(u)$
- Contract sampled edges S into $G' = (V', E').$

• **Immediate:**
$$
|V'| = O\left(\frac{n \log n}{\delta}\right)
$$
 w.h.p.

- Pr[$S \cap C = \emptyset$] = $\Omega(1)$.
- $\lambda(G') = \lambda(G)$ with constant probability!

Complexity:
$$
O\left(\frac{n}{\delta}\log n \cdot \delta\right) = O(n \log n)
$$
.

Beyond $n \log n$ step 1: Refined star contraction

- $|R|$ and therefore $|V'|$ are too large
- Replace $p = \Theta\left(\frac{\log n}{\delta}\right)$ with $p = \Theta\left(\frac{\log \delta}{\delta}\right)$
- **Immediate:** $|R| = O\left(\frac{n \log \delta}{s}\right)$ δ
- $|V^*| = |\{ v \in V \mid N(v) \cap R = \emptyset\}| = O\left(\frac{n}{s}\right)$ $\boldsymbol{\delta}$
- $V' = R \cup V^*$
- Each $u \notin V'$, independently samples neighbor $v \in N_R(u)$
- Contract into $G' = (V', E')$
- $O(n \log \delta) \Rightarrow O(n \log \log n)$ queries.

If $\delta \geq polylog(n)$, use **[Mukhopadhyay, Nanongkai 2020]**

Beyond $n \log n$ step 1: Refined star contraction

- $|R|$ and therefore $|V'|$ are too large
- Replace $p = \Theta\left(\frac{\log n}{\delta}\right)$ with $p = \Theta\left(\frac{\log \delta}{\delta}\right)$
- **Immediate:** $|R| = O\left(\frac{n \log \delta}{s}\right)$ δ
- $|V^*| = |\{ v \in V \mid N(v) \cap R = \emptyset\}| = O\left(\frac{n}{s}\right)$ $\boldsymbol{\delta}$
- $V' = R \cup V^*$
- Each $u \notin V'$, independently samples neighbor \leftarrow $v \in N_R(u)$ **Separating Matrices Trivial:**
- Contract into $G' = (V', E')$
- $O(n \log \delta) \Rightarrow O(n \log \log n)$ queries.

How?

The Problem Each $u \notin V'$ independently samples neighbor $v \in N_R(u)$

$$
\Pr[S \cap C = \emptyset] = \prod_{v \in N(C)} \left(1 - \frac{c(v)}{d(v)} \right) > \frac{1}{16} \text{ as long as}
$$
\n
$$
\frac{c(v)}{d(v)} \le 1/2 \text{ for every } v \in N(C)
$$
\n
$$
\sum_{v \in N(C)} \frac{c(v)}{d(v)} \le 2 \frac{|C|}{\delta(G)} \le 2.
$$

 $q_u = \Pr_{v:(u,v)\in A}[\{u,v\} \in C]$ (α,β) -good for contraction if:

1. max property: $\max_u q_u \leq \alpha$, and $Pr[S \cap C = \emptyset] = (1 - \alpha)^{\lceil \beta / \alpha \rceil}.$ 2. sum property: $\sum_{u} q_u \leq \beta$.

The Problem Each $u \in S$ independently samples neighbor $v \in T$

- $|S| \times |T|$ Boolean matrix M, $M[u, v] = 1 \leftrightarrow (u, v) \in E$
- *M* has row sparsity ℓ
- Goal, learn M!

Seperating Matrices: Learn $M \in \{0,1\}^{n \times n}$ of row sparsity ℓ with $O(\ell n)$ cut queries

Seperating Matrices: Learn $M \in \{0,1\}^{n \times n}$ of row sparsity ℓ with $O(\ell n)$ cut queries

- **Trivial:** $O(\ln \log n)$ cut queries using binary search.
- A cut query provides $\Omega(\log n)$ bit of information.
- Can be used to shave the log factor.

- **Learn** $M \in \{0, 1\}^{n \times n}$ of row sparsity ℓ with $O(\ell n)$ cut queries
- **Sampling Lemma:** Solve **The (Easy) Problem** in $O(|S|)$ cut queries, **in expectation**
- Immediate corollary: **Connectivity** in **expected** $O(n)$ cut queries!
- Lemma solves The Problem as well in expected $O(n)$ cut queries! \cdot

Degree buckets $[2^i, 2^{i+1}]$ Sample w.p. $\frac{1}{2^i}$ for $O(1)$ sparsity

Remains (α, β) good

Beyond $n \log n$ step 1: Refined star contraction

- $|R|$ and therefore $|V'|$ are too large
- Replace $p = \Theta\left(\frac{\log n}{\delta}\right)$ with $p = \Theta\left(\frac{\log \delta}{\delta}\right)$
- **Immediate:** $|R| = O\left(\frac{n \log \delta}{s}\right)$ δ
- $|V^*| = |\{ v \in V \mid N(v) \cap R = \emptyset\}| = O\left(\frac{n}{s}\right)$ $\boldsymbol{\delta}$
- $V' = R \cup V^*$
- Each $u \notin V'$, independently samples neighbor $v \in N_R(u)$
- Contract into $G' = (V', E')$
- $O(n \log \delta) \Rightarrow O(n \log \log n)$ queries.

Beyond $n \log \log n$

- Need to have $O\left(\frac{n}{s}\right)$ $\left(\frac{n}{\delta}\right)$ vertices within $O(n)$ complexity.
- From $O\left(\frac{n \log \delta}{\delta}\right)$ to $O\left(\frac{n}{\delta}\right)$:
	- Learn a dense enough subgraph with $O(n)$ queries.
	- Do 2-out contraction within it.

Theorem. Randomised cut-query algorithm for min-cut in simple graphs has $O(n)$ complexity.

Thank you!

Open Questions:

- Randomised communication complexity of edge connectivity?
	- SOTA: $\Omega(n \log \log n)$ [AD21]
- Zero-error/Deterministic edge connectivity with $O(n)$ cut queries?
- Weighted graph: $O(n)$ cut query?
- In general: SFM needs $\omega(n)$ evaluation query accesses?