Graph Connectivity Using Star Contraction (logs Matter)

Sagnik Mukhopadhyay

UNIVERSITY^{OF} BIRMINGHAM

Joint work with Simon, Troy, Yuval, Pawel and Danupon. Appeared in FOCS 2022.

Model of Computation

Cut queries – Min Cut

• Given G = (V, E), access via *cut queries*:

 $S \subseteq V \Rightarrow |E(S, V \setminus S)|$

- **Goal**: find a minimum cut, denoted *C*.
- δ minimum degree
- λ edge connectivity

Cut queries – Min Cut

• Given G = (V, E), access via *cut queries*:

 $S \subseteq V \Rightarrow |E(S, V \setminus S)|$

• **Goal**: find a minimum cut, denoted *C*.

Trivial: $O(n^2)$, learn the graph. |E(S,T)| in O(1) queries.

Motivation – Submodular function minimization

- $F: 2^V \to \mathbb{R}$ is sub-modular if $\forall S, T \in 2^V, F(S) + F(T) \ge F(S \cup T) + F(S \cap T)$
- Query access.
- Goal: find $\arg \min_{S \in 2^V} F(S)$.
- Examples:
 - Graph cuts, $F(S) = |\partial S|$
 - Entropy
 - Mutual Information
 - Matroid rank

Diminishing marginal gain

Slides inspired by and figures taken from https://people.csail.mit.edu/stefje/mlss/kyoto_mlss_lecture1.pdf

Motivation – Submodular function minimization

- $F: 2^V \to \mathbb{R}$ is sub-modular if $\forall S, T \in 2^V, F(S) + F(T) \ge F(S \cup T) + F(S \cap T)$
- Query access.

Motivation – Symm Submodular function minimization

 $\operatorname{Cut}(A) = \operatorname{Cut}(V - A)$

Global Min-cut: Goal is non-trivial minimizer

 $\operatorname{Cut}(A) \neq \operatorname{Cut}(V - A)$

(s, t)-Min-cut = Max-Flow \leftarrow **Bipartite matching**

SFM – Previous work, upper bounds

	Upper bound	Det/Ran	Combinatorial?	SymSFM/SFM
Grotschel, Lovasz, Schrijver, 1988	$ ilde{O}(n^5)$	Det	No	SFM
Iwata, Fleischer, Fujishige 2001	$\tilde{O}(n^7)$	Det	Yes	SFM
Iwata, Orlin 2009	$ ilde{O}(n^5)$	Det	Yes	SFM
Jiang 2021	$O(n^2 \log n)$	Det	No	SFM

SFM – Previous work, upper bounds

	Upper bound	Det/Ran	Combinatorial?	SymSFM/SFM
Grotschel, Lovasz, Schrijver, 1988	$ ilde{O}(n^5)$	Det	No	SFM
Iwata, Fleischer, Fujishige 2001	$\tilde{O}(n^7)$	Det	Yes	SFM
Iwata, Orlin 2009	$ ilde{O}(n^5)$	Det	Yes	SFM
Jiang 2021	$O(n^2 \log n)$	Det	No	SFM
Jiang 2021+[MN , CQ21]	$\tilde{O}(n^2)$	Ran	No*	symSFM
Queyranne 1998	$O(n^3)$	Det	Yes	symSFM

SFM – Previous work, Lower bounds

	Lower bound	Det/Ran	Applies to min cut?	SymSFM/SFM
Hajnal, Mass, Turán 1988, Harvey 2008	$\Omega(n)$	Det	Yes	symSFM
Babai, Frankl, Simon 1986	$\Omega\left(\frac{n}{\log n}\right)$	Ran	Yes	symSFM
Chakrabarty, Graur, Jiang, Sidford 2022	$\Omega(n \log n)$	Det	No	SFM

Lower bound situation is dire!

What problems are suitable for proving high SFM lower bound?

Previous Work

- **Connectivity** in $O(n \log n)$ cut queries [Harvey 2008]
- Unweighted minimum cut in $O(n \log^3 n)$ cut queries [Rubinstein, Schramm, Weinberg 2018]
- Multigraph minimum cut in O(n log⁴n) cut queries
 [M, Nanongkai 2020]

- $\Omega\left(\frac{n}{\log n}\right)$ cut queries for **Connectivity**, $\Omega(n)$ assuming communication complexity conjecture of [Babai, Frankl, Simon 1986]
- $\Omega\left(\frac{n \log \log n}{\log n}\right)$ cut queries for minimum cut on simple graphs [Assadi, Dudeja 2021]

Theorem. Randomised cut-query algorithm for min-cut in simple graphs has O(n) complexity.

Improves state of the art even for connectivity!

Tight under conjecture of [Babai, Frankl, Simon 1986]

Other applications: Matrix-vector queries, semi streaming etc.

Main Result

Theorem. Randomised cut-query algorithm for min-cut in simple graphs has O(n) complexity.

Background: Cut Query Primitives

Background: Basic Algorithm

- Pack δ spanning trees.
 - Each tree must cross every cut at least once.
 - $\delta \geq \lambda$.
 - Complexity: $\tilde{O}(n\delta) \rightarrow O(n\delta)$.

Separating matrices

• Can we do any better?

Background: Min-cut Preserving Clustering [Kawarabayashi, Thorup 2015]

- Simple graph G with min deg δ .
- Contract: $G \rightarrow G'$ such that
 - G' has $\tilde{O}\left(\frac{n}{\delta}\right)$ vertices and $\tilde{O}(n)$ edges.
 - All non-trivial min-cuts are preserved.

Min-cut(G) = Min-cut(G')

- Pack δ spanning trees in G'
 - Linear complexity

• Let *C* be some min cut. Every vertex v chooses uniformly random neighbor $u \in N(v)$.

- Let C be some min cut. Every vertex v chooses uniformly random neighbor $u \in N(v)$.
- S- sampled edges.
- $\Pr[S \cap C = \emptyset]$?

•
$$\Pr[S \cap C = \emptyset] \ge \frac{1^4}{2} = \frac{1}{16}$$

Constant Prob!

- Let *C* be some min cut. Every vertex v chooses uniformly random neighbor $u \in N(v)$.
- S- sampled edge

•
$$\Pr[S \cap C = \emptyset] =$$

$$\prod_{v \in N(C)} \left(1 - \frac{c(v)}{d(v)} \right)^{\checkmark}$$

 $\geq \frac{16}{16}$

$$\frac{c(v)}{d(v)} \le 1/2 \text{ for every } v \in N(C)$$
$$\sum_{v \in N(C)} \frac{c(v)}{d(v)} \le 2\frac{|C|}{\delta(G)} \le 2.$$

$$G = (V, E)$$

1-out sample + contract edges
 $G' = (V', E')$

- With constant probability, $\lambda(G) = \lambda(G')$
- Solve on multigraph *G*'?

• One can show: Exists graphs s.t.
$$|V'| = \Theta\left(\frac{n}{\sqrt{\delta}}\right)$$
 w.h.p.

We want: $O\left(\frac{n}{\delta}\right)$

Background: **Two**-out contraction [Ghaffari, Nowicki, Thorup 2020]

Star-Contraction

- Idea: Sample from a subset of neighbors
- Construct set *R* with each $v \in R$ w.p. $p = \Theta\left(\frac{\log n}{\delta}\right)$
- Each $u \notin R$ independently samples neighbor $v \in N_R(u)$
- Contract sampled edges **S** into G' = (V', E').

$$\mathbb{E}_R\left[\frac{c_R(v)}{d_R(v)} \mid d_R(v) > 0\right] = \frac{c(v)}{d(v)}$$

Star-Contraction

- Idea: Sample from a subset of neighbors
- Construct set *R* with each $v \in R$ w.p. $p = \Theta\left(\frac{\log n}{\delta}\right)$
- Each $u \notin R$ independently samples neighbor $v \in N_R(u)$
- Contract sampled edges **S** into G' = (V', E').

• Immediate:
$$|V'| = O\left(\frac{n \log n}{\delta}\right)$$
 w.h.p.

- $\Pr[S \cap C = \emptyset] = \Omega(1).$
- $\lambda(G') = \lambda(G)$ with constant probability!

Complexity:
$$O\left(\frac{n}{\delta}\log n \cdot \delta\right) = O(n\log n).$$

Beyond n log n step 1: Refined star contraction

- |R| and therefore |V'| are too large
- Replace $p = \Theta\left(\frac{\log n}{\delta}\right)$ with $p = \Theta\left(\frac{\log \delta}{\delta}\right)$
- Immediate: $|R| = O\left(\frac{n\log\delta}{\delta}\right)$
- $|V^*| = |\{v \in V \mid N(v) \cap R = \emptyset| = O\left(\frac{n}{\delta}\right)$
- $V' = \mathbf{R} \cup \mathbf{V}^*$
- Each $u \notin V'$, independently samples neighbor $v \in N_R(u)$
- Contract into G' = (V', E')
- $O(n \log \delta) \Rightarrow O(n \log \log n)$ queries.

If $\delta \ge polylog(n)$, use [Mukhopadhyay, Nanongkai 2020]

Beyond n log n step 1: Refined star contraction

- |R| and therefore |V'| are too large
- Replace $p = \Theta\left(\frac{\log n}{\delta}\right)$ with $p = \Theta\left(\frac{\log \delta}{\delta}\right)$
- Immediate: $|R| = O\left(\frac{n\log\delta}{\delta}\right)$
- $|V^*| = |\{v \in V \mid N(v) \cap R = \emptyset| = O\left(\frac{n}{\delta}\right)$
- $V' = \mathbf{R} \cup \mathbf{V}^*$
- Each $u \notin V'$, independently samples neighbor $v \in N_R(u)$ **Trivial:** $O(n \log n)$
- Contract into G' = (V', E')
- $O(n \log \delta) \Rightarrow O(n \log \log n)$ queries.

If $\delta \ge polylog(n)$, use [Mukhopadhyay, Nanongkai 2020]

How?

Separating Matrices

The Problem Each $u \notin V'$ independently samples neighbor $v \in N_R(u)$

$$\Pr[S \cap C = \emptyset] = \prod_{v \in N(C)} \left(1 - \frac{c(v)}{d(v)} \right) > \frac{1}{16} \text{ as long as}$$
$$\frac{c(v)}{d(v)} \le 1/2 \text{ for every } v \in N(C)$$
$$\sum_{v \in N(C)} \frac{c(v)}{d(v)} \le 2\frac{|C|}{\delta(G)} \le 2.$$

 $q_u = \Pr_{v:(u,v)\in A}[\{u,v\} \in C] \quad (\alpha,\beta)$ -good for contraction if:

1. max property:
$$\max_u q_u \leq \alpha$$
, and
2. sum property: $\sum_u q_u \leq \beta$.
 $\Pr[S \cap C = \emptyset] = (1 - \alpha)^{\lceil \beta / \alpha \rceil}$.

The Problem Each $u \in S$ independently samples neighbor $v \in T$

- $|S| \times |T|$ Boolean matrix $M, M[u, v] = 1 \leftrightarrow (u, v) \in E$
- *M* has row sparsity ℓ
- Goal, learn *M*!

Seperating Matrices: Learn $M \in \{0,1\}^{n \times n}$ of row sparsity ℓ with $O(\ell n)$ cut queries

Seperating Matrices: Learn $M \in \{0,1\}^{n \times n}$ of row sparsity ℓ with $O(\ell n)$ cut queries

- **Trivial:** $O(\ell n \log n)$ cut queries using binary search.
- A cut query provides $\Omega(\log n)$ bit of information.
- Can be used to shave the log factor.

- Learn $M \in \{0, 1\}^{n \times n}$ of row sparsity ℓ with $O(\ell n)$ cut queries
- **Sampling Lemma**: Solve **The (Easy) Problem** in O(|S|) cut queries, **in expectation**
- Immediate corollary: **Connectivity** in **expected** O(n) cut queries!
- Lemma solves The Problem as well in expected O(n) cut queries! •

Degree buckets $[2^{i}, 2^{i+1}]$ Sample w.p. $\frac{1}{2^{i}}$ for O(1)sparsity

Remains (α, β) -good

Beyond n log n step 1: Refined star contraction

- |R| and therefore |V'| are too large
- Replace $p = \Theta\left(\frac{\log n}{\delta}\right)$ with $p = \Theta\left(\frac{\log \delta}{\delta}\right)$
- Immediate: $|R| = O\left(\frac{n\log\delta}{\delta}\right)$
- $|V^*| = |\{v \in V \mid N(v) \cap R = \emptyset| = O\left(\frac{n}{\delta}\right)$
- $V' = \mathbf{R} \cup \mathbf{V}^*$
- Each $u \notin V'$, independently samples neighbor $v \in N_R(u)$
- Contract into G' = (V', E')
- $O(n \log \delta) \Rightarrow O(n \log \log n)$ queries.

If $\delta \ge polylog(n)$, use [Mukhopadhyay, Nanongkai 2020]

Beyond *n* log log *n*

- Need to have $O\left(\frac{n}{\delta}\right)$ vertices within O(n) complexity.
- From $O\left(\frac{n\log\delta}{\delta}\right)$ to $O\left(\frac{n}{\delta}\right)$:
 - Learn a dense enough subgraph with O(n) queries.
 - Do 2-out contraction within it.

Theorem. Randomised cut-query algorithm for min-cut in simple graphs has O(n) complexity.

Thank you!

Open Questions:

- Randomised communication complexity of edge connectivity?
 - SOTA: $\Omega(n \log \log n)$ [AD21]
- Zero-error/Deterministic edge connectivity with O(n) cut queries?
- Weighted graph: O(n) cut query?
- In general: SFM needs $\omega(n)$ evaluation query accesses?