Cut Sparsification and
Succinct Representation of
Submodular Hypergraphs

Robert Krauthgamer, Weizmann Institute of Science
Joint work with Yotam Kenneth

Simons Institute, July 2024

Cut Intuitions: Graphs

G = (V,E,w)isagraph

CUtG(S) — ZeEE Lecsxswe

Cut Intuitions: Hypergraphs

*H=(V,E,w)is a hypergraph

4
/
'
‘€
7

@00 00000

1
1
\
- \
\
\
\
\
\
\

cuty(S) = ZeeE‘]10<|ef'75|<|6‘|;' We

Why binary?

Cut Intuitions: Submodular Hypergraphs

* Associate each hyperedge e € E with a splitting function g,: 2° - R,

/
7/
4
‘€
1

@00 00000

1
1
1
= \
\
\
\
\
\
\

cuty(S) =D ccr 9e(SNe)

Properties of Splitting Functions

* Splitting functions should have two properties
e Submodularity (diminishing returns):

VS, TSe, ge(SUT)+ge(SNT) < ge(S) + ge(T)
* “Irrelevance”: g,(®) =0

* Examples of Splitting functions:
* All-or-Nothing: g.(S) = 1(..0<|snel<|el)
* Small Side: g.(S) = min(|S|, |e \ S|)
* Capped Small Side: g.(S) = min(|S|, |e \ S|, c¢) for some ¢ > 0
 Budget Additive: g.(S) = min(|S]|, ¢) forsomec > 0

Uses of Submodular Hypergraphs

 Clustering [Li & Milenkovich‘17; Li & Milenkovich‘18]
 Data Summarization [Gomese & Krause‘10; Lin & Bilmes‘10;

Tschiatschek, lyer, Wei & Bilmes‘14
Modeh Valuation/Similarity function

max Z fl-(S
i

SCV,|S|<k

* Welfare Maximization
* Approximation Algorithms [Feige‘09, Feige & Vondrak‘06]
* Mechanism Design [Dobzinski & Schapira‘06, Assadi & Singla‘20]

Model: Decomposable submodular function

Research Questions

* Goal: findasmall H' = (V,E’, g") such that
VS CcV, cut,(S) € (1 + €)cuty(S)
* Small: number of hyperedges; or storage complexity

* Hyperedge Sparsification: £’ € F with small |E’] Today
|1. Graphs admit sparsifiers with O (e ~“n) edges [BK'96,BSS’14]; what is the

analogue for submodular hypergraphs [RY22]?
2. Better bounds for specific families?

* Succinct Representation: encoding using few bits
3. Store all cut values more efficiently than a subgraph [ACKQWZ’16]?

Hyperedge Sparsification

Known Results

Splitting Functions

Lower Bound

Upper Bound

Comments

Reference

Specific Functions

All-or-Nothing Q(e™?n) 0(e%n)
Small Side Q(e?n) 0(e™?n)
Directed Hypergraph Q(e1n?) 0(e~?n?)

[KK15, CKN20]

[AGK14, ADKKP16]

[SY19, KKTY21,0ST23]

Known Results

Splitting Functions Lower Bound Upper Bound Comments Reference

Specific Functions
All-or-Nothing Q(e?n) 0(e?%n) [KK15, CKN20]
Small Side Q(e™?n) 0(e~%n) [AGK14, ADKKP16]

Directed Hypergraph Qe 1n?) 0(e~?n?) [SY19, KKTY21,0ST23]
General Families

General Submodular Q(e"n?) Ble—n2By) By can be [RY22]

Monotone Functions s exponential in n [RY22, KZ23]

Symmetric Functions Q(e™?n) 0(e"%n) [JLLS23]

10

Known Results + Ours

Splitting Functions

Lower Bound

Upper Bound

Comments

Reference

Specific Functions

All-or-Nothing Q(e™%n) 0(e"%n) [KK15, CKN20]
Small Side Q(e"%n) 0(e™%n) [AGK14, ADKKP16]
Directed Hypergraph Q(e"n?) 0(e™?*n?) [SY19, KKTY21,0ST23]
General Families
General Submodular Q(e~1n?) 0(e~%n3) [here]
Monotone Functions - 0(e"%n?) now O, (n) [KPS24] [here]
Symmetric Functions Q(e™%n) 0(e"%n) [JLLS23]
max g (T)
Finite-Spread = 0(en uy) {y = max-—=2 [here]

e€E min g,(S)

SCe

11

Main Result

Theorem 1:
Every H = (V, E, g) admits a sparsifier with 0(e~?n?) edges

* Need to prove
* Approximation guarantee
 Sparsifier Size

12

Proof Overview

* Approach: Importance Sampling

* Quantify for every e € E its “importance” g, € |0,1]
* Intuitively — its relative contribution to a specific/any cut

* Sample each e € E with probability p, = min(1, Mo,) for parameter M > 0
e Scale each sampled hyperedge by p;* and additto H' = (V,E’, g")

* Need to prove
e Approximation Guarantee — by Chernoff bound
* Sparsifier Size — by its expectation E[|E'|] =)., v,

13

Sparsifying a Single Cut

‘e

@ooﬁoooo@

* Fix § € I/. Define importance of e to cuty(S) as

(o:’: 00000
@ee oo D

)
.
.

- ge(S) — ge(S)
%e(S): Yrep 9F(S) cuty(S)

S

* By Chernoff
e?cuty(S)
—1
3 maxp, - ge(S)

< e_Q(EZM)

Pr (cutH,(S) ¢ (1 + e)cuty (S)) <exp| —

e Suitable M = O(e~?) suffices
* Sparsifier size:

E[|E|] < MZ 6.(S) =M

eEek

14

Sparsifying All Cuts [RY22]

* Importance of e overall (= to all cuts)

ge(S)
0, = maxo,(S) = max
Sce sce cuty(S)

* Forall S € V we have g, = 0,(S) and thus
Pr (cutH,(S) ¢ (1 + €e)cuty (S)) < e~ 0(e?M)
e Suitable M = O(e~?n) suffices for union bound over 2™ cuts
 Sparsifier size:

E[|E'|] < Mz o, = 0(e"*n*By)

eEek
* Where By is number of extreme points of polytope of g,

e Unfortunately, By can be exponential inn

15

Sparsifying All Cuts: Our Bound

X , , ,
’ ‘ ‘ .
. 6

’ K K .
. ‘ J '
' 3
d ’ g d
. i
i} g ! i

v.oou

* Main idea: Bound g, by something easier to analyze

e Definition: The minimum directed u — v cut on e

= min S
UES, VES

* Lemma: Can approximate g,(S) by sum of minimum directed cuts

max ge = < ge(S) < z ge ¥

ues,vee\S
\ [ues,vEe\S
16

Sparsifying All Cuts: Our Bound

* Set the approximate importance by

u—-v

Ye
Pe = 2(u,v)EVxV Y rep gt
* By lemma, forall S € V
ge(S)
fEng()

* Size an{ . emma:

u—-v < < u—-v
B G < g.(5) < 2 Je

ues,vee\S

17

Lemma Intuition

* Lemma: Can approximate g,(S) by sum of minimum directed cuts
max ge " < ge(S) S z ge "

ues,vee\S
ues,vee\S

* Lower Bound — trivial
e Upper Bound — submodularity of optimal cuts
Intuition — bounding a cut by all pairwise flows

cutg(S) < D cesrescut({s}, it})

Improved Bound for Monotone Case

Theorem 2:

Every H = (V, E, g) with monotone splitting functions admits a
sparsifier with O (e ~“n?) edges

 Similar approach but with different lemma:

max g, (v} N $) < ge(5) <) ge((v} n'S)

vevV

19

Succinct Representation

Succinct Encoding of All Cut Values

* Question: Is there a more succinct encoding than sparsifiers?
* For graphs: No! [ACKQWZ’16]

* Possible approaches: non-subgraph sparsifiers? use different
hyperedges/splitting functions?

Theorem 3: For budget-additive splitting g.(S) = min(|S|, K) with
K = Q(le]),

(1) encoding a reweighted-subgraph sparsifier requires (.(n?) bits;

(2) but non-subgraph sparsifiers can be encoded with O (e ~°n) bits.

21

Encoding of Budget-Additive Splitting

* Lower bound: “encode” (1(n?) bits into hypergraphs H that must
have distinct subgraph (1 + €)-sparsifiers H'

* Upper Bound: “Break” large hyperedges into small hyperedge

 Qutline: Two steps of (1 + €)-approximation:
* Deform each g, into many small hyperedges (also budget-additive)
* Smallis O (6_2 (%) loglel) ; it implies low spread as well

« Manyis O(e~?|e|?)
* Generating small hyperedges: Subsample vertices at rate p and scale by 1 /p

* Apply our sparsification for low spread 1 =2 straightforward encoding

22

Conclusion

Conclusion

e All submodular hypergraphs admit size 0 (e ~%n?) sparsifiers
* Some admit even smaller ones (details in paper)

* Open Questions:
* Close the gap between ((n?) lower bound and O (n?) upper bound?
e Families with smaller sparsifiers (other than symmetric and monotone)?
* Characterize a smooth tradeoff between those families?

24

