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Cut Intuitions: Graphs

• 𝐺 = (𝑉, 𝐸,𝑤) is a graph
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Cut Intuitions: Hypergraphs

• H = (𝑉, 𝐸, 𝑤) is a hypergraph

Why binary? 3



Cut Intuitions: Submodular Hypergraphs

• Associate each hyperedge 𝑒 ∈ 𝐸 with a splitting function 𝑔𝑒: 2
𝑒 → ℝ+
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Properties of Splitting Functions

• Splitting functions should have two properties
• Submodularity (diminishing returns):

∀𝑆, 𝑇 ⊆ 𝑒, 𝑔𝑒 𝑆 ∪ 𝑇 + 𝑔𝑒 𝑆 ∩ 𝑇 ≤ 𝑔𝑒 𝑆 + 𝑔𝑒 𝑇
• “Irrelevance”: 𝑔𝑒 ∅ = 0

• Examples of Splitting functions: 
• All-or-Nothing: 𝑔𝑒 𝑆 = 1 𝑒:0< 𝑆∩𝑒 < 𝑒

• Small Side: 𝑔𝑒 𝑆 = min( 𝑆 , 𝑒 ∖ 𝑆 )
• Capped Small Side: 𝑔𝑒 𝑆 = min( 𝑆 , 𝑒 ∖ 𝑆 , 𝒄) for some 𝑐 > 0
• Budget Additive: 𝑔𝑒 𝑆 = min( 𝑆 , 𝒄) for some 𝑐 > 0
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Uses of Submodular Hypergraphs

• Clustering  [Li & Milenkovich‘17; Li & Milenkovich‘18]

• Data Summarization [Gomese & Krause‘10; Lin & Bilmes‘10; 
Tschiatschek, Iyer, Wei & Bilmes‘14]

Model:

max
𝑆⊆𝑉, 𝑆 ≤𝑘



𝑖

𝑓𝑖(𝑆)

• Welfare Maximization
• Approximation Algorithms [Feige‘09, Feige & Vondrak‘06]
• Mechanism Design [Dobzinski & Schapira‘06, Assadi & Singla‘20]

Model: Decomposable submodular function

6
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Research Questions

• Goal: find a small 𝐻′ = (𝑽, 𝐸′, 𝑔′) such that
∀𝑆 ⊆ 𝑉, 𝑐𝑢𝑡𝐻′ 𝑆 ∈ 1 ± 𝜖 𝑐𝑢𝑡𝐻(𝑆)

• Small: number of hyperedges; or storage complexity

• Hyperedge Sparsification: 𝐸′ ⊆ 𝐸 with small |𝐸′|
1. Graphs admit sparsifiers with 𝑂(𝜖−2𝑛) edges [BK’96,BSS’14]; what is the 

analogue for submodular hypergraphs [RY22]? 

2. Better bounds for specific families?

• Succinct Representation: encoding using few bits
3. Store all cut values more efficiently than a subgraph [ACKQWZ’16]?

Today
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Hyperedge Sparsification
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Known Results

Splitting Functions Lower Bound Upper Bound Comments Reference

Specific Functions

All-or-Nothing Ω(𝜖−2𝑛) ෨𝑂(𝜖−2𝑛) [KK15, CKN20]

Small Side Ω(𝜖−2𝑛) ෨𝑂(𝜖−2𝑛) [AGK14, ADKKP16]

Directed Hypergraph Ω(𝜖−1𝑛2) ෨𝑂(𝜖−2𝑛2) [SY19, KKTY21,OST23]
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Known Results

Splitting Functions Lower Bound Upper Bound Comments Reference

Specific Functions

All-or-Nothing Ω(𝜖−2𝑛) ෨𝑂(𝜖−2𝑛) [KK15, CKN20]

Small Side Ω(𝜖−2𝑛) ෨𝑂(𝜖−2𝑛) [AGK14, ADKKP16]

Directed Hypergraph Ω(𝜖−1𝑛2) ෨𝑂(𝜖−2𝑛2) [SY19, KKTY21,OST23]

General Families

General Submodular Ω(𝜖−1𝑛2)
෨𝑂(𝜖−2𝑛2𝐵H)

𝐵H can be 
exponential in 𝑛

[RY22]

Monotone Functions - [RY22, KZ23]

Symmetric Functions Ω(𝜖−2𝑛) ෨𝑂(𝜖−2𝑛) [JLLS23]
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Known Results + Ours

Splitting Functions Lower Bound Upper Bound Comments Reference

Specific Functions

All-or-Nothing Ω(𝜖−2𝑛) ෨𝑂(𝜖−2𝑛) [KK15, CKN20]

Small Side Ω(𝜖−2𝑛) ෨𝑂(𝜖−2𝑛) [AGK14, ADKKP16]

Directed Hypergraph Ω(𝜖−1𝑛2) ෨𝑂(𝜖−2𝑛2) [SY19, KKTY21,OST23]

General Families

General Submodular Ω(𝜖−1𝑛2) ෨𝑂(𝜖−2𝑛3) [here]

Monotone Functions - ෨𝑂(𝜖−2𝑛2) now ෨𝑂𝜖 n [KPS24] [here]

Symmetric Functions Ω(𝜖−2𝑛) ෨𝑂(𝜖−2𝑛) [JLLS23]

Finite-Spread - ෨𝑂(𝜖−2𝑛 𝜇𝐻) 𝜇𝐻 = max
𝑒∈𝐸

max
𝑇⊆𝑒

𝑔𝑒(𝑇)

min
𝑆⊆𝑒

𝑔𝑒(𝑆)
[here]
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Main Result

Theorem 1: 

Every 𝐻 = (𝑉, 𝐸, 𝑔) admits a sparsifier with 𝑂 𝜖−2𝑛3 edges 

• Need to prove
• Approximation guarantee

• Sparsifier Size
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Proof Overview

• Approach: Importance Sampling
• Quantify for every 𝑒 ∈ 𝐸 its “importance” 𝜎𝑒 ∈ [0,1]

• Intuitively – its relative contribution to a specific/any cut

• Sample each 𝑒 ∈ 𝐸 with probability  𝑝𝑒 = min(1,𝑀𝜎𝑒) for parameter 𝑀 > 0
• Scale each sampled hyperedge by 𝑝𝑒

−1 and add it to 𝐻′ = 𝑉, 𝐸′, 𝑔′

• Need to prove
• Approximation Guarantee – by Chernoff bound

• Sparsifier Size – by its expectation  𝔼 |E′| = σ𝑒 𝑝𝑒
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Sparsifying a Single Cut

• Fix 𝑆 ⊆ 𝑉. Define importance of 𝑒 to cu𝑡𝐻(𝑆) as 

𝜎𝑒 𝑆 :=
𝑔𝑒 𝑆

σ𝑓∈𝐸 𝑔𝑓 𝑆
=

𝑔𝑒 𝑆

𝑐𝑢𝑡𝐻(𝑆)

• By Chernoff

Pr 𝑐𝑢𝑡𝐻′ 𝑆 ∉ (1 ± 𝜖)𝑐𝑢𝑡𝐻 𝑆 ≤ exp −
𝜖2𝑐𝑢𝑡𝐻 𝑆

3max
𝑒∈𝐸

𝑝𝑒
−1𝑔𝑒 𝑆

≤ 𝑒−Ω 𝜖2𝑀

• Suitable 𝑀 = O(𝜖−2) suffices 

• Sparsifier size:

𝔼 |E′| ≤ 𝑀

𝑒∈𝐸

𝜎𝑒 𝑆 = 𝑀
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Sparsifying All Cuts [RY22]

• Importance of 𝑒 overall (= to all cuts)

𝜎𝑒 = max
𝑆⊆𝑒

𝜎𝑒(𝑆) = max
𝑆⊆𝑒

𝑔𝑒 𝑆

𝑐𝑢𝑡𝐻(𝑆)
• For all 𝑆 ⊆ 𝑉 we have 𝜎𝑒 ≥ 𝜎𝑒(𝑆) and thus

Pr 𝑐𝑢𝑡𝐻′ 𝑆 ∉ (1 ± 𝜖)𝑐𝑢𝑡𝐻 𝑆 ≤ 𝑒−Ω 𝜖2𝑀

• Suitable 𝑀 = O(𝜖−2𝑛) suffices for union bound over 2𝑛 cuts 

• Sparsifier size: 

𝔼 |E′| ≤ 𝑀

𝑒∈𝐸

𝜎𝑒 = 𝑂(𝜖−2𝑛2𝐵𝐻)

• Where 𝐵𝐻 is number of extreme points of polytope of 𝑔𝑒
• Unfortunately, 𝐵𝐻 can be exponential in 𝑛
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Sparsifying All Cuts: Our Bound

• Main idea: Bound 𝜎𝑒 by something easier to analyze

• Definition: The minimum directed 𝑢 → 𝑣 cut on 𝑒
𝑔𝑒
𝑢→𝑣 = min

𝑆⊆𝑒
𝑢∈𝑆,𝑣∉𝑆

𝑔𝑒(𝑆)

• Lemma: Can approximate 𝑔𝑒(𝑆) by sum of minimum directed cuts

max
𝑢∈𝑆,𝑣∈𝑒∖𝑆

𝑔𝑒
𝑢→𝑣 ≤ 𝑔𝑒(𝑆) ≤ 

𝑢∈𝑆,𝑣∈𝑒∖𝑆

𝑔𝑒
𝑢→𝑣

16
Factor ≤ 𝑆 2

𝑢𝑣



• Set the approximate importance by

𝜌𝑒 = σ 𝑢,𝑣 ∈𝑉×𝑉
𝑔𝑒
𝑢→𝑣

σ𝑓∈𝐸 𝑔𝑓
𝑢→𝑣

• By lemma, for all 𝑆 ⊆ 𝑉

𝜎𝑒 𝑆 =
𝑔𝑒 𝑆

σ𝑓∈𝐸 𝑔𝑓 𝑆
≤
σ𝑣∈𝑆,𝑢∈ ҧ𝑆𝑔𝑒

𝑢→𝑣

σ𝑓∈𝐸 𝑔𝑓 𝑆
≤ 

𝑣∈𝑆,𝑢∈ ҧ𝑆

𝑔𝑒
𝑢→𝑣

σ𝑓∈𝐸 𝑔𝑓
𝑢→𝑣 ≤ 𝜌𝑒

• Size analysis

𝐸′ ≈ 𝑀

𝑒∈𝐸

𝜌𝑒 = 𝑂 𝑀𝑛2 = 𝑂(𝜖−2𝑛3)

Sparsifying All Cuts: Our Bound
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Lemma:

max
𝑢∈𝑆,𝑣∈𝑒∖𝑆

𝑔𝑒
𝑢→𝑣 ≤ 𝑔𝑒 𝑆 ≤ 

𝑢∈𝑆,𝑣∈𝑒∖𝑆

𝑔𝑒
𝑢→𝑣



Lemma Intuition

• Lemma: Can approximate 𝑔𝑒(𝑆) by sum of minimum directed cuts

max
𝑢∈𝑆,𝑣∈𝑒∖𝑆

𝑔𝑒
𝑢→𝑣 ≤ 𝑔𝑒(𝑆) ≤ 

𝑢∈𝑆,𝑣∈𝑒∖𝑆

𝑔𝑒
𝑢→𝑣

• Lower Bound – trivial

• Upper Bound – submodularity of optimal cuts

Intuition – bounding a cut by all pairwise flows
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Improved Bound for Monotone Case

Theorem 2: 

Every 𝐻 = (𝑉, 𝐸, 𝑔) with monotone splitting functions admits a 
sparsifier with 𝑂 𝜖−2𝑛2 edges 

• Similar approach but with different lemma:

max
𝑣∈𝑉

𝑔𝑒 𝑣 ∩ 𝑆 ≤ 𝑔𝑒(𝑆) ≤ 

𝑣∈𝑉

𝑔𝑒 𝑣 ∩ 𝑆
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Succinct Representation
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Succinct Encoding of All Cut Values

• Question: Is there a more succinct encoding than sparsifiers? 

• For graphs: No! [ACKQWZ’16]

• Possible approaches: non-subgraph sparsifiers? use different 
hyperedges/splitting functions? 

Theorem 3: For budget-additive splitting 𝑔𝑒 𝑆 = min( 𝑆 , 𝐾) with 
𝐾 = Ω 𝑒 , 

(1) encoding a reweighted-subgraph sparsifier requires Ω 𝑛2 bits;

(2) but non-subgraph sparsifiers can be encoded with ෨𝑂 𝜖−6𝑛 bits. 
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Encoding of Budget-Additive Splitting

• Lower bound: “encode” Ω 𝑛2 bits into hypergraphs 𝐻 that must 
have distinct subgraph 1 + 𝜖 -sparsifiers 𝐻′

• Upper Bound: “Break” large hyperedges into small hyperedge

• Outline: Two steps of 1 + 𝜖 -approximation:
• Deform each 𝑔𝑒 into many small hyperedges (also budget-additive)

• Small is 𝑂 𝜖−2
𝐸

𝐾
log 𝑒 ; it implies low spread as well

• Many is 𝑂 𝜖−2 𝑒 2

• Generating small hyperedges: Subsample vertices at rate 𝑝 and scale by 1/𝑝

• Apply our sparsification for low spread 𝜇𝐻→ straightforward encoding
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Conclusion
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Conclusion

• All submodular hypergraphs admit size 𝑂(𝜖−2𝑛3) sparsifiers
• Some admit even smaller ones (details in paper)

• Open Questions:
• Close the gap between Ω(𝑛2) lower bound and 𝑂(𝑛3) upper bound?

• Families with smaller sparsifiers (other than symmetric and monotone)?

• Characterize a smooth tradeoff between those families?
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