Cut Sparsification and Succinct Representation of Submodular Hypergraphs

Robert Krauthgamer, Weizmann Institute of Science

Joint work with Yotam Kenneth

Simons Institute, July 2024

Cut Intuitions: Graphs

• $G = (V, E, w)$ is a graph

 $cut_G(S) = \sum_{e \in E} 1_{e \in S \times \overline{S}} w_e$

Cut Intuitions: Hypergraphs

• $H = (V, E, w)$ is a hypergraph

Cut Intuitions: Submodular Hypergraphs

• Associate each hyperedge $e \in E$ with a splitting function $g_e: 2^e \to \mathbb{R}_+$

Properties of Splitting Functions

- Splitting functions should have two properties
	- Submodularity (diminishing returns):

 $\forall S, T \subseteq e$, $g_e(S \cup T) + g_e(S \cap T) \leq g_e(S) + g_e(T)$

- "Irrelevance": $g_e(\emptyset) = 0$
- Examples of Splitting functions:
	- All-or-Nothing: $g_e(S) = 1$ _{{e:0}<|soe|<|e|}
	- Small Side: $g_e(S) = \min(|S|, |e \setminus S|)$
	- Capped Small Side: $g_e(S) = \min(|S|, |e \setminus S|, c)$ for some $c > 0$
	- Budget Additive: $g_e(S) = \min(|S|, c)$ for some $c > 0$

Uses of Submodular Hypergraphs

- Clustering [Li & Milenkovich'17; Li & Milenkovich'18]
- Data Summarization [Gomese & Krause'10; Lin & Bilmes'10; Tschiatschek, Iyer, Wei & Bilmes'14]

- Welfare Maximization
	- Approximation Algorithms [Feige'09, Feige & Vondrak'06]
	- Mechanism Design [Dobzinski & Schapira'06, Assadi & Singla'20]

Model: Decomposable submodular function

Research Questions

- Goal: find a $\underline{\text{small}} H' = (V, E', g')$ such that $\forall S \subseteq V$, $cut_{H'}(S) \in (1 \pm \epsilon)cut_{H}(S)$
	- Small: number of hyperedges; or storage complexity
- Hyperedge Sparsification: $E' \subseteq E$ with small |E'|
	- 1. Graphs admit sparsifiers with $O(\epsilon^{-2}n)$ edges [BK'96,BSS'14]; what is the analogue for submodular hypergraphs [RY22]?
	- 2. Better bounds for specific families?
- **Succinct Representation:** encoding using few bits
	- 3. Store all cut values more efficiently than a subgraph [ACKQWZ'16]?

Today

Hyperedge Sparsification

Known Results

Known Results

Known Results + Ours

Main Result

Theorem 1:

Every $H = (V, E, g)$ admits a sparsifier with $O(\epsilon^{-2} n^3)$ edges

• **Need to prove**

- Approximation guarantee
- Sparsifier Size

Proof Overview

- **Approach:** Importance Sampling
	- Quantify for every $e \in E$ its "importance" $\sigma_e \in [0,1]$
		- Intuitively its relative contribution to a specific/any cut
	- Sample each $e \in E$ with probability $p_e = \min(1, M\sigma_e)$ for parameter $M > 0$
		- Scale each sampled hyperedge by p_e^{-1} and add it to $H' = (V, E', g'$

• **Need to prove**

- Approximation Guarantee by Chernoff bound
- Sparsifier Size by its expectation $\mathbb{E}[|{\text E}'|] = \sum_e p_e$

Sparsifying a Single Cut

• Fix $S \subseteq V$. Define importance of e to cu $t_H(S)$ as

$$
\sigma_e(S) := \frac{g_e(S)}{\sum_{f \in E} g_f(S)} = \frac{g_e(S)}{cut_H(S)}
$$

• By Chernoff

$$
\Pr\left(cut_{H'}(S) \notin (1 \pm \epsilon)cut_{H}(S)\right) \le \exp\left(-\frac{\epsilon^{2}cut_{H}(S)}{3\max_{e \in E} p_{e}^{-1}g_{e}(S)}\right)
$$

- Suitable $M = O(\epsilon^{-2})$ suffices
- Sparsifier size:

$$
\mathbb{E}[|E'|] \le M \sum_{e \in E} \sigma_e(S) = M
$$

 $\overline{ }$

 $\leq e^{-\Omega(\epsilon^2 M)}$

 $\bullet \bullet \bullet$

 \overline{S}

Sparsifying All Cuts [RY22]

- Importance of e overall (= to all cuts) σ_e = max ⊆ $\sigma_e(S) = \max_{S \subseteq S}$ ⊆ $g_{\pmb{e}}(\pmb{S}$ $cut_H(S)$ • For all $S \subseteq V$ we have $\sigma_e \geq \sigma_e(S)$ and thus $Pr\left(cut_{H'}(S) \notin (1 \pm \epsilon)cut_{H}(S)\right) \leq e^{-\Omega(\epsilon^{2}M)}$
	- Suitable $M = O(\epsilon^{-2}n)$ suffices for union bound over 2^n cuts
- Sparsifier size:

$$
\mathbb{E}[|E'|] \le M \sum_{e \in E} \sigma_e = O(\epsilon^{-2} n^2 B_H)
$$

- Where B_H is number of extreme points of polytope of g_e
- Unfortunately, B_H can be exponential in n

Sparsifying All Cuts: Our Bound

- **Main idea**: Bound σ_e by something easier to analyze
- **Definition**: The *minimum directed* $u \rightarrow v$ *cut* on *e* $g_e^{u\to v} = \min_{\varsigma \subset e}$ $\bar{S} \overline{\subseteq} \overline{e}$ $u \in S, v \notin S$ $g_e(S)$

• Lemma: Can approximate $g_e(S)$ by sum of minimum directed cuts

$$
\max_{u \in S, v \in e \setminus S} g_e^{u \to v} \le g_e(S) \le \sum_{u \in S, v \in e \setminus S} g_e^{u \to v}
$$

Sparsifying All Cuts: Our Bound

• Set the approximate importance by

$$
\rho_e = \sum_{(u,v) \in V \times V} \frac{g_e^{u \to v}}{\sum_{f \in E} g_f^{u \to v}}
$$

• By lemma, for all $S \subseteq V$ $\sigma_e(S) =$ $g_{\pmb{e}}(\pmb{S}$ $\sum_{f\in E}g_f(S)$

• Size an Lemma: \max $q_e^{u\rightarrow v}$ $\max_{\mathbf{p} \in \mathcal{Q}^u} g_e^{u \to v} \leq g_e(S) \leq \sum_{\mathbf{p} \in \mathcal{Q}^u} g_e^{u \to v}$ $u{\in}S, v{\in}e\backslash S$ $g_e^{u \to v} \leq g_e(S) \leq \qquad \qquad g_e^{u \to v}$ $u \in S, v \in e \backslash S$

Lemma Intuition

• Lemma: Can approximate $g_e(S)$ by sum of minimum directed cuts

max $u \in S, v \in e \backslash S$ $g_e^{u\to v} \leq g_e(S) \leq$ u∈S,v∈e\S g^u_e $u \rightarrow v$

- Lower Bound trivial
- Upper Bound submodularity of optimal cuts Intuition – bounding a cut by all pairwise flows

 $cut_G(S) \leq \sum_{s \in S, t \in \overline{S}} cut(\{s\}, \{t\})$

Improved Bound for Monotone Case

Theorem 2:

Every $H = (V, E, g)$ with monotone splitting functions admits a sparsifier with $O(\epsilon^{-2}n^2)$ edges

• Similar approach but with different lemma:

$$
\max_{v \in V} g_e(\{v\} \cap S) \le g_e(S) \le \sum_{v \in V} g_e(\{v\} \cap S)
$$

Succinct Representation

Succinct Encoding of All Cut Values

- **Question:** Is there a more succinct encoding than sparsifiers?
	- For graphs: No! [ACKQWZ'16]
	- Possible approaches: non-subgraph sparsifiers? use different hyperedges/splitting functions?

Theorem 3: For budget-additive splitting $g_e(S) = min(|S|, K)$ with $K = \Omega(|e|)$,

- (1) encoding a reweighted-subgraph sparsifier requires $\Omega(n^2)$ bits;
- (2) but non-subgraph sparsifiers can be encoded with $\tilde{O}(\epsilon^{-6}n)$ bits.

Encoding of Budget-Additive Splitting

- Lower bound: "encode" $\Omega(n^2)$ bits into hypergraphs H that must have distinct subgraph $(1 + \epsilon)$ -sparsifiers H'
- **Upper Bound:** "Break" large hyperedges into small hyperedge
- Outline: Two steps of $(1 + \epsilon)$ -approximation:
	- Deform each g_e into many small hyperedges (also budget-additive)
		- Small is $O\left(\epsilon^{-2}\left(\frac{|E|}{\nu}\right)\right)$ \boldsymbol{K} $log|e|$) ; it implies low spread as well
		- Many is $O(\epsilon^{-2} |e|^2)$
		- Generating small hyperedges: Subsample vertices at rate p and scale by $1/p$
	- Apply our sparsification for low spread $\mu_H \rightarrow$ straightforward encoding

Conclusion

Conclusion

- All submodular hypergraphs admit size $O(\epsilon^{-2}n^3)$ sparsifiers
	- Some admit even smaller ones (details in paper)

• **Open Questions:**

- Close the gap between $\Omega(n^2)$ lower bound and $O(n^3)$ upper bound?
- Families with smaller sparsifiers (other than symmetric and monotone)?
- Characterize a smooth tradeoff between those families?