Cut Sparsification and Succinct Representation of Submodular Hypergraphs

Robert Krauthgamer, Weizmann Institute of Science

Joint work with Yotam Kenneth

Simons Institute, July 2024

Cut Intuitions: Graphs

• G = (V, E, w) is a graph

 $\operatorname{cut}_G(S) = \sum_{e \in E} \mathbb{1}_{e \in S \times \overline{S}} W_e$

Cut Intuitions: Hypergraphs

• H = (V, E, w) is a hypergraph

Cut Intuitions: Submodular Hypergraphs

• Associate each hyperedge $e \in E$ with a splitting function $g_e: 2^e \to \mathbb{R}_+$

4

Properties of Splitting Functions

- Splitting functions should have two properties
 - Submodularity (diminishing returns):

 $\forall S, T \subseteq e, \qquad g_e(S \cup T) + g_e(S \cap T) \le g_e(S) + g_e(T)$

- "Irrelevance": $g_e(\emptyset) = 0$
- Examples of Splitting functions:
 - All-or-Nothing: $g_e(S) = 1_{\{e:0 < |S \cap e| < |e|\}}$
 - Small Side: $g_e(S) = \min(|S|, |e \setminus S|)$
 - Capped Small Side: $g_e(S) = \min(|S|, |e \setminus S|, c)$ for some c > 0
 - Budget Additive: $g_e(S) = \min(|S|, c)$ for some c > 0

Uses of Submodular Hypergraphs

- Clustering [Li & Milenkovich'17; Li & Milenkovich'18]
- Data Summarization [Gomese & Krause'10; Lin & Bilmes'10; Tschiatschek, Iyer, Wei & Bilmes'14]

- Welfare Maximization
 - Approximation Algorithms [Feige'09, Feige & Vondrak'06]
 - Mechanism Design [Dobzinski & Schapira'06, Assadi & Singla'20]

Model: Decomposable submodular function

Research Questions

- **Goal:** find a small H' = (V, E', g') such that $\forall S \subseteq V, \quad cut_{H'}(S) \in (1 \pm \epsilon)cut_H(S)$
 - Small: number of hyperedges; or storage complexity
- Hyperedge Sparsification: $E' \subseteq E$ with small |E'|
 - 1. Graphs admit sparsifiers with $O(\epsilon^{-2}n)$ edges [BK'96,BSS'14]; what is the analogue for submodular hypergraphs [RY22]?
 - 2. Better bounds for specific families?
- Succinct Representation: encoding using few bits
 - 3. Store all cut values more efficiently than a subgraph [ACKQWZ'16]?

Today

Hyperedge Sparsification

Known Results

Splitting Functions	Lower Bound	Upper Bound	Comments	Reference		
Specific Functions						
All-or-Nothing	$\Omega(\epsilon^{-2}n)$	$\tilde{O}(\epsilon^{-2}n)$		[KK15, CKN20]		
Small Side	$\Omega(\epsilon^{-2}n)$	$\tilde{O}(\epsilon^{-2}n)$		[AGK14, ADKKP16]		
Directed Hypergraph	$\Omega(\epsilon^{-1}n^2)$	$ ilde{O}(\epsilon^{-2}n^2)$		[SY19, KKTY21,OST23]		

Known Results

Splitting Functions	Lower Bound	Upper Bound	Comments	Reference			
Specific Functions							
All-or-Nothing	$\Omega(\epsilon^{-2}n)$	$\tilde{O}(\epsilon^{-2}n)$	_	[KK15, CKN20]			
Small Side	$\Omega(\epsilon^{-2}n)$	$\tilde{O}(\epsilon^{-2}n)$		[AGK14, ADKKP16]			
Directed Hypergraph	$\Omega(\epsilon^{-1}n^2)$	$ ilde{O}(\epsilon^{-2}n^2)$		[SY19, KKTY21,OST23]			
General Families							
General Submodular	$\Omega(\epsilon^{-1}n^2)$	$- \tilde{O}(\epsilon^{-2}n^2B_{\rm H})$	$B_{ m H}$ can be exponential in n	[RY22]			
Monotone Functions	-			[RY22, KZ23]			
Symmetric Functions	$\Omega(\epsilon^{-2}n)$	$\tilde{O}(\epsilon^{-2}n)$		[JLLS23]			

Known Results + Ours

Splitting Functions	Lower Bound	Upper Bound	Comments	Reference			
Specific Functions							
All-or-Nothing	$\Omega(\epsilon^{-2}n)$	$\tilde{O}(\epsilon^{-2}n)$		[KK15, CKN20]			
Small Side	$\Omega(\epsilon^{-2}n)$	$ ilde{O}(\epsilon^{-2}n)$		[AGK14, ADKKP16]			
Directed Hypergraph	$\Omega(\epsilon^{-1}n^2)$	$\tilde{O}(\epsilon^{-2}n^2)$		[SY19, KKTY21,OST23]			
General Families							
General Submodular	$\Omega(\epsilon^{-1}n^2)$	$\tilde{O}(\epsilon^{-2}n^3)$		[here]			
Monotone Functions	-	$\tilde{O}(\epsilon^{-2}n^2)$	now $ ilde{O}_\epsilon({ m n})$ [KPS24]	[here]			
Symmetric Functions	$\Omega(\epsilon^{-2}n)$	$\tilde{O}(\epsilon^{-2}n)$		[JLLS23]			
Finite-Spread	-	$ ilde{O}(\epsilon^{-2}n\mu_H)$	$\mu_{H} = \max_{e \in E} \frac{\max_{T \subseteq e} g_{e}(T)}{\min_{S \subseteq e} g_{e}(S)}$	[here]			

Main Result

Theorem 1:

Every H = (V, E, g) admits a sparsifier with $O(\epsilon^{-2}n^3)$ edges

Need to prove

- Approximation guarantee
- Sparsifier Size

Proof Overview

- Approach: Importance Sampling
 - Quantify for every $e \in E$ its "importance" $\sigma_e \in [0,1]$
 - Intuitively its relative contribution to a specific/any cut
 - Sample each $e \in E$ with probability $p_e = \min(1, M\sigma_e)$ for parameter M > 0
 - Scale each sampled hyperedge by p_e^{-1} and add it to H' = (V, E', g')

Need to prove

- Approximation Guarantee by Chernoff bound
- Sparsifier Size by its expectation $\mathbb{E}[|\mathbf{E}'|] = \sum_e p_e$

Sparsifying a Single Cut

• Fix $S \subseteq V$. Define importance of e to $\operatorname{cut}_H(S)$ as

$$\sigma_e(S) := \frac{g_e(S)}{\sum_{f \in E} g_f(S)} = \frac{g_e(S)}{cut_H(S)}$$

• By Chernoff

$$\Pr\left(cut_{H'}(S) \notin (1 \pm \epsilon)cut_H(S)\right) \le \exp\left(-\frac{\epsilon^2 cut_H(S)}{3 \max_{e \in E} p_e^{-1} g_e(S)}\right) \le e^{-\Omega(\epsilon^2 M)}$$

- Suitable $M = O(\epsilon^{-2})$ suffices
- Sparsifier size:

$$\mathbb{E}[|\mathbf{E}'|] \le M \sum_{e \in E} \sigma_e(S) = M$$

1

 \overline{S}

Sparsifying All Cuts [RY22]

Importance of *e* overall (= to all cuts)

$$\sigma_e = \max_{S \subseteq e} \sigma_e(S) = \max_{S \subseteq e} \frac{g_e(S)}{cut_H(S)}$$

- For all $S \subseteq V$ we have $\sigma_e \ge \sigma_e(S)$ and thus $\Pr\left(cut_{H'}(S) \notin (1 \pm \epsilon)cut_H(S)\right) \le e^{-\Omega(\epsilon^2 M)}$
 - Suitable $M = O(\epsilon^{-2}n)$ suffices for union bound over 2^n cuts
- Sparsifier size:

$$\mathbb{E}[|\mathbf{E}'|] \le M \sum_{e \in E} \sigma_e = O(\epsilon^{-2} n^2 B_H)$$

- Where B_H is number of extreme points of polytope of g_e
- Unfortunately, B_H can be exponential in n

Sparsifying All Cuts: Our Bound

- Main idea: Bound σ_e by something easier to analyze
- **Definition**: The minimum directed $u \rightarrow v$ cut on e $g_e^{u \rightarrow v} = \min_{\substack{S \subseteq e \\ u \in S, v \notin S}} g_e(S)$

Sparsifying All Cuts: Our Bound

• Set the approximate importance by

$$\rho_e = \sum_{(u,v) \in V \times V} \frac{g_e^{u \to v}}{\sum_{f \in E} g_f^{u \to v}}$$

- By lemma, for all $S \subseteq V$ $\sigma_e(S) = \frac{g_e(S)}{\sum_{f \in E} g_f(S)}$
- Size an Lemma: $\max_{u \in S, v \in e \setminus S} g_e^{u \to v} \le g_e(S) \le \sum_{u \in S, v \in e \setminus S} g_e^{u \to v}$

Lemma Intuition

• Lemma: Can approximate $g_e(S)$ by sum of minimum directed cuts

$$\max_{u \in S, v \in e \setminus S} g_e^{u \to v} \le g_e(S) \le \sum_{u \in S, v \in e \setminus S} g_e^{u \to v}$$

- Lower Bound trivial
- Upper Bound submodularity of optimal cuts Intuition – bounding a cut by all pairwise flows

$$S$$

 S_1
 S_2
 S_2
 S_2
 t_1
 t_1
 t_2
 t_3
 t_3
 t_3
 t_5
 t_5

$$\operatorname{cut}_{G}(S) \leq \sum_{s \in S, t \in \overline{S}} \operatorname{cut}(\{s\}, \{t\}))$$

Improved Bound for Monotone Case

Theorem 2:

Every H = (V, E, g) with monotone splitting functions admits a sparsifier with $O(\epsilon^{-2}n^2)$ edges

• Similar approach but with different lemma:

$$\max_{v \in V} g_e(\{v\} \cap S) \le g_e(S) \le \sum_{v \in V} g_e(\{v\} \cap S)$$

Succinct Representation

Succinct Encoding of All Cut Values

- **Question:** Is there a more succinct encoding than sparsifiers?
 - For graphs: No! [ACKQWZ'16]
 - Possible approaches: non-subgraph sparsifiers? use different hyperedges/splitting functions?

Theorem 3: For budget-additive splitting $g_e(S) = \min(|S|, K)$ with $K = \Omega(|e|)$,

- (1) encoding a reweighted-subgraph sparsifier requires $\Omega(n^2)$ bits;
- (2) but non-subgraph sparsifiers can be encoded with $\tilde{O}(\epsilon^{-6}n)$ bits.

Encoding of Budget-Additive Splitting

- Lower bound: "encode" $\Omega(n^2)$ bits into hypergraphs H that must have distinct subgraph $(1 + \epsilon)$ -sparsifiers H'
- Upper Bound: "Break" large hyperedges into small hyperedge
- Outline: Two steps of $(1 + \epsilon)$ -approximation:
 - Deform each g_e into many small hyperedges (also budget-additive)
 - Small is $O\left(\epsilon^{-2}\left(\frac{|E|}{K}\right)\log|e|\right)$; it implies low spread as well
 - Many is $O(\epsilon^{-2}|e|^2)$
 - Generating small hyperedges: Subsample vertices at rate p and scale by 1/p
 - Apply our sparsification for low spread $\mu_H \rightarrow$ straightforward encoding

Conclusion

Conclusion

- All submodular hypergraphs admit size $O(\epsilon^{-2}n^3)$ sparsifiers
 - Some admit even smaller ones (details in paper)

• Open Questions:

- Close the gap between $\Omega(n^2)$ lower bound and $O(n^3)$ upper bound?
- Families with smaller sparsifiers (other than symmetric and monotone)?
- Characterize a smooth tradeoff between those families?