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Although Dana's recent focus has not been on this model, 
much of the pioneering work was done by her.
This includes the introduction of the model, its initial study, and the 
celebrated tester for Bipartiteness, which relies on random walks.
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Outline
1. The bounded-degree graph testing model (G. and Ron, 1997). 

2. Studies of (the fixed graph and two graph versions of) the Graph 
Isomorphism problem, including determining the complexity of testing 
isomorphism to a fixed graph, for almost all regular graphs.

3. Transporting hardness results about functions to hardness results 
about graphs by using robustly self-ordered graphs. 
E.g., a separation between tolerant and standard testing in 
the bounded-degree graph  model (G. and Wigderson, 36th CCC, 2021). 

4. The work of Adler, Kohler and Peng (32nd SODA and 36th CCC, 2021), 
which is pivoted at constructing locally-characterized expander graphs. 
(The construction makes inherent use of the iterative and local nature of the 
Zig-Zag construction.) 
This yields a locally-characterizable graph property that cannot be tested  
within a number of queries that does not depend on the size of the graph. 



The Bounded-Degree Graph model

For a degree bound d, graphs are represented by incidence functions 
such that g(v,i) = w if w is the ith neighbor of v. 

On (explicit) input n and , a tester for property 
is given oracle access to g, representing G, and should satisfy:

• If G is in , then the tester accepts w.p at least 2/3 (or 1 (“one-sided”)).

• If G is -far from , then the tester should reject w.p. at least 2/3,
where G is -far from  if for every G’ the symmetric difference 
between G and G’ is greater than dn/2.

Focus: query complexity (as a function of n and ). 



Testing Graph Isomorphism: 
The two-input-graphs version
(The model has to be revised for two input oracles; 
alternatively pack two oracles in one.)

THM: Testing requires query complexity (n2/3), n = #vertices. 

Proved by reduction to testing equality between (n/polylog n)-long 
sequences over [n], which in turn is closely related to testing equality 
between two distributions. 

(The tested pairs of graphs consists of polylog-sized connected components.)

Open problem: What is the query complexity of this testing problem? 





Testing Graph Isomorphism: 
The fixed-graph version [G. and Tauber]

(This is a massively parameterized property; for a fixed n-vertex graph H, 
the question is whether the input graph G is isomorphic to H.)

THM: Testing requires query complexity (n1/2). 
Furthermore, this holds for almost all d-regular n-vertex graphs H.

THM: For almost all d-regular n-vertex graphs H, 
testing can be done in query complexity O(n1/2). 

Open problem: What about other graphs H? 
E.g., other there graphs H for which the query complexity is higher? 





Robustly self-ordered graphs and transporting 
results from functions to graphs [G. and Wigderson]

• A self-ordered graph = asymmetric.     (Recall: Focus on bounded-degree.)

• G=(V,E) is robustly self-ordered if for every permutation :V→V 
with k non-fixed-points, G and (G) differ on (k) entries.

• G is locally self-ordered if given a vertex v’ in G’ isomorphic to G,
we can find the location of v’ in G using polylog(|V|) queries to G’.

• THM1 [GW]: There exists robustly and locally self-ordered graphs. 
Furthermore, they are strongly constructible. 

• THM2 [GW]: If G is LSO and has polylog diameter, then given a vertex 
v in G, we can find its location in G’ using polylog(|V|) queries to G’.



Robustly self-ordered graphs and transporting 
results from functions to graphs [G. and Wigderson]

• THM3 [GW]: There exists a graph property that is easily testable 
but tolerantly testing it requires almost linear query complexity. 
(Recall: this is for the BDG model.) 

• Proof idea: Start from an analogous result for properties of strings 
(obtained via PCPs by [FF]). 

• Encode the bits of the (input) string by attaching tiny gadgets to 
a RSO and LSO graph (of Thm1). The RSO feature guarantees that the 
distance between strings is preserves (between the corres. graphs).

• Hardness of tolerant testing: Reduce (tolerantly) testing the string to 
(tolerantly) testing the graph, relying on the RSO feature.

• Easiness of standard testing: Reduce testing the graph to testing the 
corresponding string, using the LSO feature and Thm2.



Locally-characterized expander graphs [AKP]

• An n-vertex graph G is locally-characterized if it is uniquely 
determined (up to labeling) by a set of tuples of local conditions 
(i.e., all O(1)-neighborhoods should satisfy some prescribed condition).

• E.g., a graph consisting of isolated triangles is locally 
characterized. In contrast, typical expanders are not; 
the O(1)-neighborhoods in typical  expanders are regular trees. 

• THM: See title. Furthermore, they are strongly constructible.

• Proof idea: Superimpose a full D-ary tree with the Zig-Zag 
construction (of [RVW]), where D is the ``cloud size’’. 
This construction is locally characterizable.
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Lower bound on the query complexity of some 
locally-characterized properties [AKP, FPS]
• A graph property is locally-characterized if it can be expressed a 

set of tuples of local conditions. This extends the notions of induced 
and non-induced subgraph freeness.

• E.g., the set of regular graphs is characterized by asserting that 
every two vertices have the same number of neighbors. 

• THM: There exist locally characterized graph properties that are 
not robustly locally-characterized. Furthermore, they are not 
testable within size-oblivious query complexity. 
Specifically, their query complexity is at least loglogloglog n.

• Proof idea: Use the locally characterized expander graphs.
In contrast, by [FPS], every (infinite) property that is testable within 
size-oblivious query complexity contains a hyperfinite sub-property.  
A direct analysis gives a loglogloglog bound.  
(Can get log in a relaxed model…)
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