Are there graphs whose shortest path structure requires large edge weights?

Nicole Wein University of Michigan

Joint work with:

Aaron Bernstein

Greg Bodwin

Structural graph problems where you want to **minimize** one thing and **preserve** another

	Minimize	Preserve
Spanners	# edges	approximate distances
Shortcut sets	diameter	reachability
Flow/Cut-Sparsifiers	# edges	flow/cut
New Problem	aspect ratio	shortest paths structure

Purpose: Work with a simpler graph but still learn something about the original graph

Problem Definition

Aspect ratio = (largest edge weight in graph) / (smallest edge weight in graph)

Input: Positive weighted graph G (directed or undirected) with arbitrary aspect ratio

Goal: Reweight the edges of G to form a graph H so that:

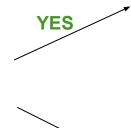
- 1. the aspect ratio is minimized
- 2. for all vertices s,t: P is a shortest path in G ⇔ P is a shortest path in H

$$S \rightarrow V_1 \rightarrow V_2 \rightarrow \dots \rightarrow t$$

$$grad big since s$$

What to do with the answer (hypothetically)

Is it always possible to reweight a graph to bounded aspect ratio (say polynomial) while preserving the structure of shortest paths?

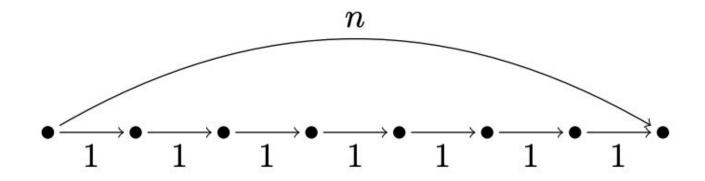


NO

Use the reweighting as a preprocessing step to get rid of the dependence on aspect ratio in the running time of algorithms (e.g. log(aspect ratio))

Use the fact that bounded aspect ratio graphs do not capture all possible shortest path structures to get **better algorithms for graphs with bounded aspect ratio**

Simple lower bound: $\Omega(n)$



- 1. the aspect ratio is minimized
- 2. P is a shortest path in $G \Leftrightarrow P$ is a shortest path in H

Is linear (or polynomial) aspect ratio always possible?

Our results:

	T	ODAY		
DAGs	YES	1.	O(n)	
Directed Graphs	NO	2.	2 ^{Ω(n)}	We also study the approximate version
Undirected Graphs	NO		2^{Ω(n)}	
DAGs with integer weights	?			

DAGs with integer weights in [1,W]

Applications?

- 1. the aspect ratio is minimized
- 2. P is a shortest path in $G \Leftrightarrow P$ is a shortest path in H

O(n) upper bound for DAGs

Observation: +x transformation does not change any shortest paths.

Assume edge weights between 1 and W.

Algorithm: For all i, apply transformation with $x = W \cdot i$ to the ith vertex in topological order

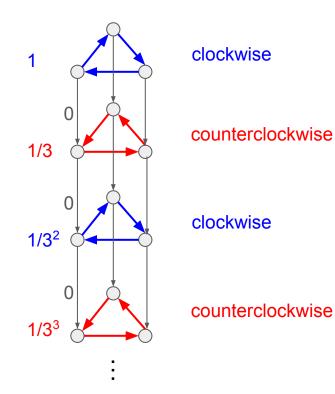
What happens to a single edge?

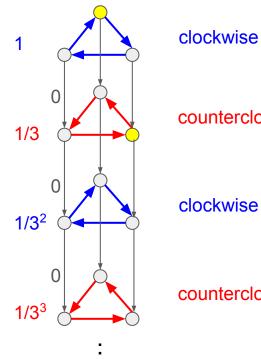
$$\overset{+W}{\stackrel{(j-i)}{\stackrel{j}{\longrightarrow}} }$$

 \Rightarrow Minimum edge weight \geq W

 \Rightarrow Maximum edge weight \leq W + W(n-1)

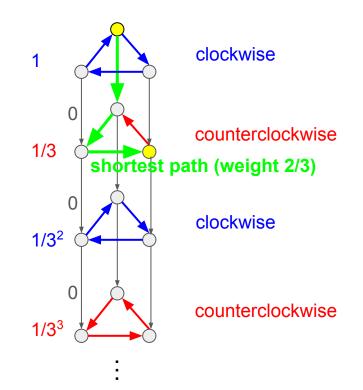
- 1. the aspect ratio is minimized
- 2. P is a shortest path in $G \Leftrightarrow P$ is a shortest path in H

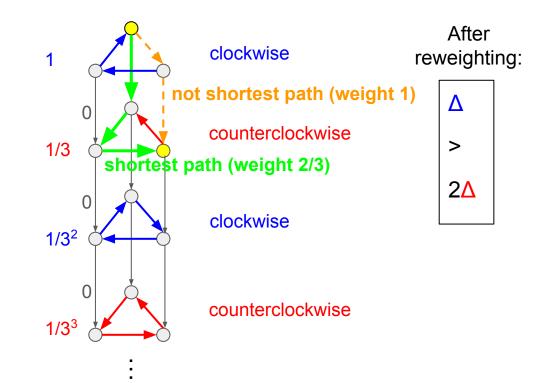




counterclockwise

counterclockwise





Approximate version

h-approximate shortest paths in $H \subseteq g$ -approximate shortest paths in G

Problem is easier for small h and large g

Results

Easiest version: h=1, g>1

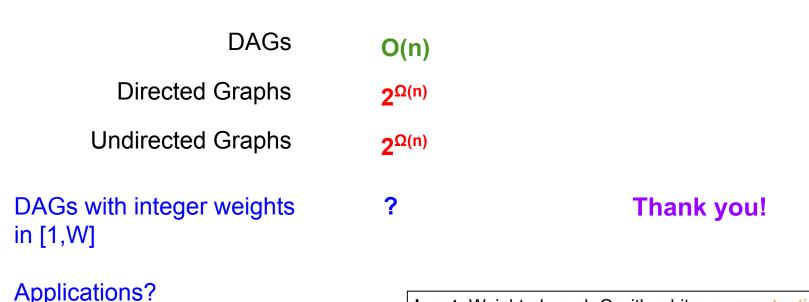
Still $2^{\Omega(n)}$ for any g>1 (directed) Still $2^{\Omega(n)}$ for any 1<g<13/12 (undirected)

Interesting version for DAGs: h>1, g≥1

h^{Ω(√n)} for any h>1, g≥1

- 1. the aspect ratio is minimized
- 2. (see above)

Results



- 1. the aspect ratio is minimized
- 2. P is a shortest path in $G \Leftrightarrow P$ is a shortest path in H