Testing Intersectingness of Uniform Families

By Ishay Haviv, Michal Parnas

Or how Dana and I intersected

Where it all started

Hebrew University, Jerusalem: B.Sc., M.Sc., Ph.D. 1984 - 1994

Belgium House

Old CS Building

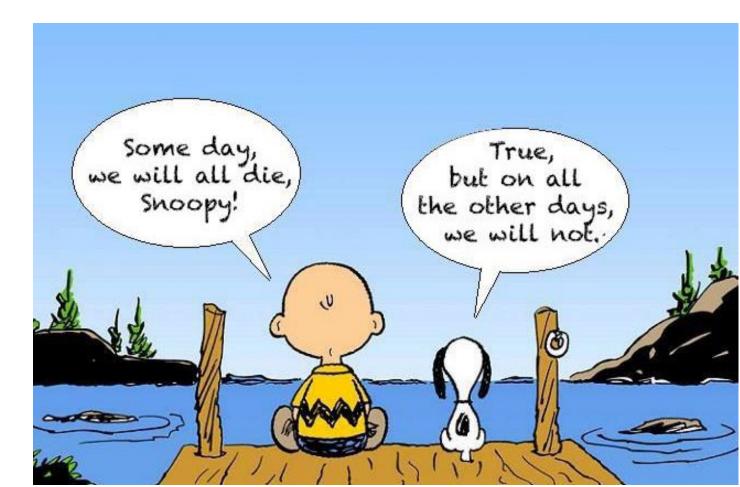
I fixed the no photos problem...

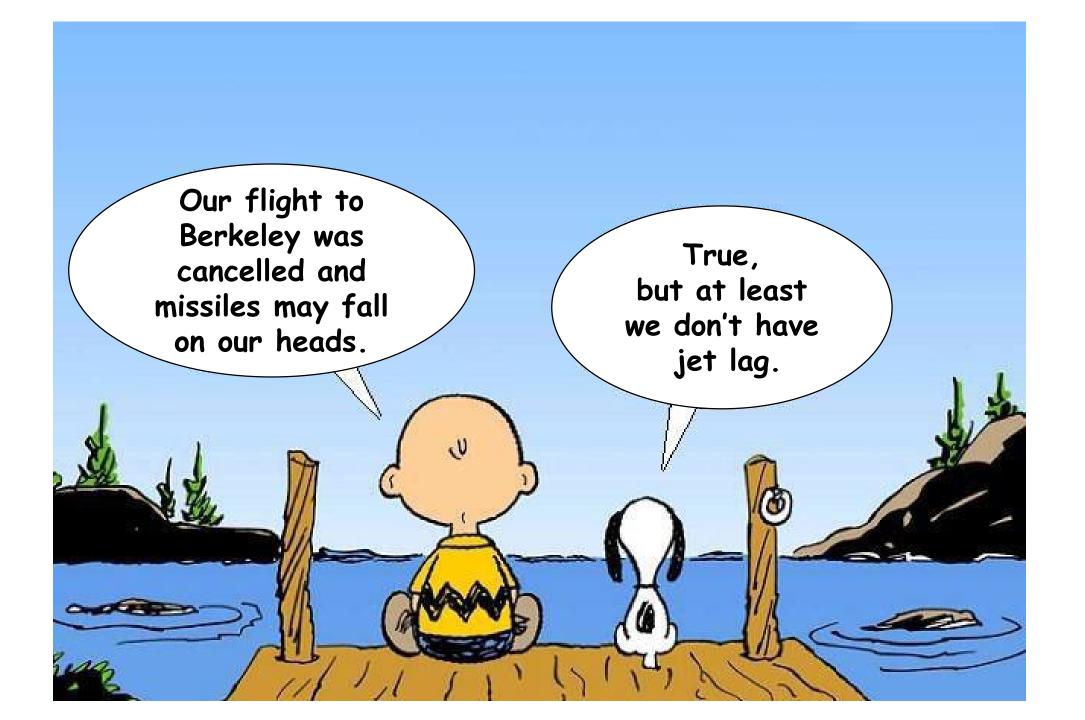
Acknowledgements in Ph.D. Thesis

Dana: I had great fun working with Michal (despite all her teasing),

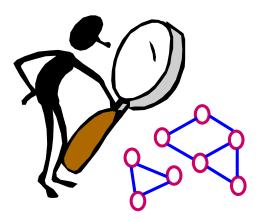
and perhaps "our robots" can once come back to life.

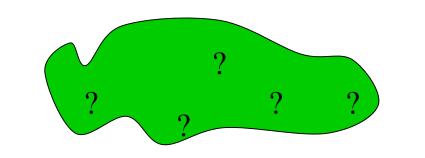
Michal: To Dana who always saw the bright side of everything.





Our first paper together and the evolution of property testing art.

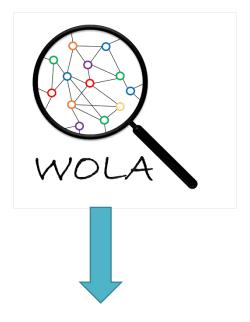


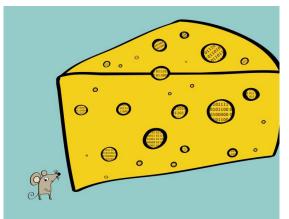


Later: testing clustering, metrics, Dictators, tolerant testing, Sublinear algorithms and more.

Parnas & Ron 1999: Testing the diameter of graphs.

Introducing general model for graph testing.





Testing Intersecting Families

A family of sets *F* over [*n*] is **intersecting** if $\forall S_1, S_2 \in F$ it holds that $S_1 \cap S_2 \neq \emptyset$

Chen, De, Li, Nadimpalli, Servedio, 2024:

"...." "Inspired by the classic problem of monotonicity testing...."

(Goldreich, Goldwasser, Lehman, Ron 1998)

 $F \subseteq 2^{[n]}$ is ε -far from intersecting if at least $\varepsilon 2^n$ of its sets

should be removed to make it intersecting.

One sided error tester should accept if *F* is intersecting

and reject with probability $\geq 2/3$ if *F* is ϵ -far from intersecting.

Results for Intersecting Families

Chen, De, Li, Nadimpalli, Servedio, 2024:

Upper bound:

• Non-adaptive one sided tester with $poly\left(n^{\sqrt{nlog(1/\varepsilon)}}, \frac{1}{\varepsilon}\right)$ queries.

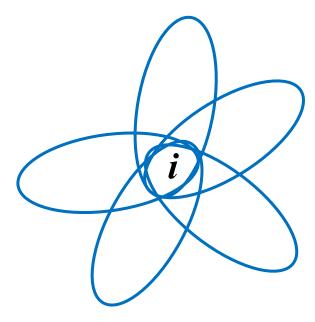
Lower bound:

- Non-adaptive one sided tester requires $2^{\Omega(\sqrt{nlog(1/\varepsilon)})}$ queries.
- Non-adaptive two sided tester requires $2^{\Omega(n^{1/4}/\sqrt{\varepsilon})}$ queries.

Testing Intersecting Uniform Families

F is ***k*-uniform** if
$$F \subseteq {\binom{[n]}{k}}$$

Erdős–Ko–Rado theorem: Let $F \subseteq {\binom{[n]}{k}}$ be **intersecting.** Then $|F| \le {\binom{n-1}{k-1}}$. |F| is maximized when it is a **1-junta**: *F* includes all sets with some *i*.



- $\binom{n-1}{k-1} = \frac{k}{n} \binom{n}{k}$
- k = 2: $|F| \le n 1$

•
$$k = n/2$$
: $\binom{n}{n/2} \approx \frac{1}{\sqrt{n}} 2^n$

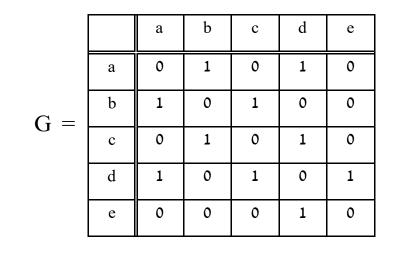
- For what ε is testing k-uniform families interesting?
- Over which universe is the problem defined?

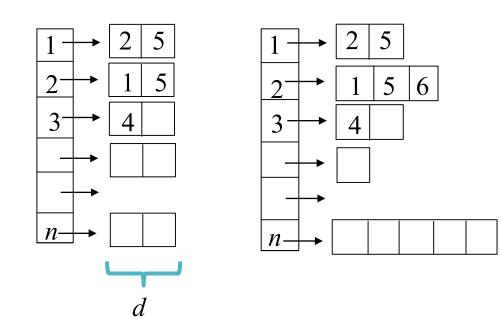
Universe size matters

Let G be a graph with n vertices and m edges.

G is ε -far from property if #edges that should be modified is:

- Goldreich, Goldwasser, Ron, 1996: εn^2 edges for dense graphs.
- Goldreich, Ron, 1997: *εdn* edges for bounded degree graphs.
- Parnas, Ron, 1999: *Em* edges for general graphs.





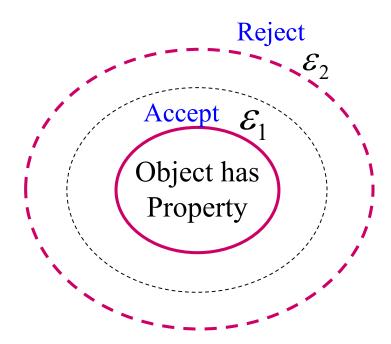
Definitions

 $F \subseteq {\binom{[n]}{k}} \text{ is } \frac{\varepsilon}{\epsilon} \text{ -far from intersecting if at least } \frac{\varepsilon}{\binom{n}{k}} \text{ of its sets}$ should be removed to make it intersecting.

Tolerant testing algorithm (Parnas, Ron, Rubinfeld, 2004):

Accept *object* with probability $\geq 2/3$ if it is ε_1 -close to property

and reject with probability $\geq 2/3$ if it is ε_2 -far from property.



Our Results

For every fixed integer *r*, for all $n \ge 2k$, there exist non-adaptive testers:

Tester	Condition	Query Complexity
Two sided error Tolerant	$\varepsilon_2 \ge \Omega\left(\varepsilon_1 + \frac{k}{n}\right)$	$O\left(\frac{1}{\varepsilon_2}\right)$
	$\varepsilon_2 \ge \Omega\left(\varepsilon_1 + \left(\frac{k}{n}\right)^r\right), r \ge 2$	$O\left(\frac{\ln(n)}{\varepsilon_2}\right)$
One sided error	$\varepsilon \ge \Omega\left(\left(\frac{k^2}{n}\right)^2\right)$	$O\left(\frac{1}{\varepsilon}\right)$
	$\varepsilon \ge \Omega\left(\left(\frac{k^2}{n}\right)^r\right), \ r \ge 3$	$O\left(\frac{\ln(k)}{\varepsilon}\right)$

Lower bound: $\Omega\left(\frac{1}{\varepsilon}\right)$ queries for $\binom{n}{k}^{-1} \le \varepsilon < \frac{1}{2}$

Our Results

For every fixed integer *r*, for all

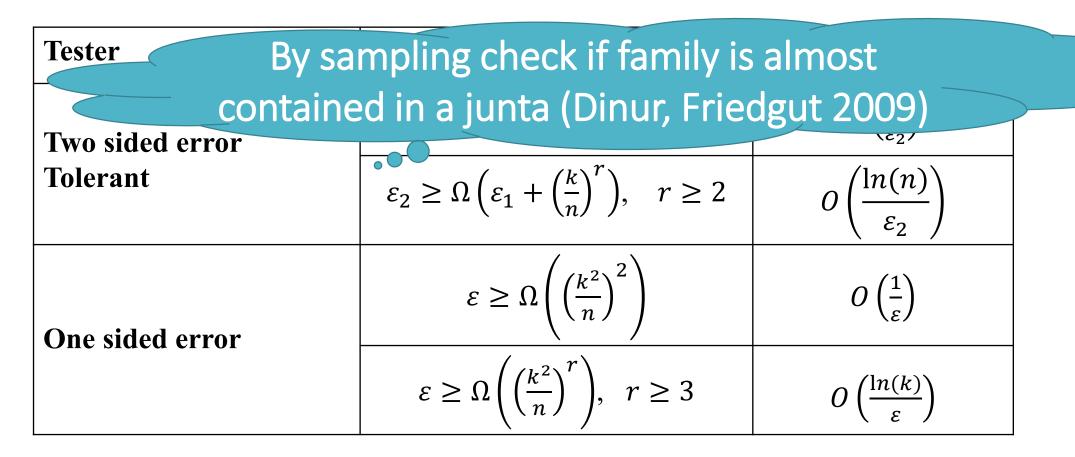
Approximate size of family

Tester		Query Complexity
Two sided error Tolerant	$\varepsilon_2 \ge \Omega\left(\varepsilon_1 + \frac{k}{n}\right)$	$O\left(\frac{1}{\varepsilon_2}\right)$
	$\varepsilon_2 \ge \Omega\left(\varepsilon_1 + \left(\frac{k}{n}\right)^r\right), r \ge 2$	$O\left(\frac{\ln(n)}{\varepsilon_2}\right)$
One sided error	$\varepsilon \ge \Omega\left(\left(\frac{k^2}{n}\right)^2\right)$	$O\left(\frac{1}{\varepsilon}\right)$
	$\varepsilon \ge \Omega\left(\left(\frac{k^2}{n}\right)^r\right), \ r \ge 3$	$O\left(\frac{\ln(k)}{\varepsilon}\right)$

Lower bound:
$$\Omega\left(\frac{1}{\varepsilon}\right)$$
 queries for $\binom{n}{k}^{-1} \le \varepsilon < \frac{1}{2}$

Our Results

For every fixed integer *r*, for all $n \ge 2k$, there exist non-adaptive testers:



Lower bound: $\Omega\left(\frac{1}{\varepsilon}\right)$ queries for $\binom{n}{k}^{-1} \le \varepsilon < \frac{1}{2}$

One sided error tester

Theorem: One sided tester for $\varepsilon \ge \Omega\left(\left(\frac{k^2}{n}\right)^r\right)$ with $O\left(\frac{\ln(k)}{\varepsilon}\right)$ queries.

<u>Canonical Tester</u> (*Family F*):

1. Choose *m* sets
$$S_1, ..., S_m \subseteq {\binom{[n]}{k}}$$
 uniformly at random.

2. If
$$\exists i, j \in [m]$$
 such that $S_i, S_j \in F$ and $S_i \cap S_j = \emptyset$

then reject, otherwise accept.

Tester always accepts intersecting families.

Proof Idea

Let $F \subseteq {\binom{[n]}{k}}$ be ε -far from intersecting $\implies |F| > \varepsilon {\binom{n}{k}}$. Recall: $\varepsilon \ge \Omega\left(\left(\frac{k^2}{n}\right)^r\right)$

Assumption: for every $A \subseteq [n]$, |A| < r, we sampled $S_A \in F$, such that $S_A \cap A = \emptyset$

Lemma: Number of sets
$$S \in {\binom{[n]}{k}}$$
 that intersect all sets S_A is $\leq \left(\frac{k^2}{n}\right)^r {\binom{n}{k}}$

But
$$|F| > \varepsilon {\binom{n}{k}} \ge \Omega \left(\left(\frac{k^2}{n} \right)^r {\binom{n}{k}} \right) \implies$$
 After a few more samples we get a set $S \in F$

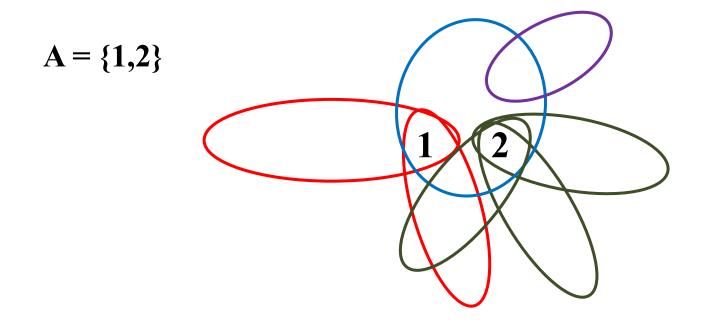
that doesn't intersect at least one of the sets $S_A \implies$ Algorithm rejects.

However...

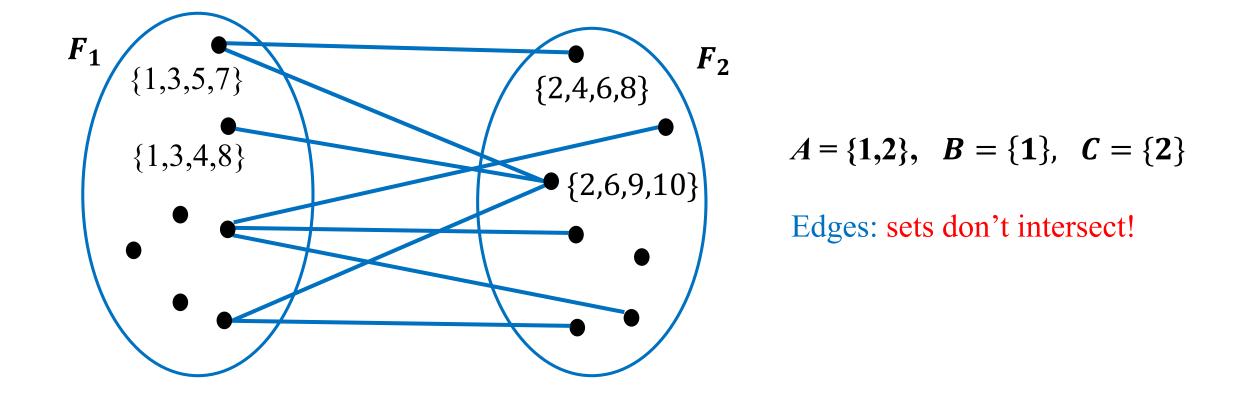
Assumption doesn't always hold: There may be a subset $A \subseteq [n], |A| < r$,

such that for all sampled $S \in F$, $S \cap A \neq \emptyset$.

A subset A ε -captures F if the number of sets $S \in F$, for which $S \cap A = \emptyset$ is $\langle \varepsilon \binom{n}{k}$



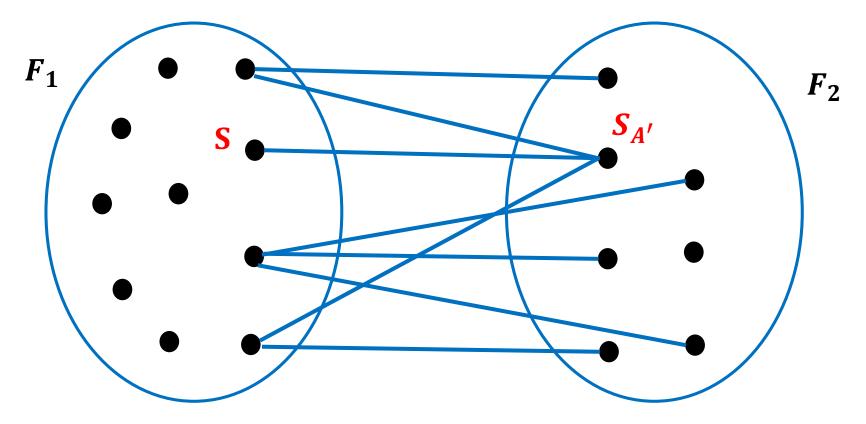
Lemma: If *F* is ε -far from intersecting and *A* ε -captures *F* then $\exists B, C \subseteq A$ s.t. $B \cap C = \emptyset$ and $F_1 = \{S \in F | S \cap A = B\}, F_2 = \{S \in F | S \cap A = C\}$ are ε '-far from cross-intersecting.



If *F* is ε -far from intersecting then many edges cross between F_1 and F_2

Show that algorithm will sample a pair of disjoint sets from F_1 and F_2 .

 $F_2 = \{ S \in F \mid S \cap A = C \}$



Assume, $\forall A' \subseteq [n] \setminus A$, |A'| < r, we sampled $S_{A'} \in F_2$, such that $S_{A'} \cap A' = \emptyset$

But number of sets $S \in F_1$ that intersect all sets $S_{A'}$ is small.

After a few more samples we get a set $S \in F_1$ that doesn't intersect one of the sets $S_{A'}$ Algorithm rejects. Otherwise, exists A' that captures F_2 ...

Proof of Lemma

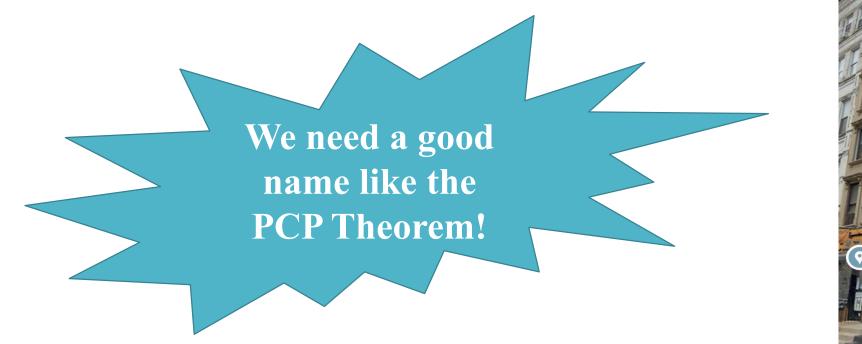
Lemma: Number of sets S in $\binom{[n]}{k}$ that intersect all sets S_A is $\leq k^r \binom{n-r}{k-r} \leq \left(\frac{k^2}{n}\right)^r \binom{n}{k}$ Proof:

$$\begin{split} S_{\emptyset} &= \{j_1, \dots\}, & A = \emptyset \\ j_1 \notin S_{j_1} &= \{j_2, \dots\}, & A = \{j_1\} \\ j_1, j_2 \notin S_{j_1, j_2} &= \{j_3, \dots\}, & A = \{j_1, j_2\} \\ S_{j_1, j_2, \dots, j_{r-1}} &= \{j_r, \dots\}, & A = \{j_1, j_2, \dots, j_{r-1}\} \end{split}$$
 To intersect all sets S_A ,
a set S must contain at least one of the k^r possible subsets $\{j_1, j_2, \dots, j_{r-1}, j_r\}.$

Tolerant Property Testing: It's all in the name

New York, 2003: The apartment of Ronitt and Ran.

Dana and I were visiting Ronitt.



Since then TPT became famous!

TPT today:

- Transport
- Transactional Privilege Tax
- Third Party Transfer
- Trailer Park Trash
- Th

TETON PETROLEUM TRANSPORT

Teachers Pay Teachers (2006)

roat Punch	Thursday	(2004).	

Time Partition Testing

Retirement Solutions

Tolerant Testing: Who is Tess?

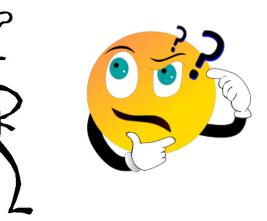
Acknowledgement: We acknowledge the contribution of Tess in our attempts to obtain an improved tolerant testing algorithm for monotonicity in higher dimensions.

Reviewer 2: I do not know who "Tess" is. Please put in her (his?) full name.

Reply: Tess is a dog and therefore does not have a last name...

Open Problems

Tester	Condition	Query Complexity
Two sided error Tolerant	$\varepsilon_2 \ge \Omega\left(\varepsilon_1 + \frac{k}{n}\right)$	$O\left(\frac{1}{\varepsilon_2}\right)$
	$\varepsilon_2 \ge \Omega\left(\varepsilon_1 + \left(\frac{k}{n}\right)^r\right), r \ge 2$	$O\left(\frac{\ln(n)}{\varepsilon_2}\right)$
One sided error	$\varepsilon \ge \Omega\left(\left(\frac{k^2}{n}\right)^2\right)$	$O\left(\frac{1}{\varepsilon}\right)$
	$\varepsilon \ge \Omega\left(\left(\frac{k^2}{n}\right)^r\right), \ r \ge 3$	$O\left(\frac{\ln(k)}{\varepsilon}\right)$



- Are log factors necessary?
- Find optimal testers
 for all values of ε.

• Find other interesting properties with a complexity gap between general and uniform case.

Here's to many more years of research and friendship.

HAPPY* BIRTHDAY!