Sparsification: Graphs, Codes, CSPs

Madhu Sudan

Harvard University

Joint work with Sanjeev Khanna@Penn and Aaron (Louie) Putterman@Harvard

Sparsification

- Lossy compression ≤ Sparsification ≤ Compression
- Compression: $X \mapsto Comp(X) \mapsto X$
- Noisy compression: $X \mapsto NC(X) \mapsto \tilde{X}$ s.t. $\delta(X, \tilde{X}) \to 0$
 - Preserves most of poly(|X|) queries
- Sparsification (for class C of \mathbb{R}^+ -valued queries): $X \mapsto Sparse(X) \mapsto \{(1 \pm \epsilon)q(X)\}_{q \in C}$
 - Approximately preserves all of |C| queries (usually exponentially many)

Benczur-Karger Cut Sparsification

- Thm [Karger 94, BK97]: Every graph on n vertices can be sparsified to $\tilde{O}(n)$ bits while estimating all (2^{n-1}) cuts to within $1 \pm \epsilon$
 - (Note full information = $O(n^2)$ bits).
- Key ingredient: Karger's cut counting bound
- Lemma [K]: in unweighted graph G #{cuts of size $\leq \alpha \cdot \text{mincut}(G)$ } $\leq n^{2\alpha}$
- Random sample of $\tilde{O}\left(\frac{m}{c}\right)$ edges suffices.
- [BK] Non-uniform sampling reduces to $\tilde{O}(n)$ samples (How?)

What else can be sparsified?

- Structure" := data + set of queries ...
- What other structures can be sparsified?
 - Graph Laplacians wrt quadratic form queries
 - Data = L_G ; Query = $x \in R^n$; Ans: $x^T L_G x$
 - Hypergraph Cut Sparsifiers
 - Data = (V, E); Query = $S \subseteq V$; Ans: $|E(S, \overline{S})|$
 - SAT sparsifier
 - Data = Sat formula; Query = assignment; Ans = # clauses satisfied by assignment.
 - CSP(P) sparsifier? [Kogan-Krauthgamer]
 - Data = P constraints on n vars; Query = assignment ...
 - [FK, BZ]: Classification of binary predicates with near linear sparsifiers
 - XOR-SAT sparsifier?
 - Data = XOR-SAT formula

This talk:

- Code sparsification (more generally additive codes over abelian groups):
 - Data = (generator matrix of) linear code.
 - Query = message
 - Ans = (Hamming) weight of its encoding.
- Motivation: Generalizes graph- and hypergraphsparsification.
- Applications to CSP sparsification:
 - Classification of ternary Boolean CSPs
 - Classification of all symmetric Boolean CSPs
 - Classification* of all Boolean CSPs with nontrivial sparsification

Some theorems

- Thm 1: Every linear code $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ can be sparsified to $\tilde{O}(k^2 \log^2 q)$ bits.
 - More specifically, \exists weighted sample of $\tilde{O}(k \log q)$ coordinates s.t. weighted hamming weights in sampled coordinates approximate original weight.
- Thm 2: Every code $E: \mathbb{Z}^k \to G^n$ can be sparsified to $\tilde{O}(k \log^2 |G|)$ coordinates, \forall abelian group G.
- Thm 3: Every degree t poly function $E: \mathbb{Z}^k \to G^n$ can be sparsified to $\tilde{O}(k^t \log^2 |G|)$ coordinates

Some CSP theorems

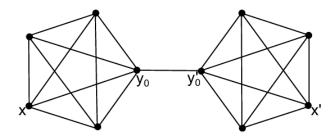
- Thm 4: $\forall P: \{0,1\}^3 \rightarrow \{0,1\}$ CSP(P) is $\tilde{O}(n^t)$ -sparsifiable iff P does not project to AND_{t+1}
 - $P: \{0,1\}^r \to \{0,1\}$ projects to $Q: \{0,1\}^s \to \{0,1\}$ if $\exists \Pi: [r] \to \{Y_1 \dots Y_s\} \cup \{\overline{Y}_1 \dots \overline{Y}_s\} \cup \{0,1\}$ s.t. $Q(Y_1 \dots Y_s) = P(\Pi(1) \dots \Pi(r))$
- Thm 5: \forall symmetric $P: \{0,1\}^r \rightarrow \{0,1\}$ CSP(P) is near-linear sparsifiable iff $wt(P^{-1}(0))$ form arithmetic progression.
- Thm 6: $\forall P: \{0,1\}^r \to \{0,1\}$ CSP(P) is sparsifiable to $\tilde{O}(n^{r-1})$ constraints iff $|P^{-1}(1)| \ge 2$
- Bonus/Addendum: Everything algorithmic!!

Proofs

Graph Sparsification

Why does a random sample not work?

- Pick $t = \tilde{O}(n)$ constraints uniformly at random
- Output $\frac{m}{t}$. (#"sampled & satisfied" constraints)
- Gives additive ($\pm \epsilon m$) approximation;
- ... but not multiplicative $(1 \pm \epsilon)$ approximation



Karger's cut counting bound

- Fix a cut S w. $\leq \alpha \cdot c$ edges
- Contract $n-1 \le \frac{2m}{c}$ random edges (till #vertices = 2)
- Pr[ith edge from end crosses S] $\leq \frac{2 \alpha \cdot c}{i.c} = \frac{2\alpha}{i}$
- Pr[no edge crosses S] $\geq \prod_i \left(1 \frac{2\alpha}{i}\right) \geq n^{-2\alpha}$
- $Pr[S final cut] \ge n^{-2\alpha}$
- ⇒ # {cuts w. $\leq \alpha c$ edges} $\leq n^{2\alpha}$

Graph Sparsifiers from c.c. bound

- [K]: Sample $\frac{10m}{c} \log n$ edges ...
 - Pr [cut S of size αc not sampled well] $\leq n^{-10\alpha}$
 - Pr [\exists cut of size αc not sampled well] $\leq n^{-8\alpha}$
 - Now union over α
- [BK] Define strength of edges; sample edges w.p. prop. to strength ...
- [Our simpler proof (loses log factors)]:
 - Given G, let G_0 be union of cuts of size $\sqrt{\frac{m}{cn}}$; $G_1 \dots G_t$ be c.c.s of the rest;
 - $m(G_0) \le \sqrt{\frac{mn}{c}}$; $min cut(G_i) \ge \sqrt{\frac{m}{cn}}$; $\frac{m}{c}$ better in all!
 - Recurse+weight appropriately (by mincut)!

Code Sparsification

Aside: Hypergraph Sp. ≤ Code Sp.

- Hypergraph: Say r-uniform hypergraph on n vertices. Edge e cut by (S, \overline{S}) if $e \cap S, e \cap \overline{S} \neq \phi$.
- Q: $\exists \tilde{O}(n)$ hypergraph cut sparsifiers?
 - [KK'15]: $\tilde{O}(nr)$ sparsifiers exist
 - [CKN'20] Improve to $\tilde{O}(n)$
- Our proof:
 - Let $q \approx n$ prime, map edge e to row vector in \mathbb{F}_q^n with nnz entries (1,1,1,...-(r-1))
 - Consider code generated by columns of matrix with a row for each edge.
 - Sparsifying code sparsifies hypergraph!

Code Sparsification

- Need an analog of cut counting bound ...
 - "In every code C of min dist d,
 #{codewords of wt ≤ αd} ≤ kα"?
- Patently false: Asymptotically good code has $d, k = \Omega(n)$, and so $2^{\Omega(n)}$ words of weight O(d) (Aside: Hypergraph cut counting bound also fails similarly!! Obstacle to prior work.)
- But asymptotically good code is already sparsified! So not obstacle to sparsification.
- Needs a modified "cut counting bound"

Code counting Lemma

- Informally, every code has a good subcode supported on few coordinates, or satisfies Karger-style counting bound.
- Lemma: $\forall t \in \mathbb{Z}^+, C \subseteq \mathbb{F}_q^n$ we have:
 - 1. $\forall \alpha \# \{ \text{codewords of wt} \leq \alpha \cdot t \} \leq q^{\alpha} \binom{n}{\alpha} \text{ OR}$
 - $\exists C' \leq C$, s.t. $|\operatorname{supp}(C')| \leq \dim(C') \cdot t$
- Corollary: $\forall t \in \mathbb{Z}^+, C \subseteq \mathbb{F}_q^n, \exists S \subseteq [n], |S| \leq \dim(C).t$ s.t. $\forall \alpha \# \{\text{codewords of } C|_{\overline{S}} \text{ of } \text{wt} \leq \alpha \cdot t\} \leq q^{\alpha}\binom{n}{\alpha}$

Code Counting ⇒ **Sparsification**

- Sparsify(C)
 - Let $t = \sqrt{\frac{n}{k}}$ where $k = \dim C$
 - Apply Corollary and let $C_1 = C|_S$ and $C_2 = C|_{\overline{S}}$
 - Return Sparsify(C_1) $\cup \sqrt{t} \cdot \text{Sparsify}(C_2)$
 - QED

Proof of Code Counting

- Contract(C,t):
 - If $|\sup(C)| \le t \cdot \dim(C)$ stop "Case 2";
 - If dim $C > \alpha$
 - Pick random coord. $j \in [n]$ s.t. $C|_{\{j\}} \neq 0$
 - $C' = C \{ c \in C \text{ s.t. } c_j \neq 0 \}$
 - Contract(C', t)
 - Else, output "Case 1" + random codeword of C
- Fix word $c \in C$ of weight $\leq \alpha t$
- $Pr[c \notin C'] \le \frac{\alpha}{\dim(C)}$
- ⇒ $\Pr[c \text{ survives and output at end}] \ge {n \choose \alpha}^{-1} q^{-\alpha}$.

Aside: Efficient Sparsification

- Bottleneck problem: Find subcode of moderately high dimension with small support.
 - Graph-theoretic setting: Solved using min-cut.
 - Analogous problem: Min weight codeword (hard).
- Weaker problem suffices: Given d find dn coordinates that include support of subcode.
 - Sp'l case: Must include support of weight d codeword.

Aside: Efficient Sparsification

- Bottleneck problem: Find subcode of moderately high dimension with small support.
 - Graph-theoretic setting: Solved using min-cut.
 - Analogous problem: Min weight codeword (hard).
- Weaker problem suffices: Given d find dn coordinates that include support of subcode.
 - Sp'l case: Must include support of weight d codeword.
 - Algorithm:
 - Find $S_i \subseteq [n] \bigcup_{j < i} S_j$ of maximal rank for $1 \le i \le d$.
 - Output ∪_i S_i

Implications + Extensions

Hypergraph Sparsification

- Hypergraph: Say r-uniform hypergraph on n vertices. Edge e cut by (S, \overline{S}) if $e \cap S, e \cap \overline{S} \neq \phi$.
- Q: $\exists \tilde{O}(n)$ hypergraph cut sparsifiers?
 - [KK'15]: $\tilde{O}(nr)$ sparsifiers exist
 - [CKN'20] Improve to $\tilde{O}(n)$
- Our proof:
 - Let $q \approx n$ prime, map edge e to row vector in \mathbb{F}_q^n with nnz entries (1,1,1,...-(r-1))
 - Consider code generated by columns of matrix with a row for each edge.
 - Sparsifying code sparsifies hypergraph!

Variations

- Can sparsify codes $E: \mathbb{Z}^k \to G^n$, for finite abelian group G, to $\tilde{O}(k \log G)$ rows.
 - Proof: Some linear algebra breaks down.
 Replace dimension etc with actual counts,
 Gaussian elimination with HNF.
- Can sparsify degree t maps $P: \mathbb{Z}^k \to G^n$ to $\tilde{O}(k^t \log G)$ coordinates.
- Applications:
 - Classify all symmetric Boolean CSPs with near linear sparsification
 - Classify all r-ary Boolean CSPs with $o(n^r)$ -sparsification.

Open Questions

- CSP Sparsification Classification:
 - Only upper bound tool: our group-basedpolynomial sparsifier
 - Only lower bound tool: Projection to t-AND.
 - The two don't meet ⊗
 - New ideas?
- What else is sparsifiable?

Thank You!