Maximum Matching in $O(\log \log n)$ Passes in **Dynamic Streams**

Janani Sundaresan

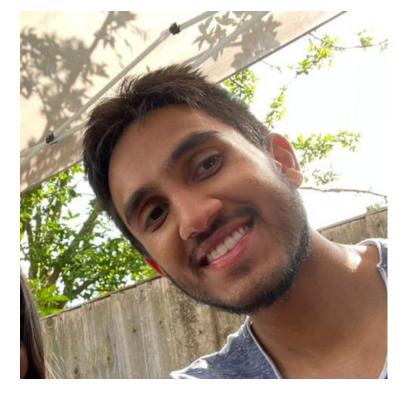
UNIVERSITY OF WATERLOO

Joint Work with

Sepehr Assadi

Soheil Behnezhad

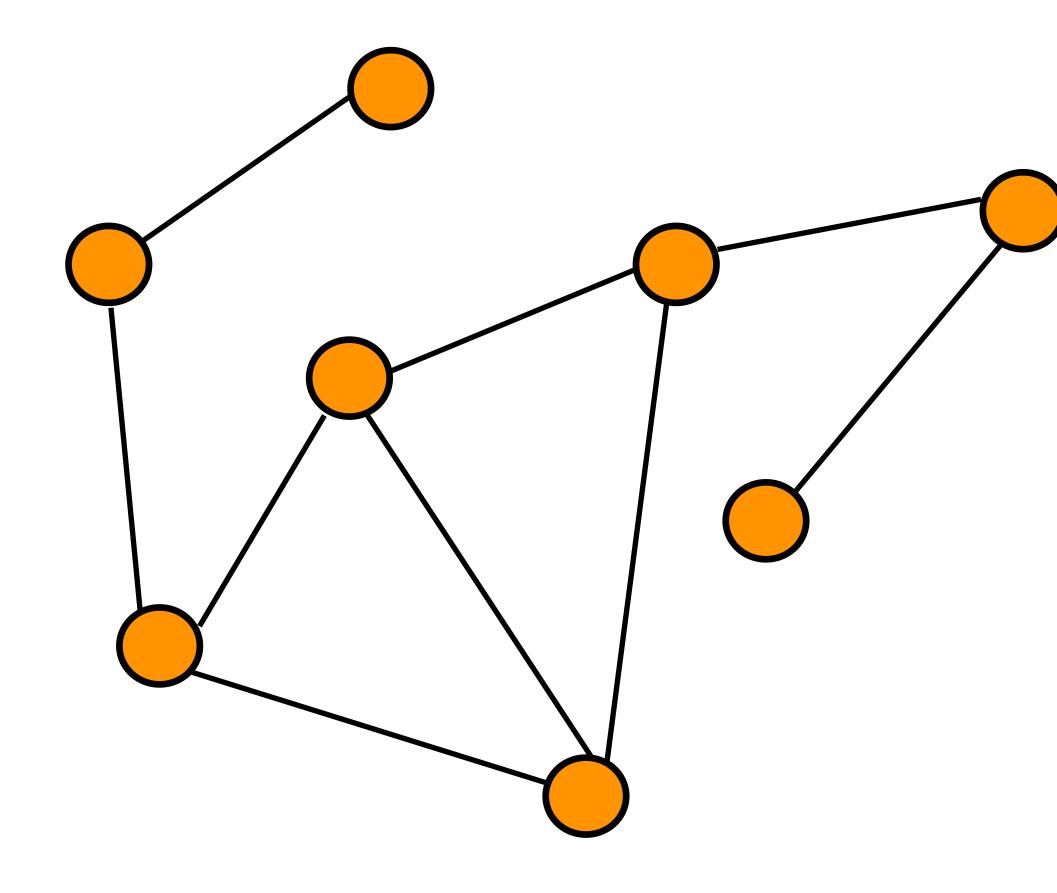
UNIVERSITY OF WATERLOO



Christian Konrad

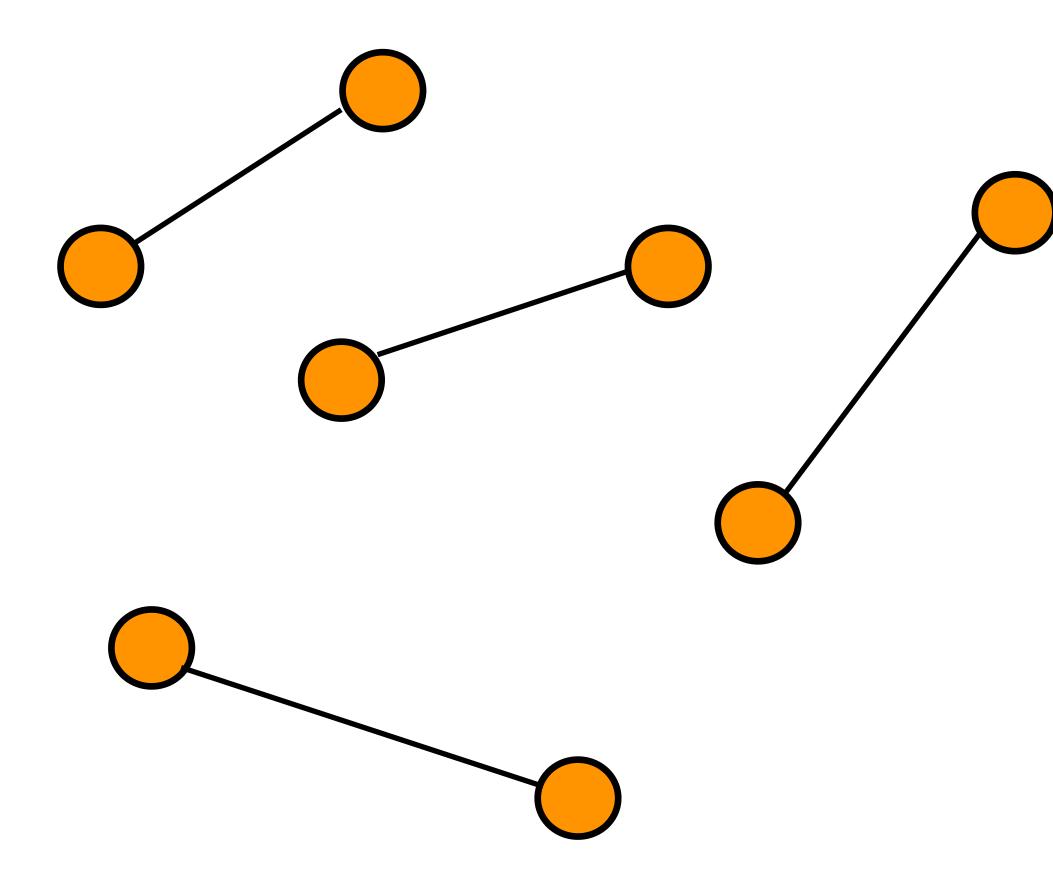
Kheeran K. Naidu

Matchings in Graphs



G = (V, E)*n* vertices and *m* edges

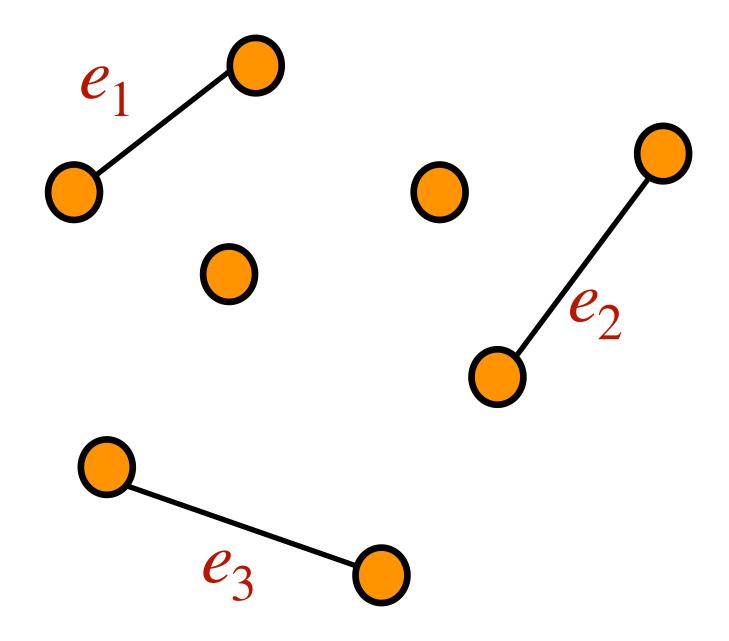
Matchings in Graphs



$M \subseteq E$ of edges

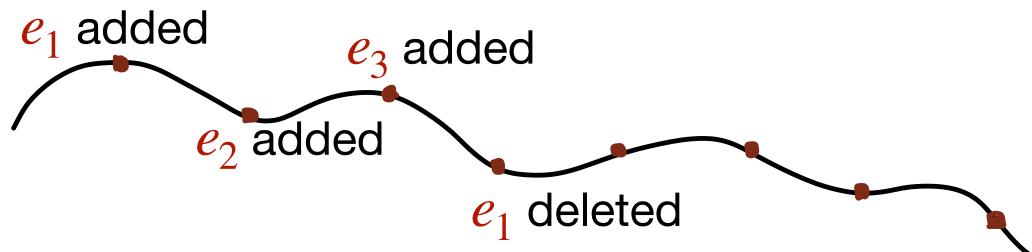
At most one edge incident to every vertex

Vertices are known.



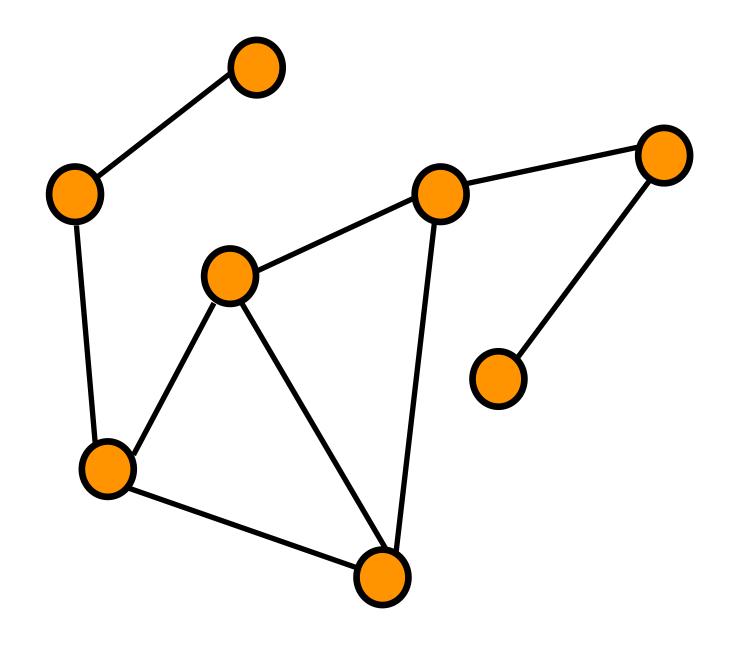
[Ahn-Guha-McGregor '12]

G = (V, E)



Edges are given as a stream of insertions and deletions

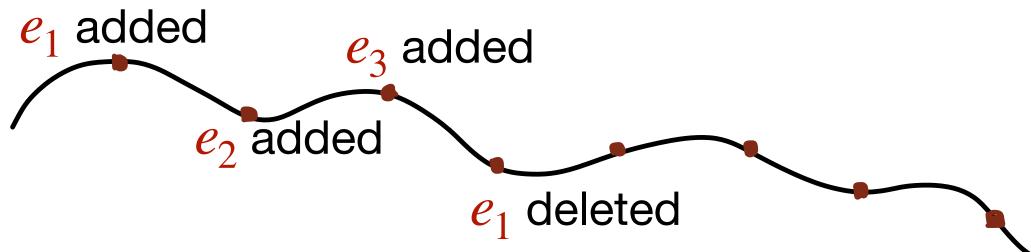
Vertices are known.



Space: *O*(*n* poly log *n*) May be repeate

[Ahn-Guha-McGregor '12]

G = (V, E)



Edges are given as a stream of insertions and deletions

May be repeated for multiple passes

Matching in Dynamic Streams

Multi-Pass Algorithms

[Ahn-Guha-McGregor '12, Ahn-Guha '15, Assadi '24]

• Single Pass Results

[Konrad '15, Chitnis-Cormode-Hajiaghayi-Monemizadeh '15, Assadi-Khanna-Li-Yaroslavtsev '16, Chitnis-Cormode-Esfandiari-Hajiaghayi-McGregor-Monemizadeh-Vorotnikova '16, Assadi-Khanna-Li '17, Dark-Konrad '20, Assadi-Shah '22]

Focus on O(1)-approx

Boosting Approximation Ratio

Any algorithm for matching

O(1)-approximation passes **S** space

Unweighted

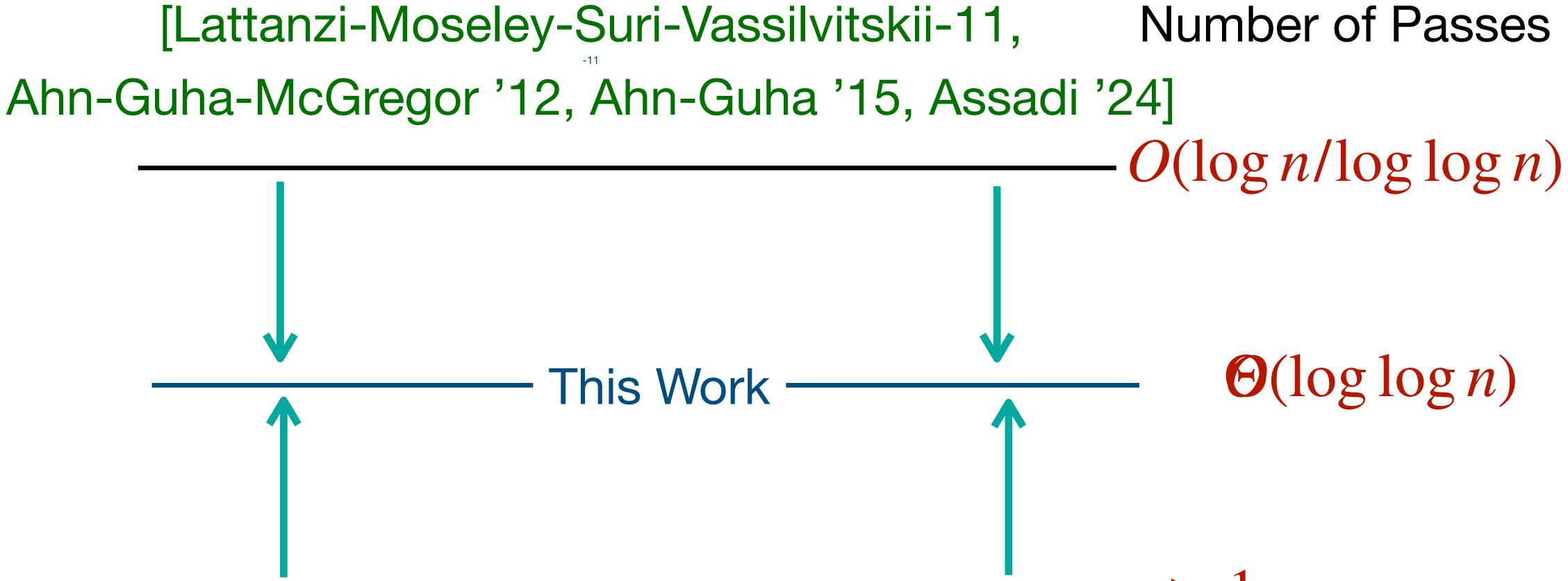
[McGregor '05, Gamlath-Kale-Mitrovic-Svensson '19]

 $(1 + \epsilon)$ -approximation $O_{\epsilon}(p)$ passes $O_{\epsilon}(s)$ space

Weighted

Semi-streaming space: $O(n \text{ poly } \log n)$ O(1)-approximation ratio

Number of passes?



[Assadi-Khanna-Li-Yaroslavtsev '16, Dark-Konrad '20]

Reminder: We can boost to $(1 + \epsilon)$ for any constant ϵ

In $O(n \operatorname{poly} \log n)$ space, there is an $O(\log \log n)$ -pass algorithm for O(1)-approximation of maximum matching.

In $O(n \operatorname{poly} \log n)$ space, for any constant c > 1, any *c*-approximation of maximum matching requires $\Omega(\log \log n)$ passes.

This Talk: Only Upper Bound

In $O(n \text{ poly } \log n)$ space, there is a $O(\log \log n)$ -pass algorithm for O(1)-approximation of maximum matching.

This is a sketching algorithm.

Graph Sketching Technique

Sketch Matrix $S \in \mathbb{Z}^{s \times \binom{n}{2}}$

Sketch of the $\begin{array}{c|c} (v_1, v_2) & \text{graph} \\ (v_1, v_3) & S \cdot \phi \in \mathbb{Z}^S \end{array}$ Incidence Vector of edges $\phi \in \{0,1\}^{\binom{n}{2}}$

Graph Sketching Technique

Not explicitly stored Sketch Matrix $S \in \mathbb{Z}^{s \times \binom{n}{2}}$

Sketch of the $\begin{array}{c|c} (v_1, v_2) & \text{graph} \\ (v_1, v_3) & S \cdot \phi \in \mathbb{Z}^S \end{array}$ Stored in $\tilde{O}(s)$ Incidence Vector of edges $\phi \in \{0,1\}^{\binom{n}{2}}$

For one Edge Insertion or Deletion

Sketch of current graph

Just find $S \cdot \phi_{\text{update}}$ and add to current sketch

$S \cdot \phi_1 + S \cdot \phi_2 = S \cdot (\phi_1 + \phi_2)$ Update Update Sketch of updated graph

Multi-Round Adaptive Sketching

Decide on sketch matrix S_1 for first round

Continue for next round

r-round adaptive sketching gives *r*-pass dynamic streaming algorithm

Get sketch of graph $S_1 \cdot \phi$

- Decide next sketch matrix S_2 for second round based on $S_1 \cdot \phi$

Sketching Algorithm

In $O(n \operatorname{poly} \log n)$ space, there is an $O(\log \log n)$ -pass algorithm for O(1)-approximation of maximum matching.

Adaptive sketching algorithm $\tilde{O}(n)$ -size sketches $O(\log \log n)$ -rounds

Implication for MPC model

MPC algorithm with machines of O(n) memory and $\tilde{O}(n)$ working memory in $O(\log \log n)$ rounds

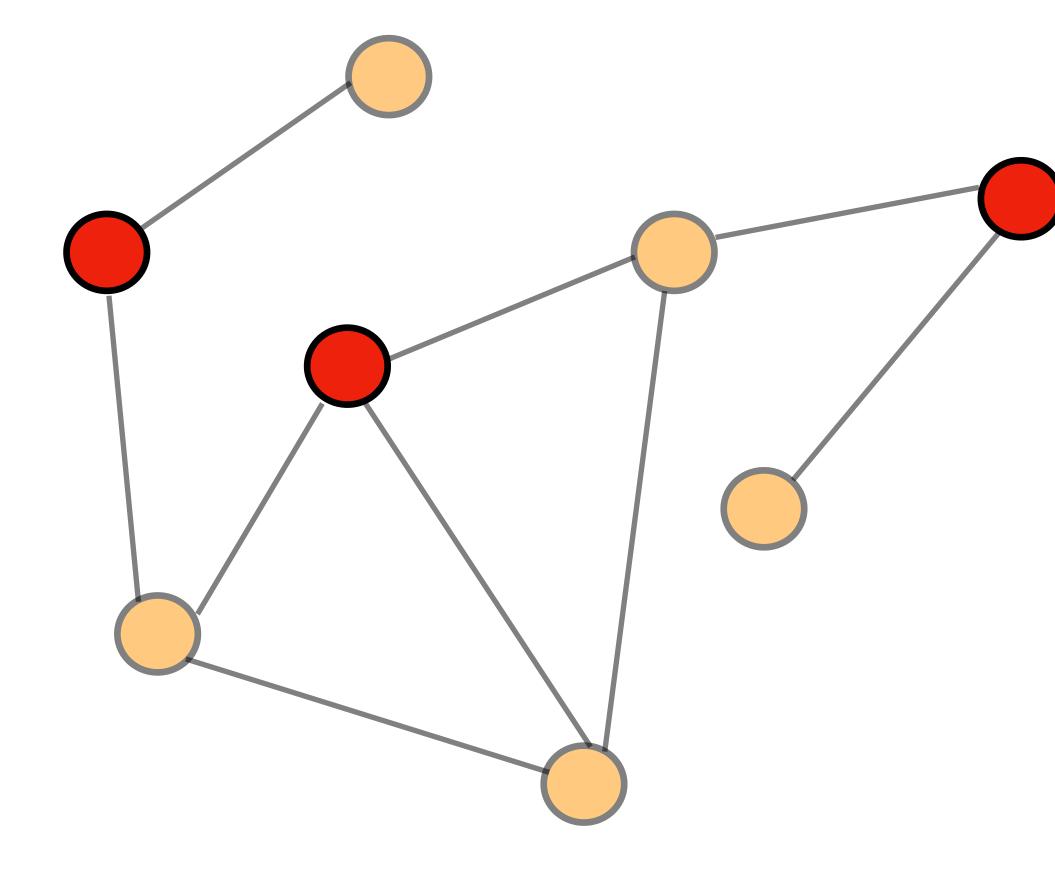
[Czumaj-Lacki-Madry-Mitrovic-Onak-Sankowski '18, Ghaffari-Gouleakis-Konrad-Mitrovic-Rubinfeld '18, Assadi-Bateni-Bernstein-Mirrokni-Stein '19, Behnezhad-Hajiaghayi-Harris '19]

Our Techniques

One Phrase Summary

Connection between Matching and Maximal Independent Sets

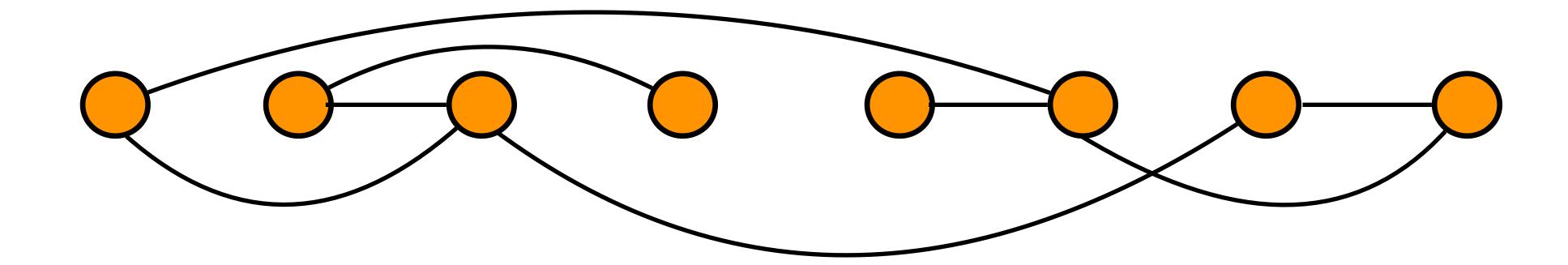
Maximal Independent Set (MIS)



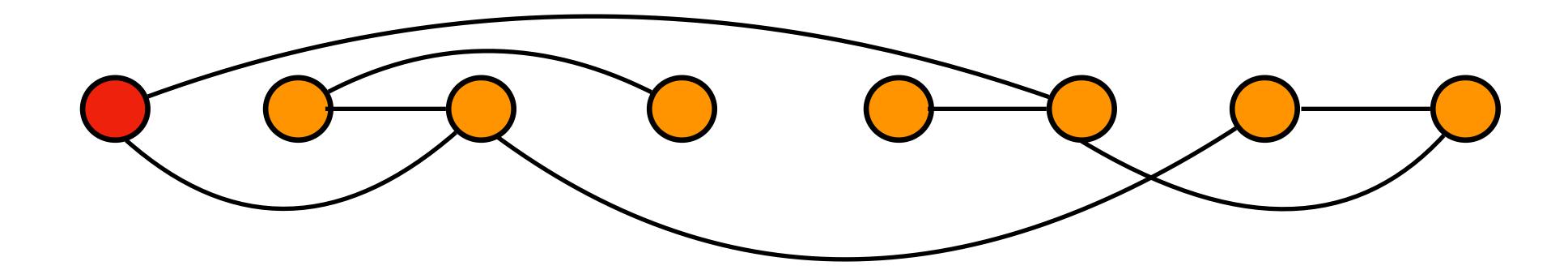
Any independent set which is NOT a proper subset of another independent set

Finding them is easy!

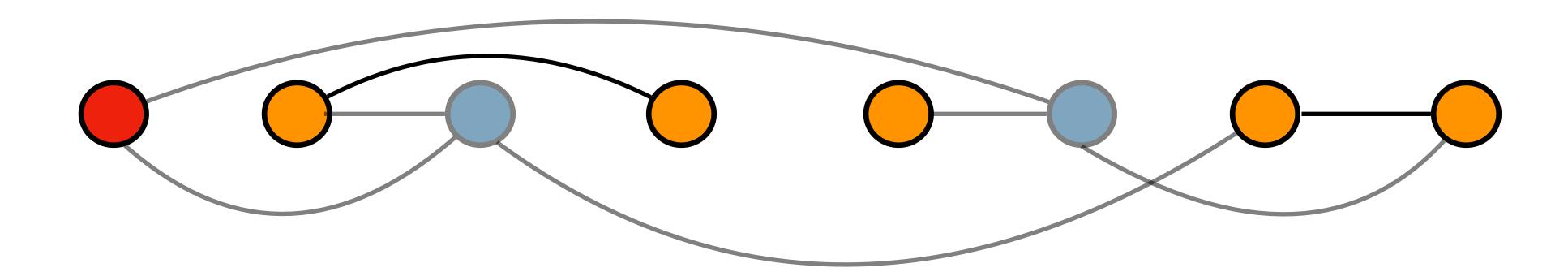
• Pick an arbitrary ordering of vertices



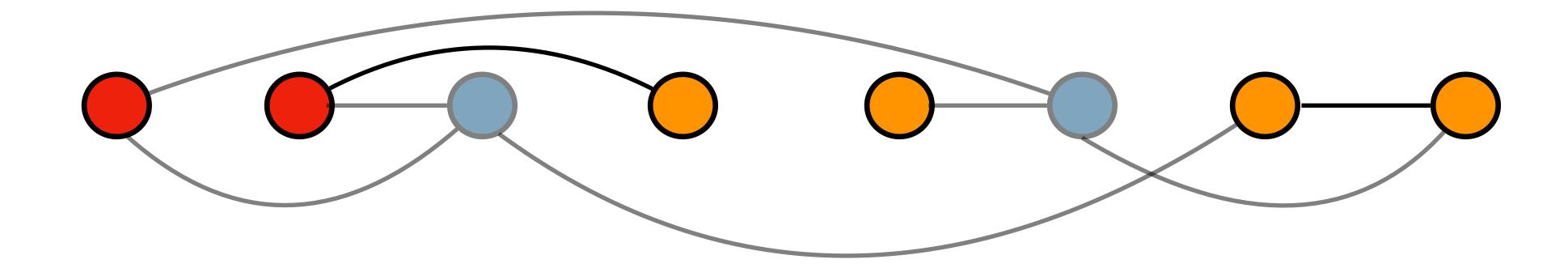
- Pick an arbitrary ordering of vertices
- Add the first existing vertex in the ordering to MIS



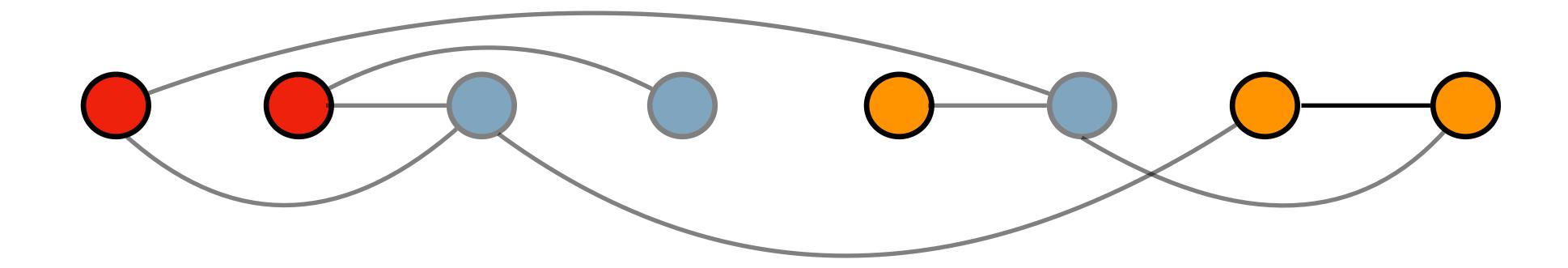
- Pick an arbitrary ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Remove its neighbors and their edges



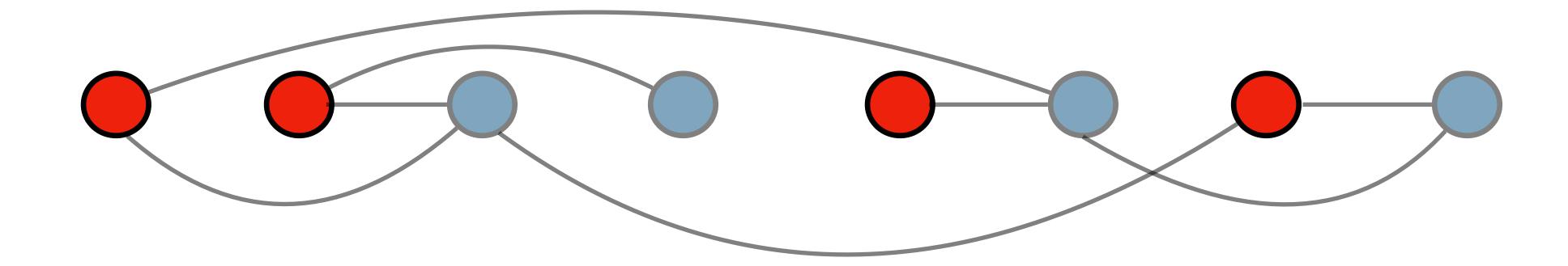
- Pick an arbitrary ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Remove its neighbors and their edges
- Repeat the process among remaining vertices



- Pick an arbitrary ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Remove its neighbors and their edges
- Repeat the process among remaining vertices

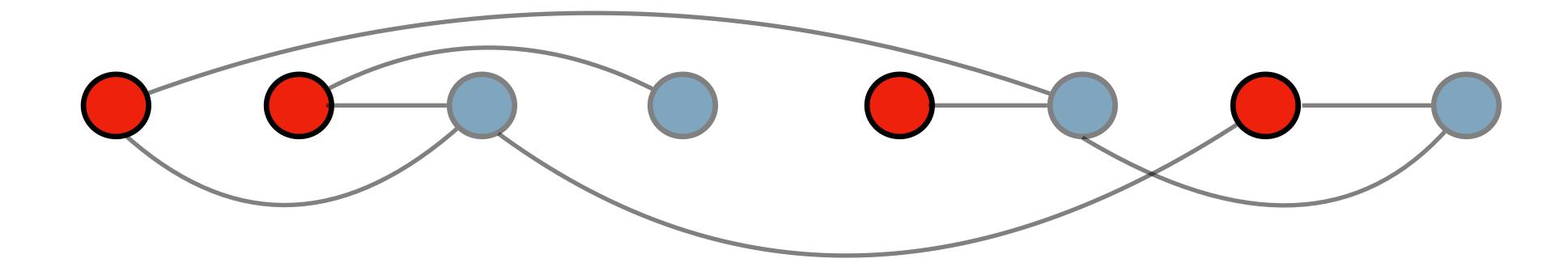


- Pick an arbitrary ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Remove its neighbors and their edges
- Repeat the process among remaining vertices



Random Greedy MIS (RGMIS)

- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Remove its neighbors and their edges
- Repeat the process among remaining vertices



Random Greedy MIS (RGMIS)

- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Remove its neighbors and their edges
- Repeat the process among remaining vertices

Can be implemented in $O(\log \log n)$ -passes in O(n) space [Ahn-Cormode-Guha-McGregor-Wirth '15] This is tight [Assadi-Konrad-Naidu-<u>S</u> '24]

Back to Our Results ...

MIS in $O(\log \log n)$ passes [Ahn-Cormode-Guha-McGregor-Wirth '15]

Machinery developed to prove $\Omega(\log \log n)$ pass lower bound for MIS [Assadi-Konrad-Naidu-<u>S</u> '24] **Insertion Only Streams**

$O(\log \log n)$ upper bound for matchings in dynamic streams

 $\Omega(\log \log n)$ lower bound for matchings in dynamic streams

- Fractional matching and Vertex Cover
- Connections to MIS
- Our reduction to MIS
- Challenges of implementation

Plan for the rest of the talk

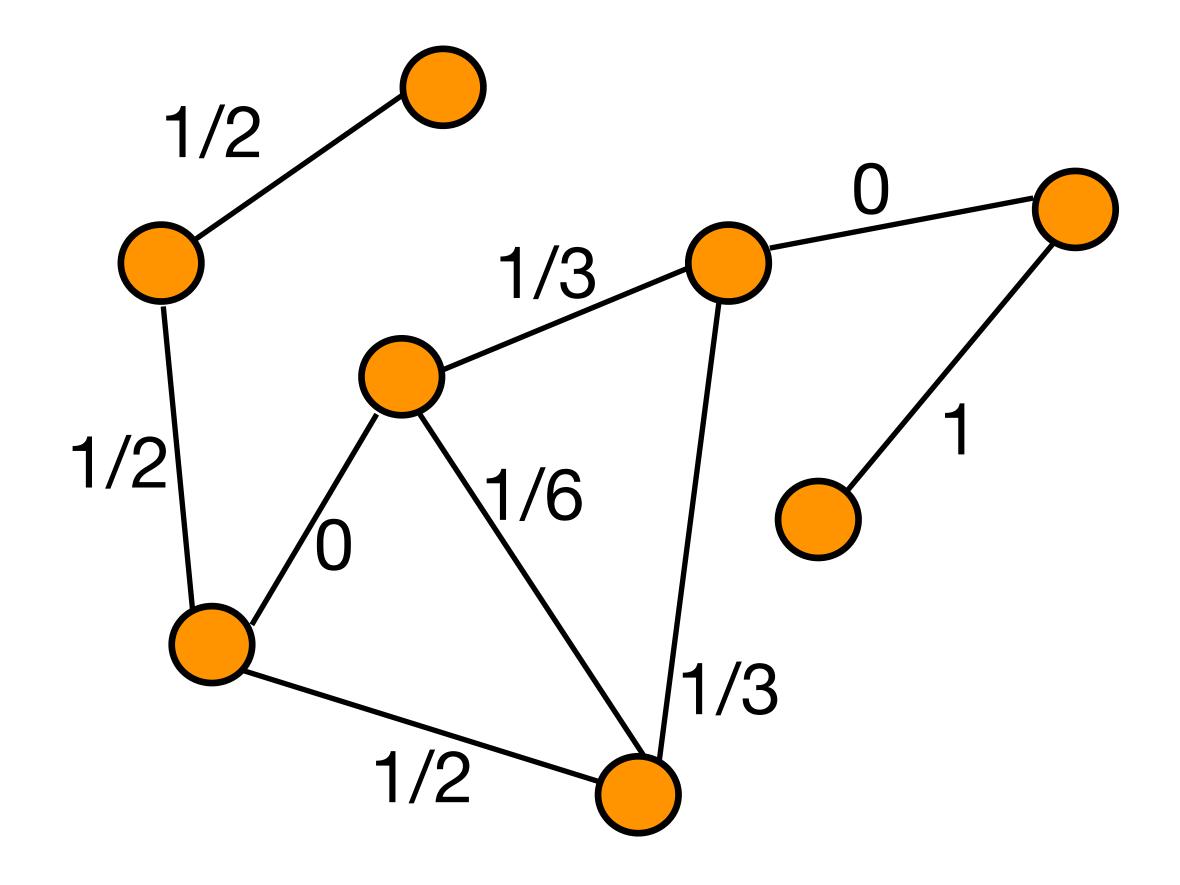
- Fractional matching and Vertex Cover
- Connections to MIS
- Our reduction to MIS
- Challenges of implementation

Plan for the rest of the talk

Fractional Matching

$\max \sum_{e} x_{e}$ For all vertices u, $\sum_{e \ni u} x_{e} \le 1$

With $0 \le x_e \le 1$ for all edges



Fractional Matching

max x_e For all vertices u, $\sum x_e \leq 1$ $e \ni u$

With $0 \leq x_e \leq 1$ for all edges

Swallows integrality gap

Sample each edge w.p. $x_{\rho} \cdot O(\log n)$ independently

Set of sampled edges contains Q(1)-approx integral matching

Fractional Matching

$\max \sum_{e} x_{e}$ For all vertices u, $\sum_{e \ni u} x_{e} \le 1$

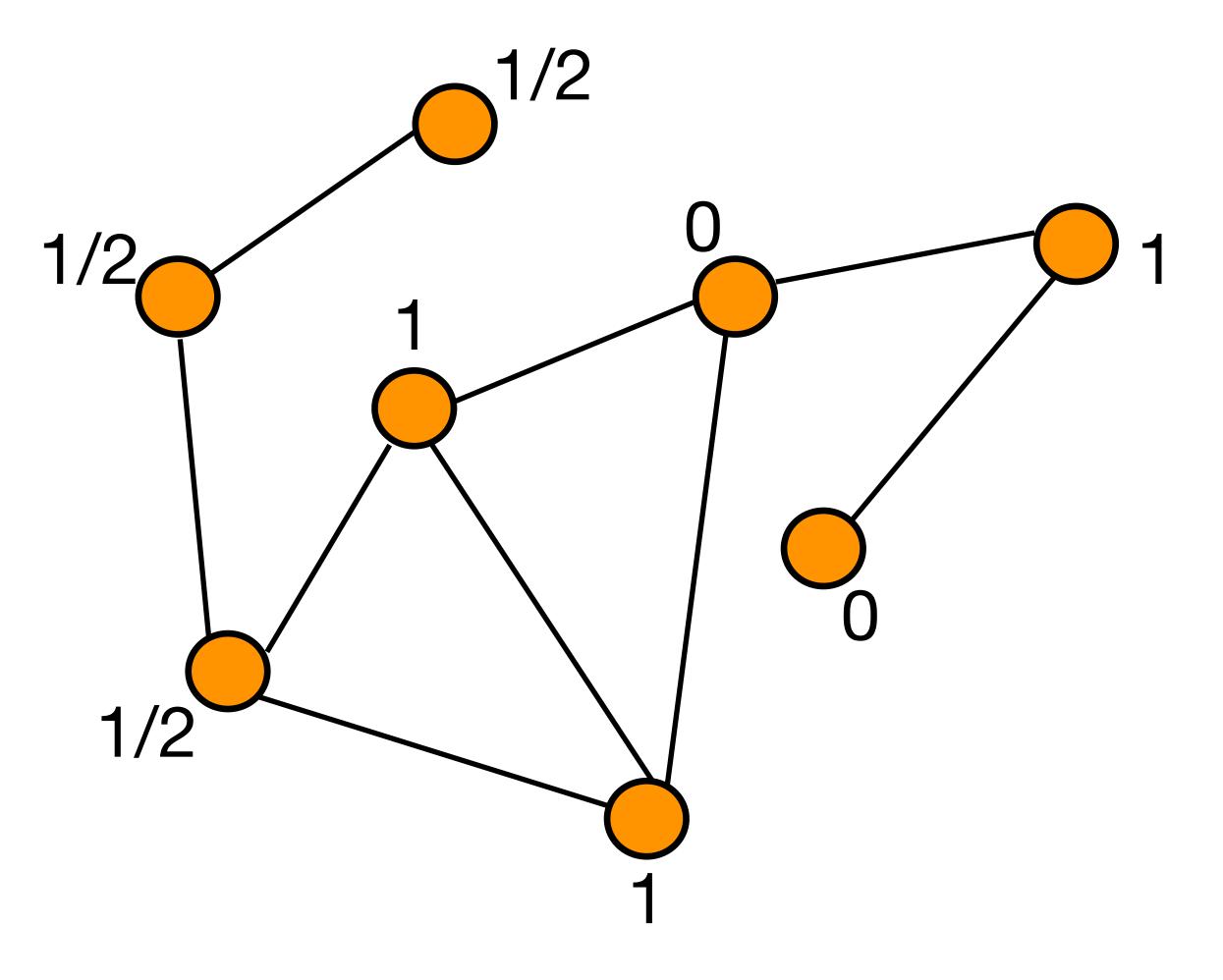
With $0 \le x_e \le 1$ for all edges

We try to find only a fractional matching

Dual of Fractional Matching - Vertex Cover (VC)

$\min \sum_{u} y_{u}$ For all edges $(u, v), y_{u} + y_{v} \ge 1$

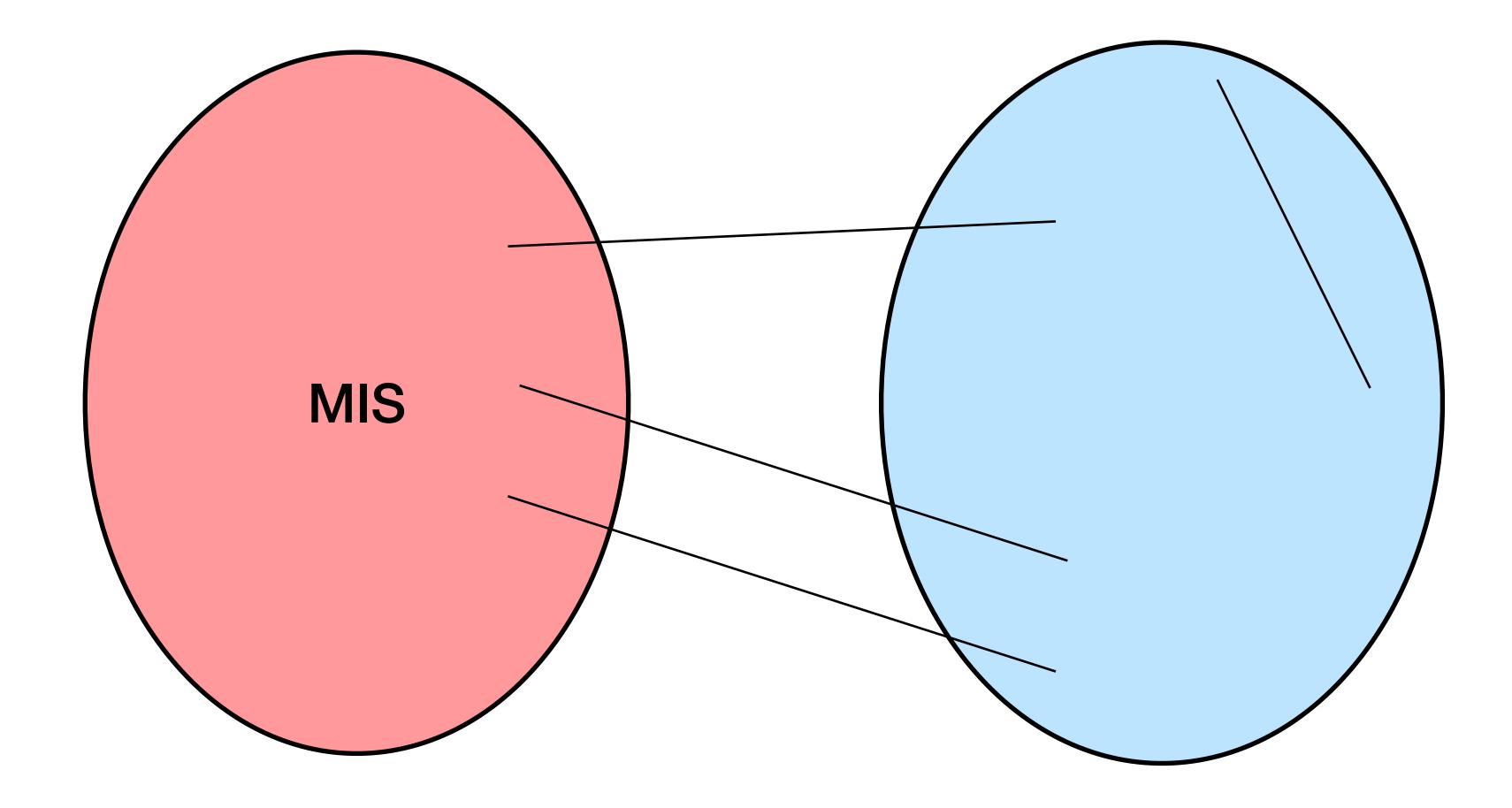
With $0 \le y_u \le 1$ for all vertices



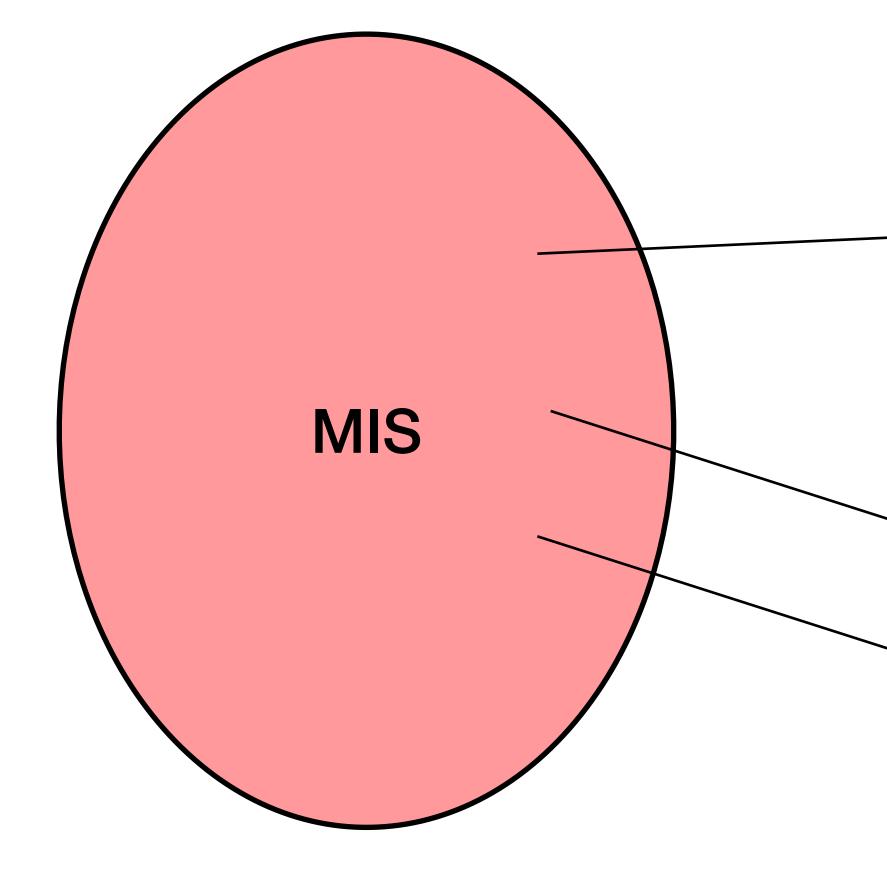
- Fractional matching and Vertex Cover
- Connections to MIS
- Our reduction to MIS
- Challenges of implementation

Plan for the rest of the talk

(Obvious) Connection to MIS?

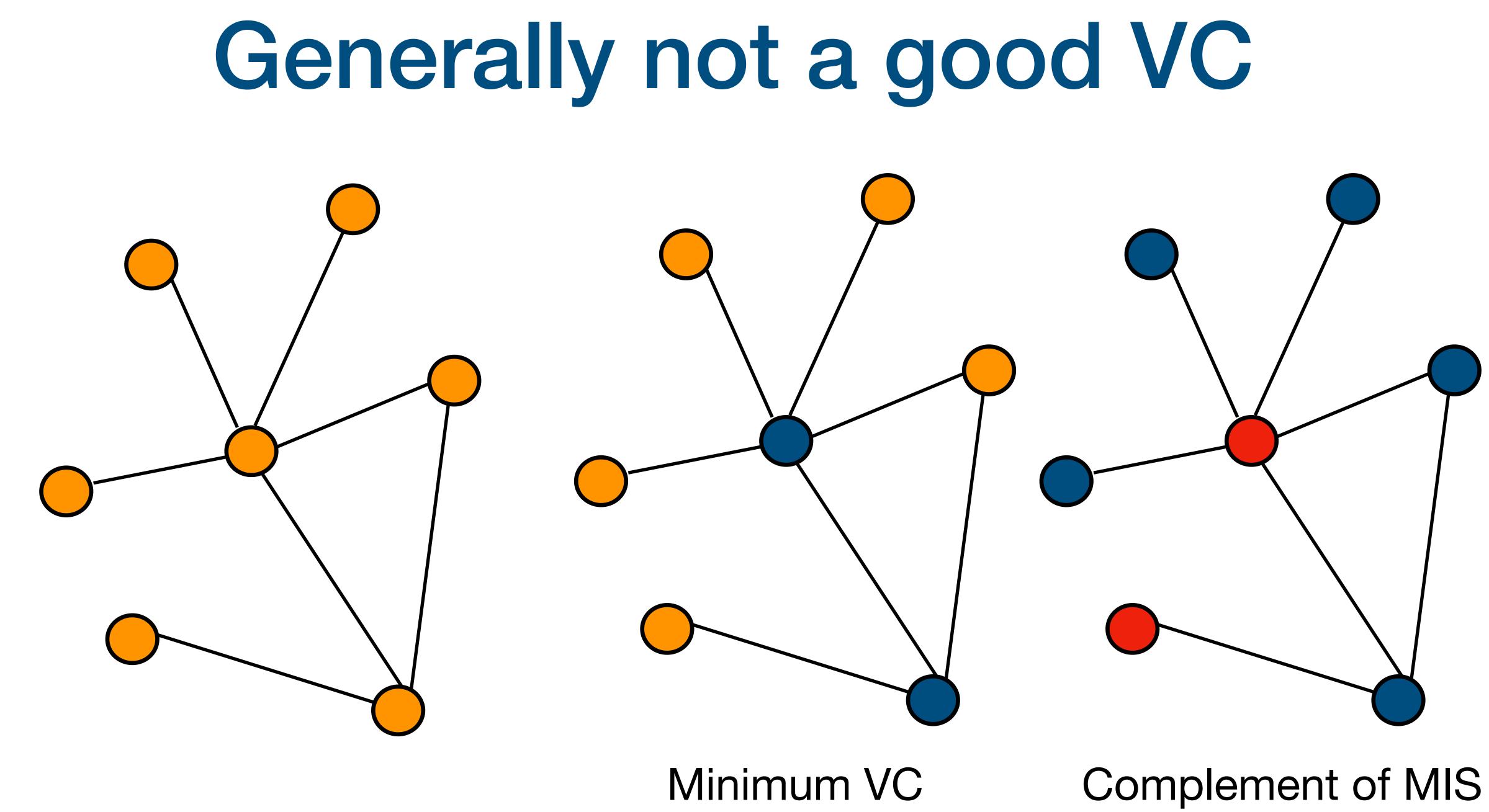


(Obvious) Connection to MIS?



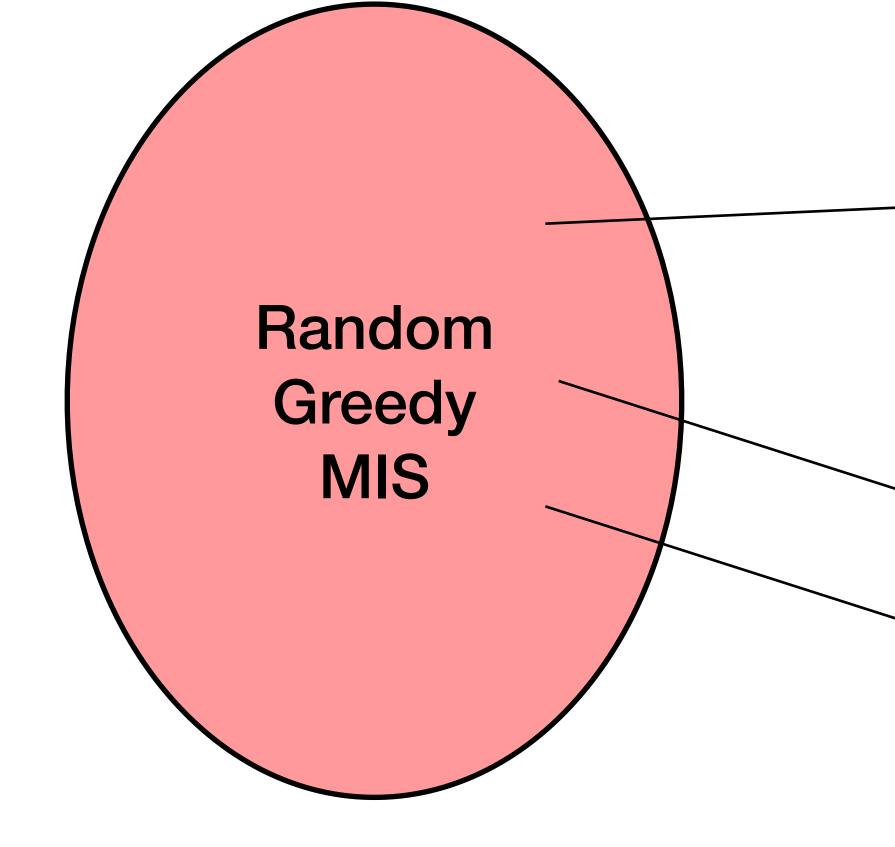
Vertex Cover

How good a vertex cover?



How about Complement of **RGMIS?**

Random Greedy MIS (RGMIS) - 2-apx VC



[Veldt '24]

2-apx VC in expectation

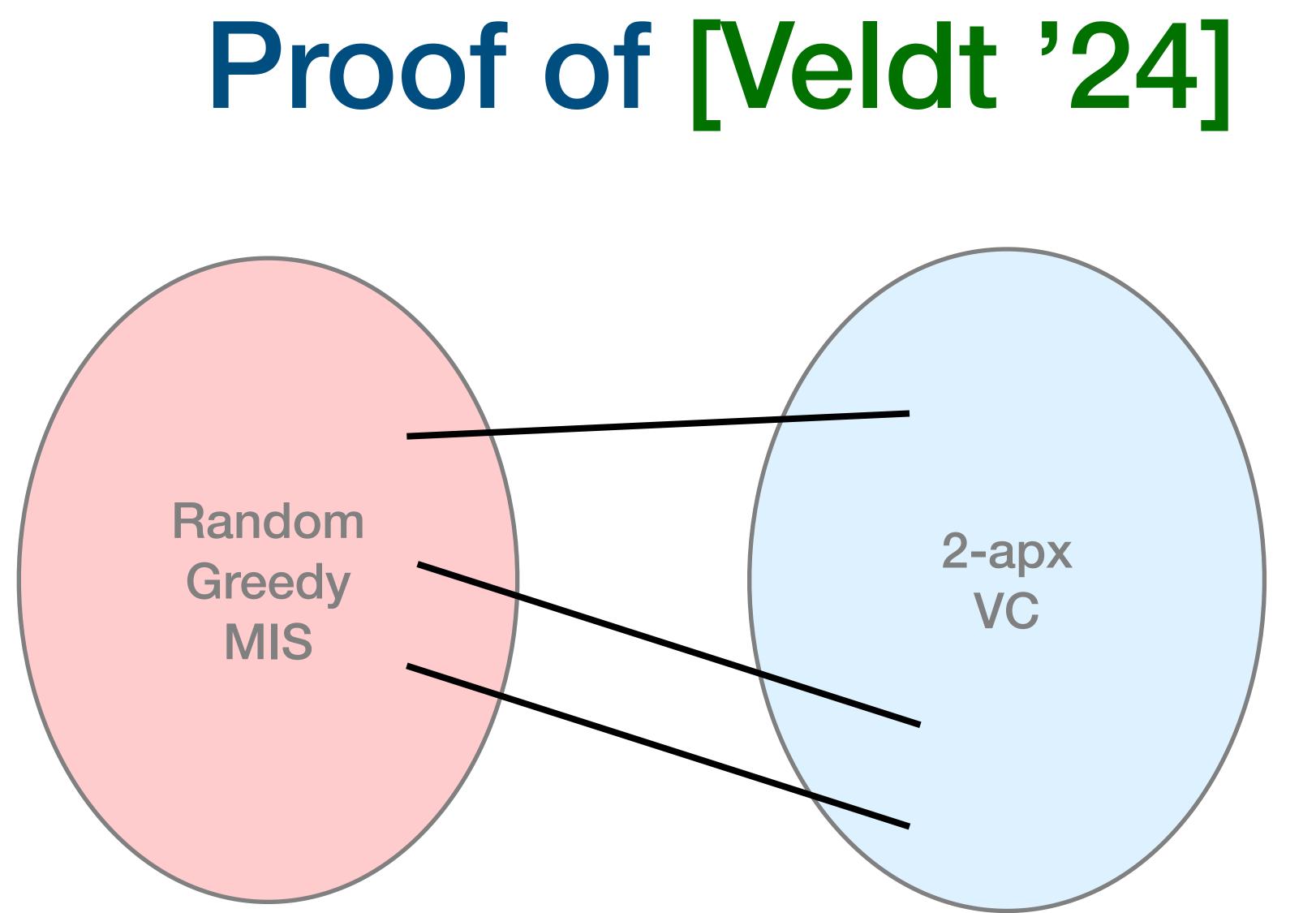
- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Remove its neighbors and their edges
- Repeat the process among remaining vertices

- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Add its neighbors to VC and remove their edges
- Repeat the process among remaining vertices

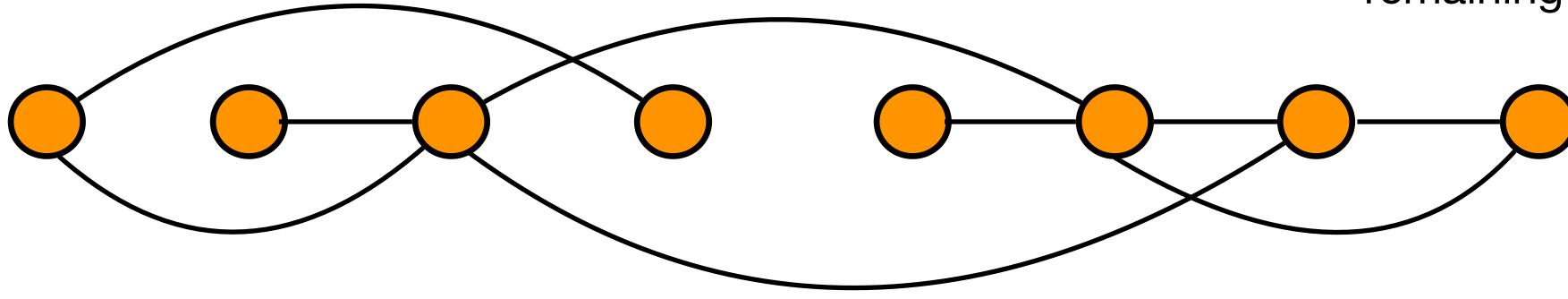
- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Add its neighbors to VC and remove their edges
- Repeat the process among remaining vertices

[Veldt '24]

This gives a 2-approx VC in expectation! By an application of LP Duality



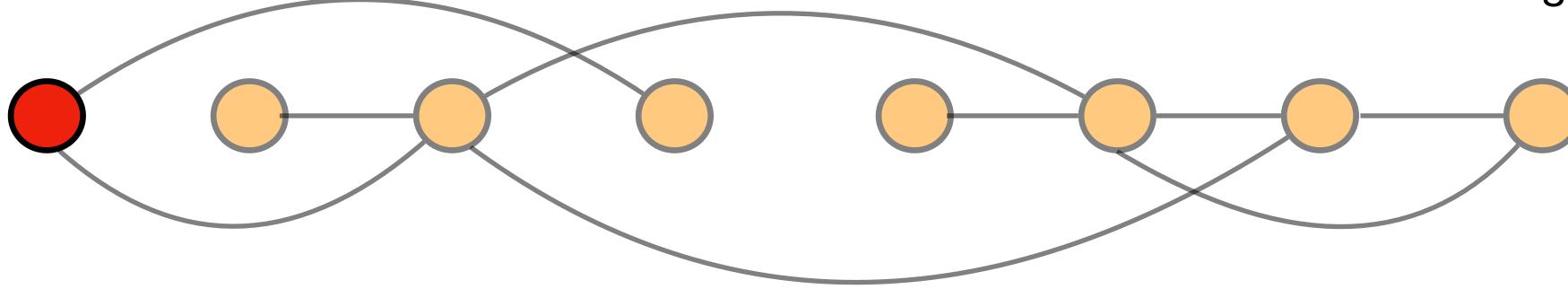
Process vertices in the order of the permutation



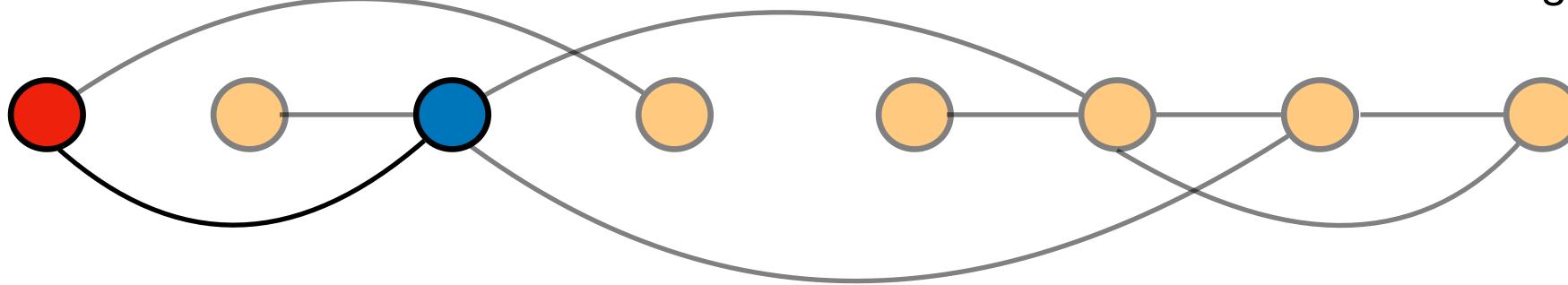
Proof of [Veldt '24]

• Pick a random ordering of vertices

- Add the first existing vertex in the ordering to MIS
- Add its neighbors to VC and remove their edges
- Repeat the process among remaining vertices

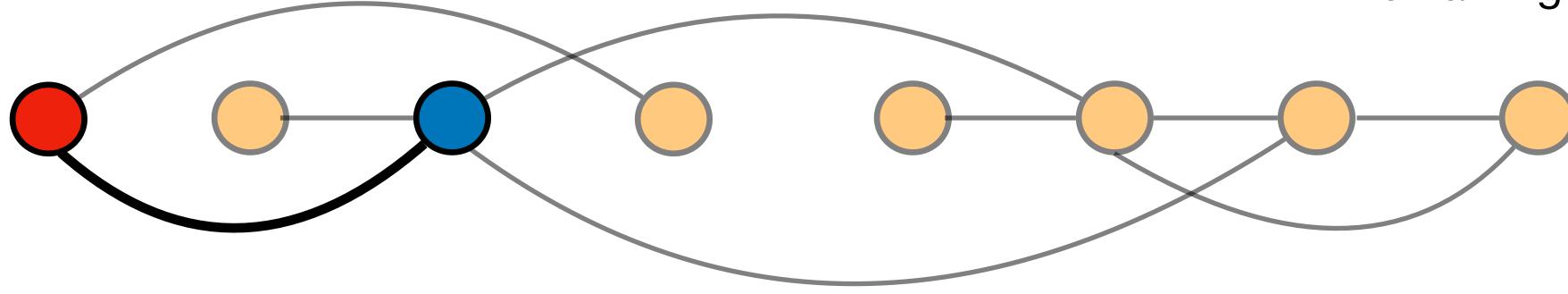


- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Add its neighbors to VC and remove their edges
- Repeat the process among remaining vertices



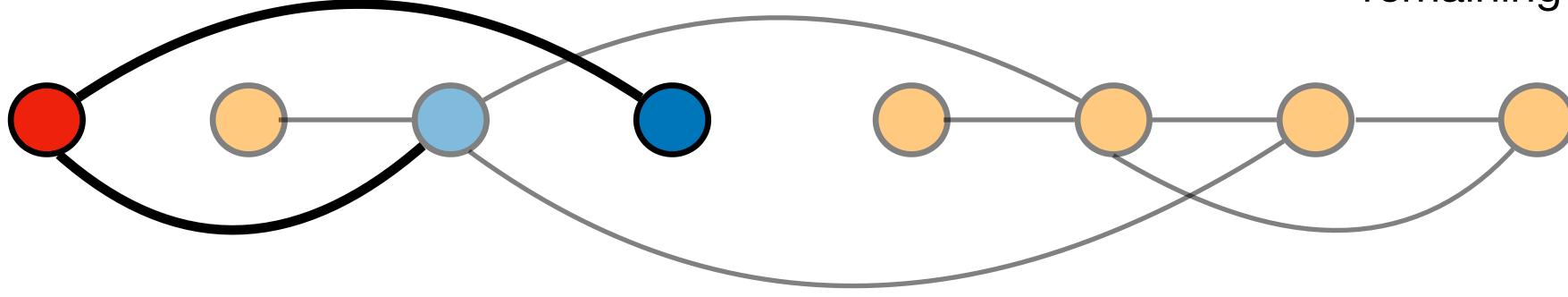
- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Add its neighbors to VC and remove their edges
- Repeat the process among remaining vertices

Edge which sends the blue vertex to VC



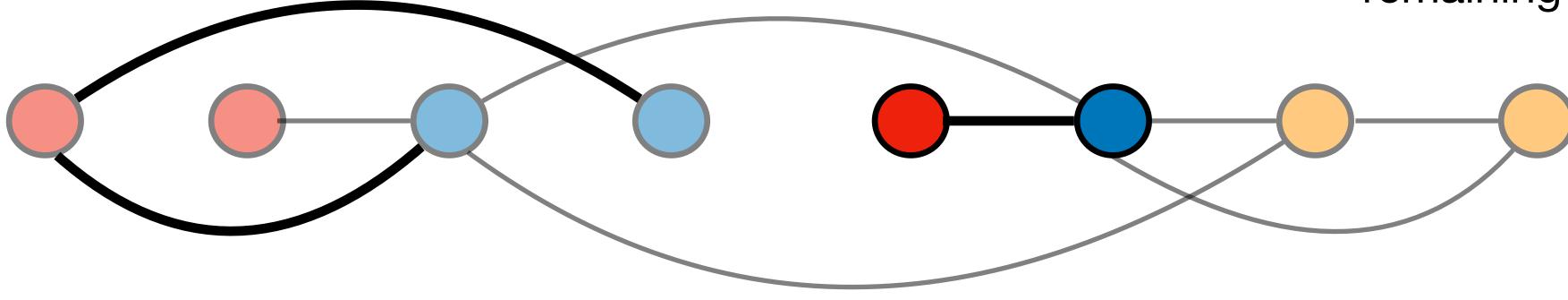
- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Add its neighbors to VC and remove their edges
- Repeat the process among remaining vertices

Edges which send blue vertices to VC



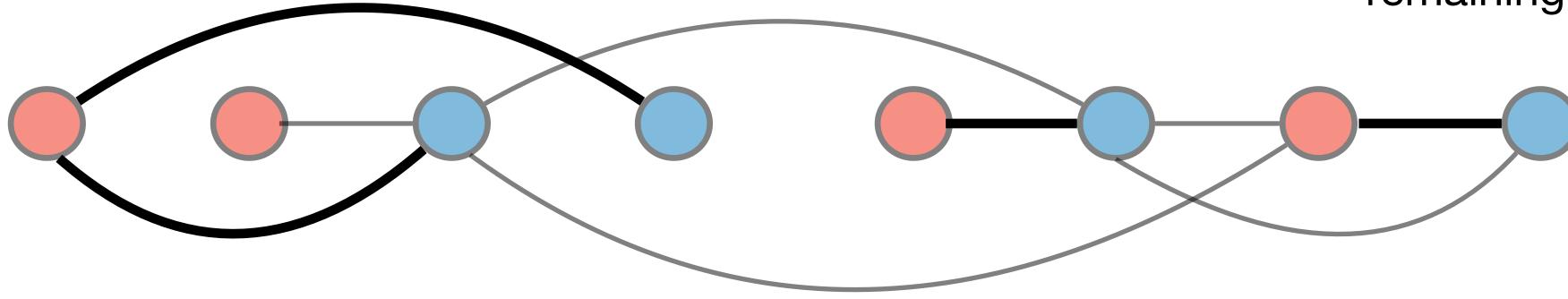
- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Add its neighbors to VC and remove their edges
- Repeat the process among remaining vertices

Edges which send blue vertices to VC

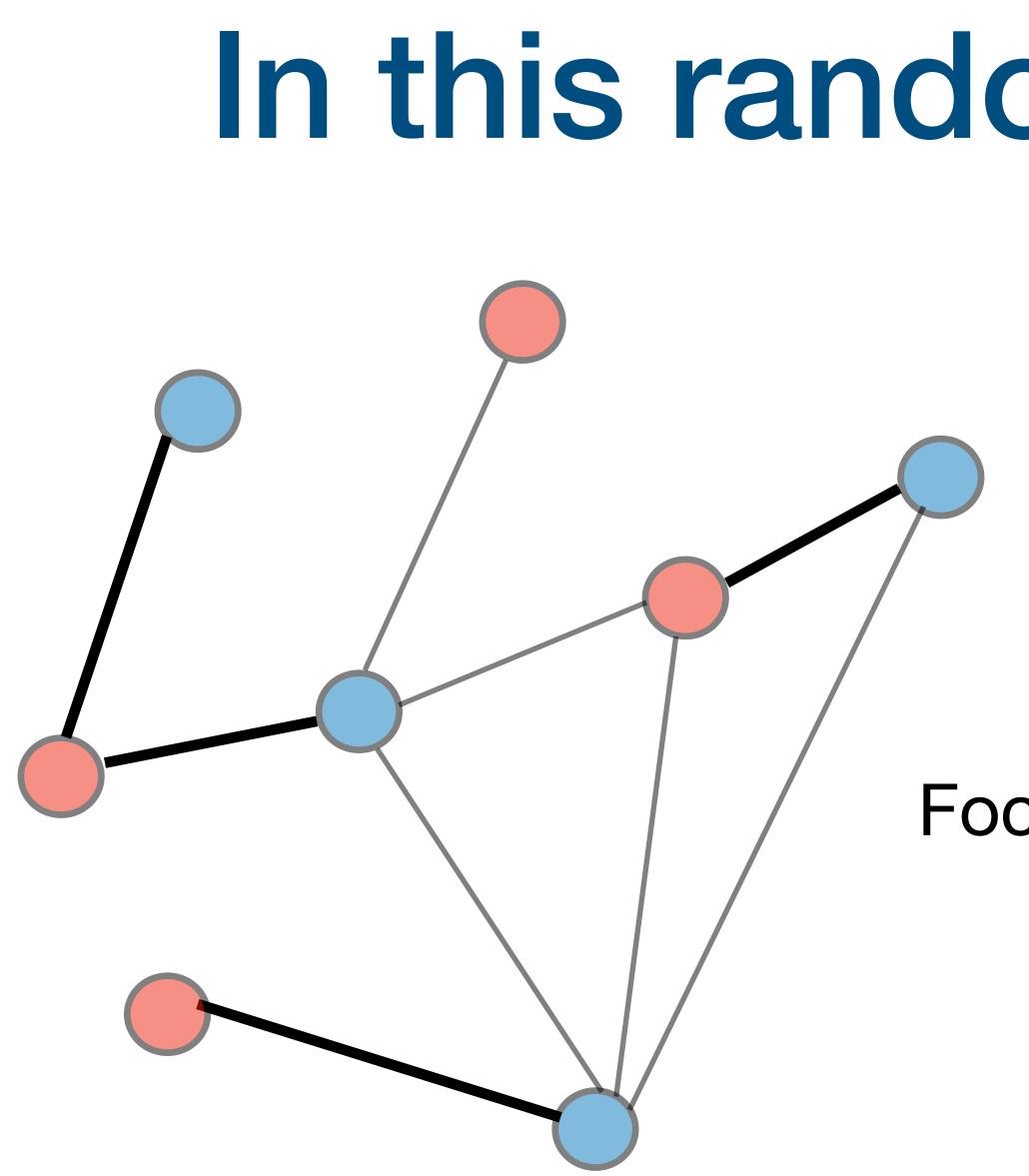


- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Add its neighbors to VC and remove their edges
- Repeat the process among remaining vertices

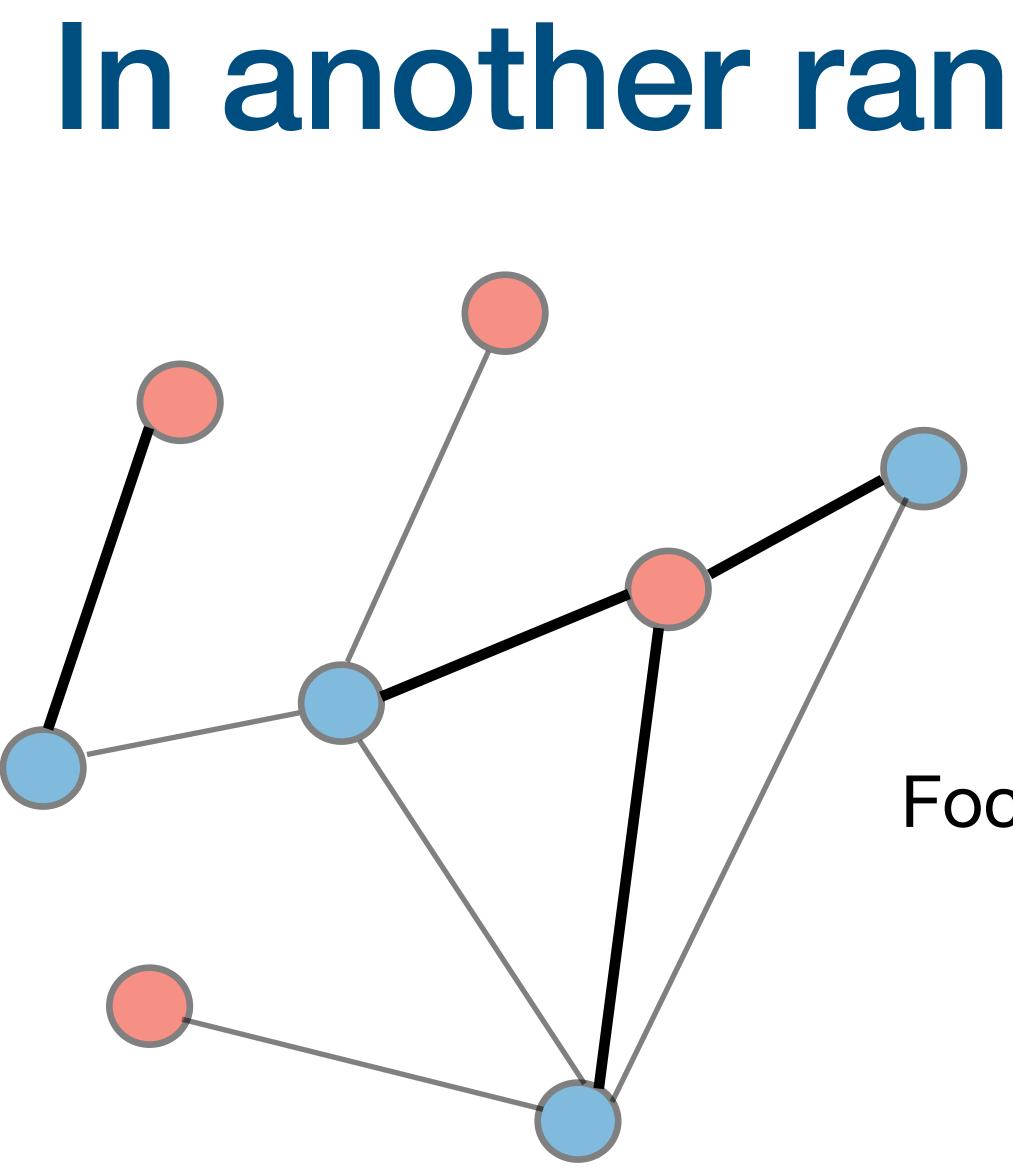
After we process:



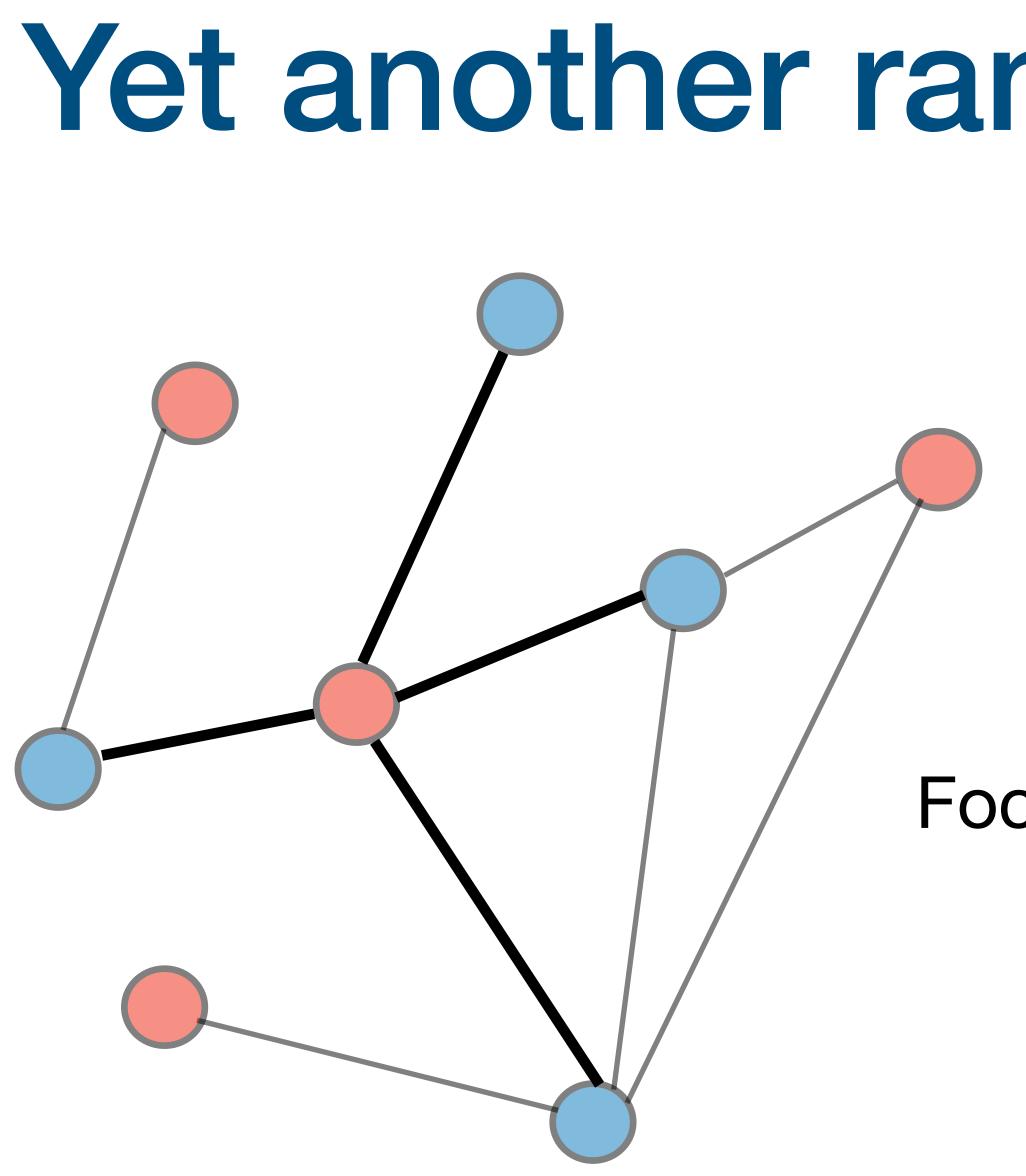
- Pick a random ordering of vertices
- Add the first existing vertex in the ordering to MIS
- Add its neighbors to VC and remove their edges
- Repeat the process among remaining vertices



In this random ordering ...

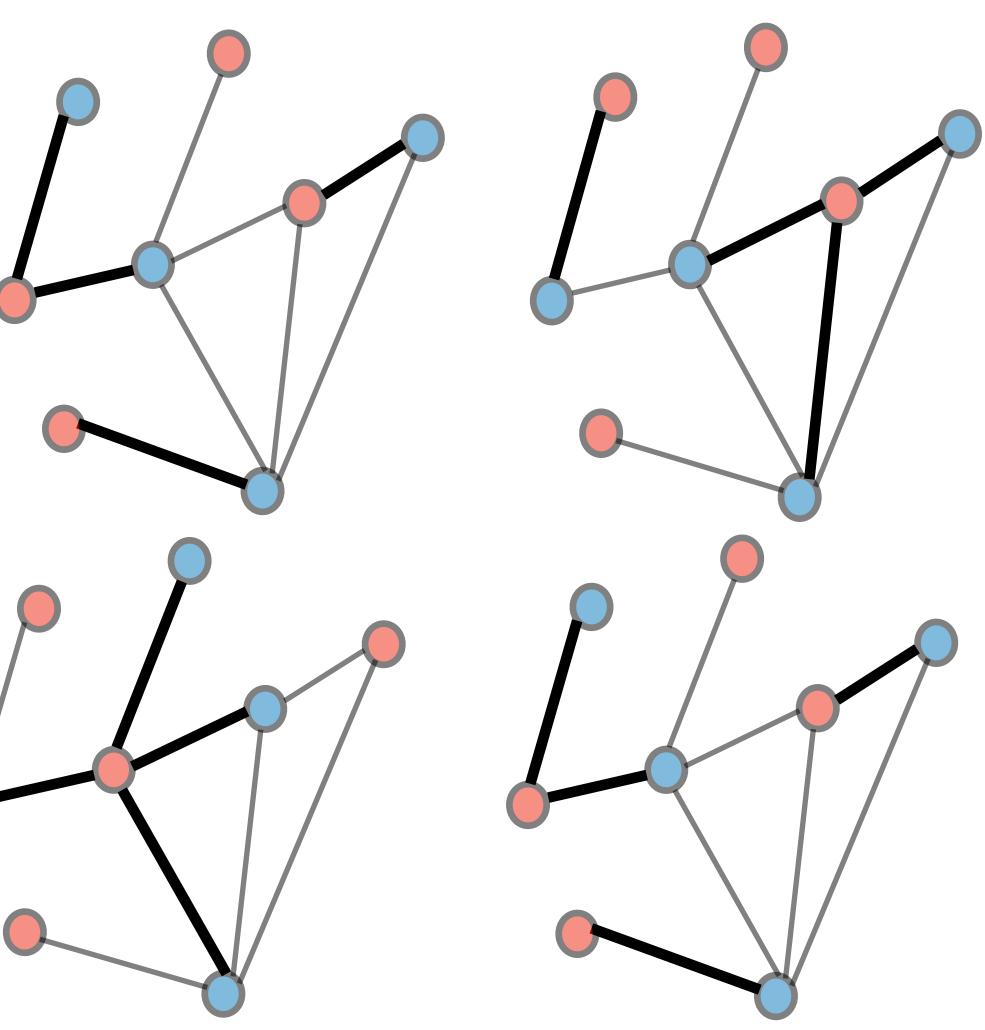


In another random ordering ...



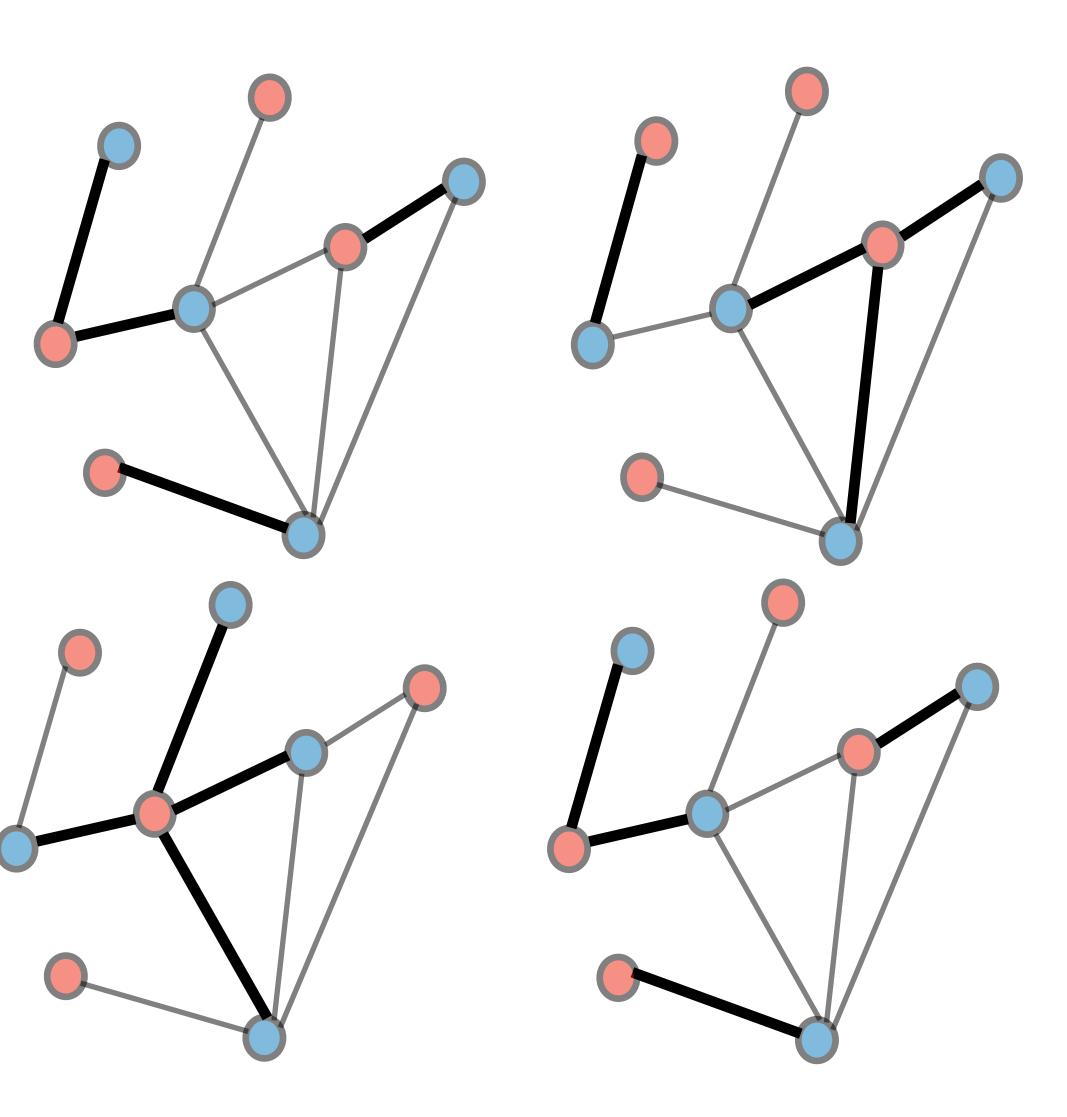
Yet another random ordering ...

p_e: Probability of edge sending a vertex to VC (over the random ordering)



p_e: Probability of edge sending a vertex to VC (over the random ordering)

Expected size of VC = $\sum p_e$



RGMIS to Fractional Matching

Expected size of VC = $\sum_{e} p_{e}$

$x_e = p_e/2$ is a fractional matching [Veldt '24]

$\max \sum_{e} x_{e}$ For all vertices u, $\sum_{e \ni u} x_{e} \le 1$

With $0 \le x_e \le 1$ for all edges

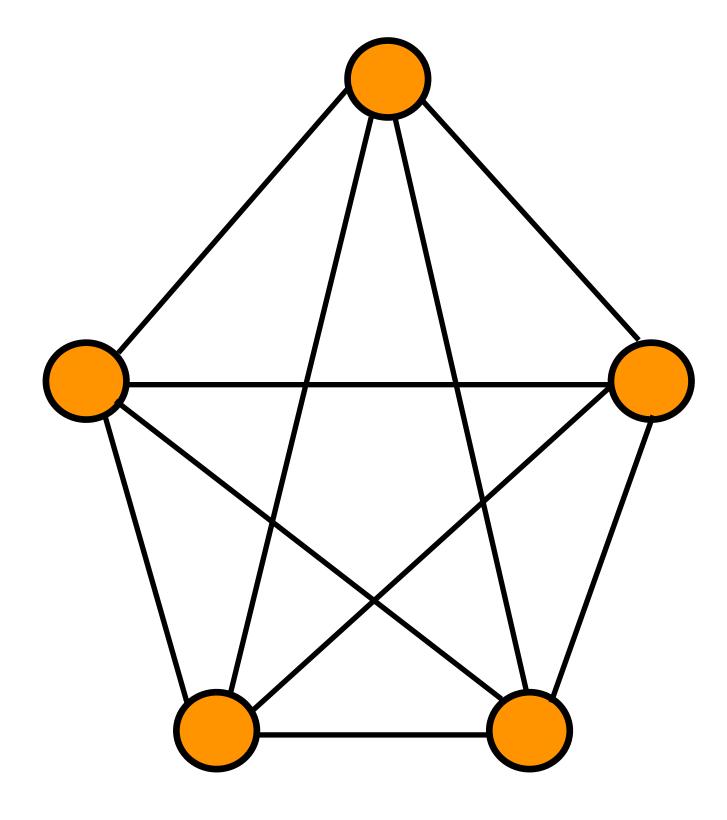
So are we done?

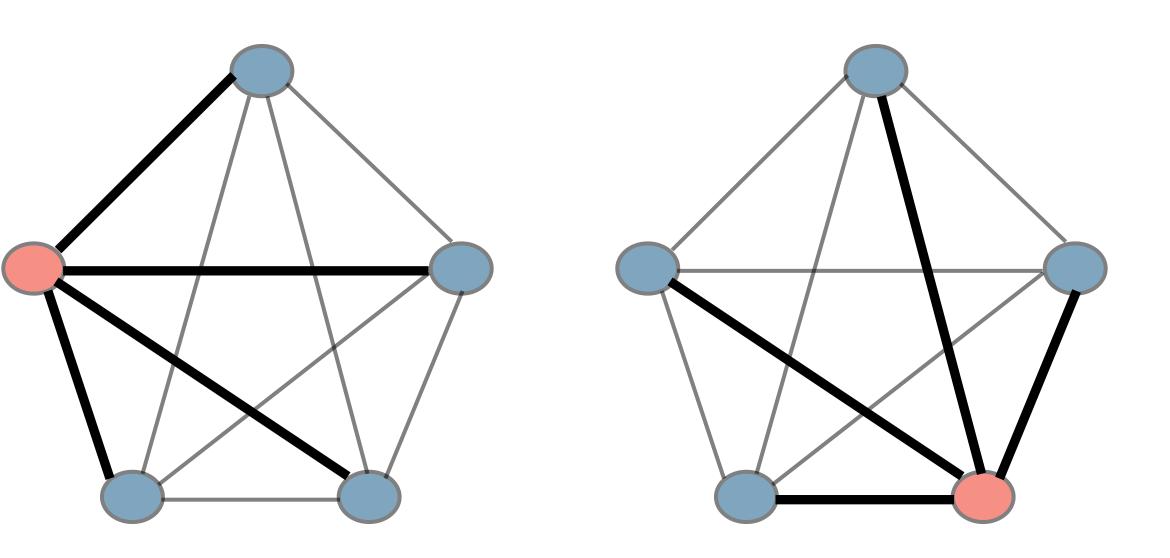
- Find MIS using [ACGMW '15] in $O(\log \log n)$ passes
- Find the edges which are sending vertices to VC each edge is sampled here with probability $2 \cdot x_{\rho}$
- Try to find a large matching inside them

Sampling Process is not independent!

Sampling according to fractional matching is enough to find -approx integral matching

The Issue of the Star





Edges we get from each run of MIS are a bunch of stars

- Fractional matching and Vertex Cover
- Connections to MIS
- Our reduction to MIS
- Challenges of implementation

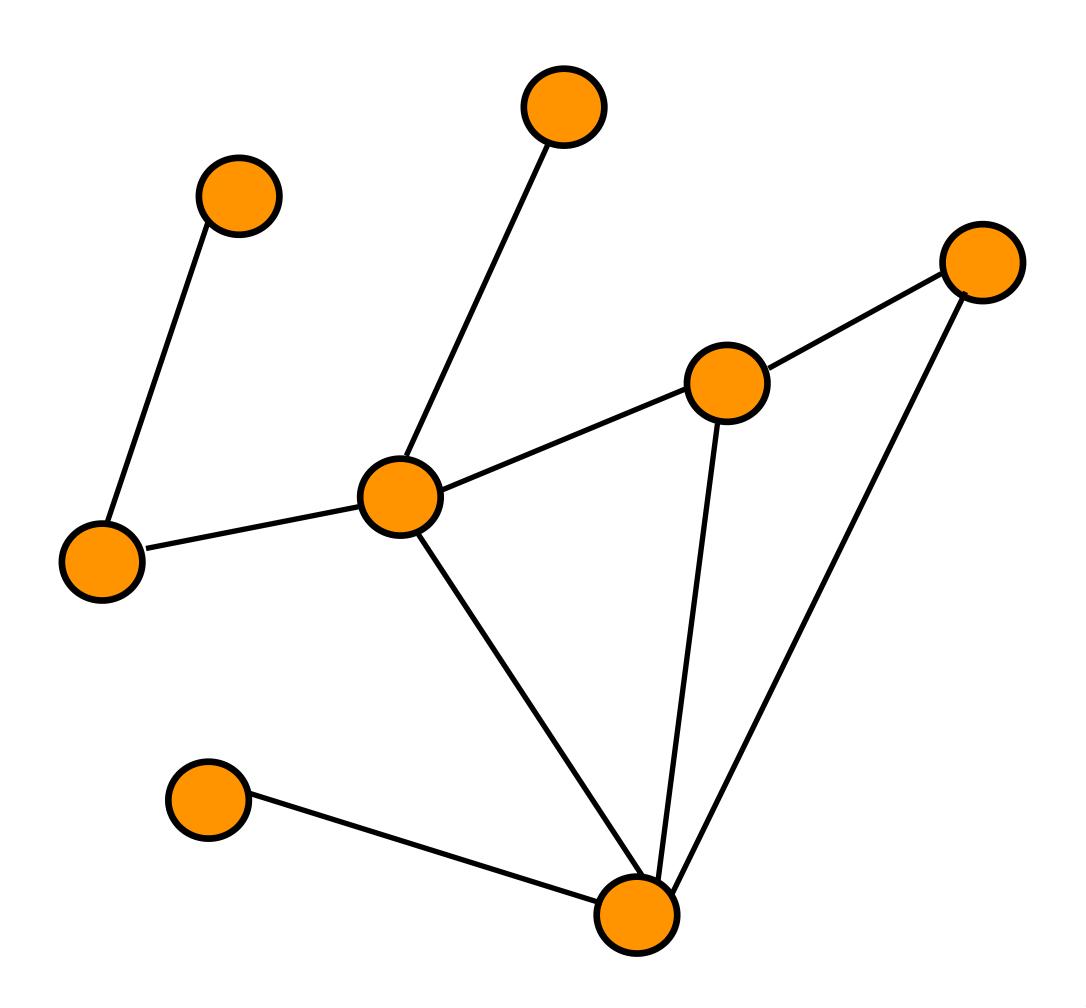
Plan for the rest of the talk

- Fractional matching and Vertex Cover
- Connections to MIS
- Our reduction to MIS (from one run of RGMIS algorithm)
- Challenges of implementation

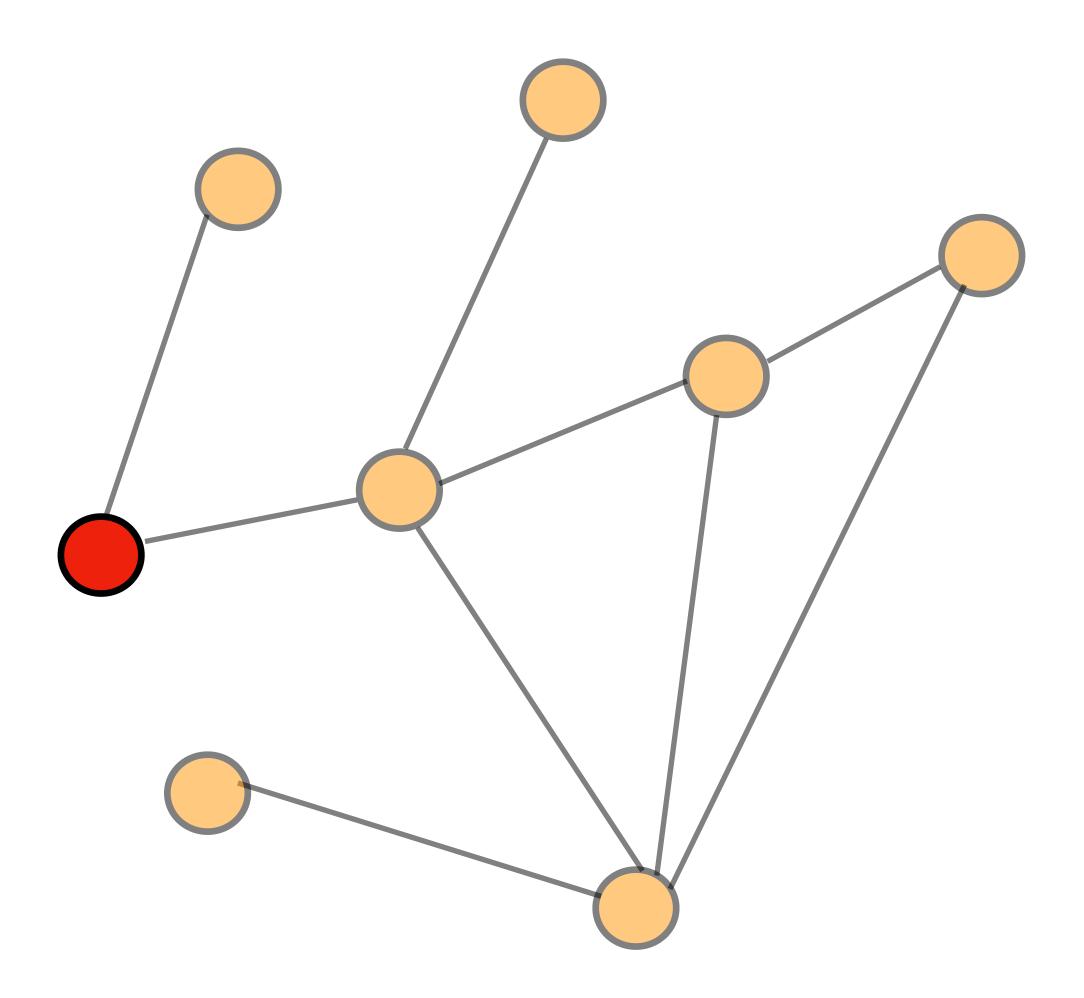
Plan for the rest of the talk

Whenever a vertex goes to VC, focus on edges to the remaining graph.

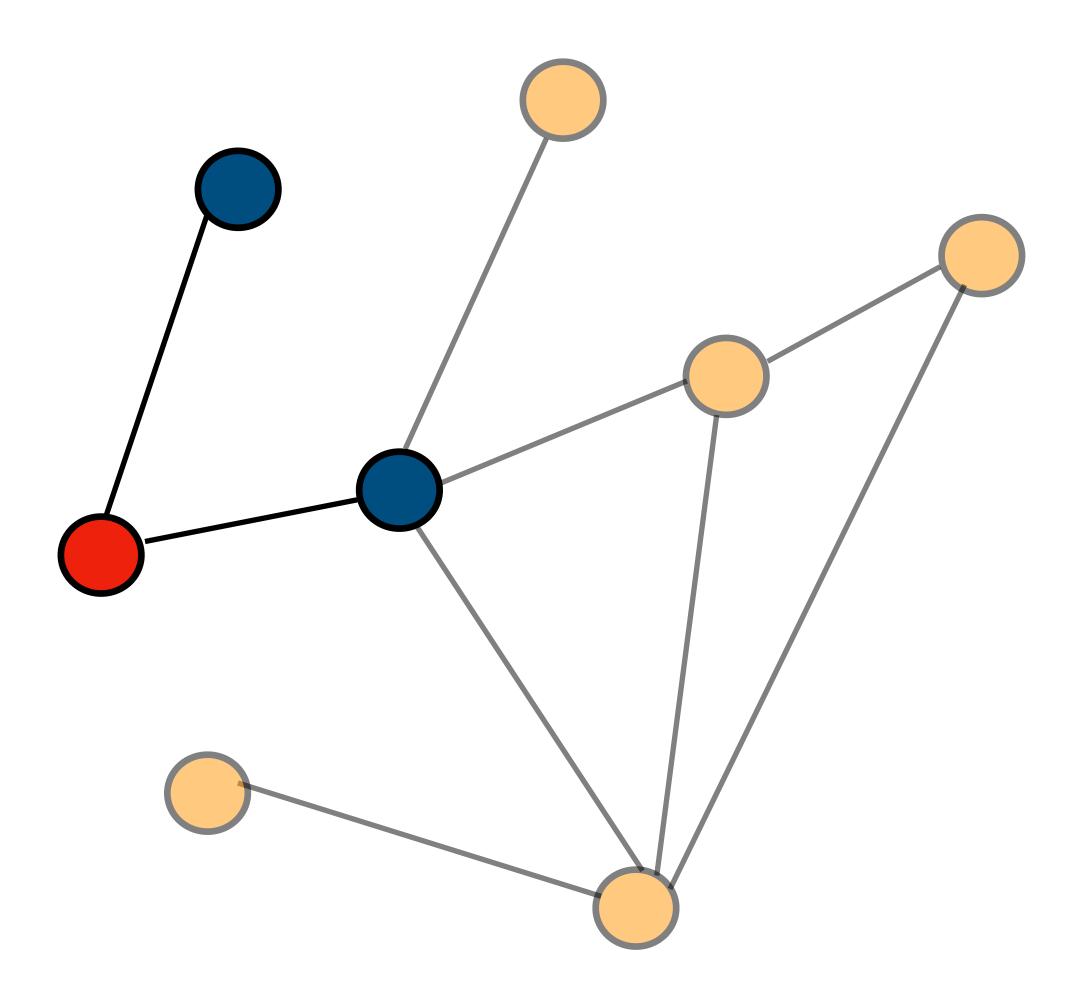
Our Reduction



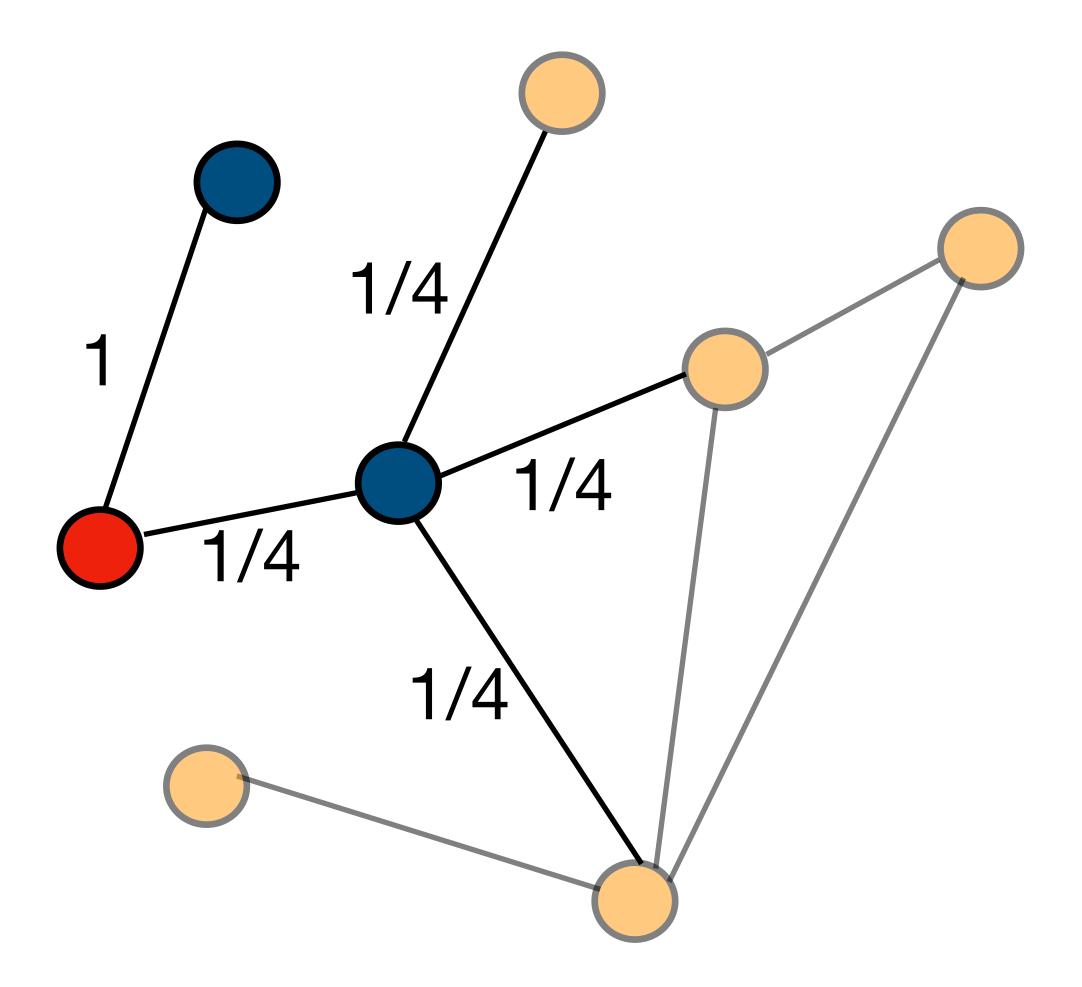
When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.



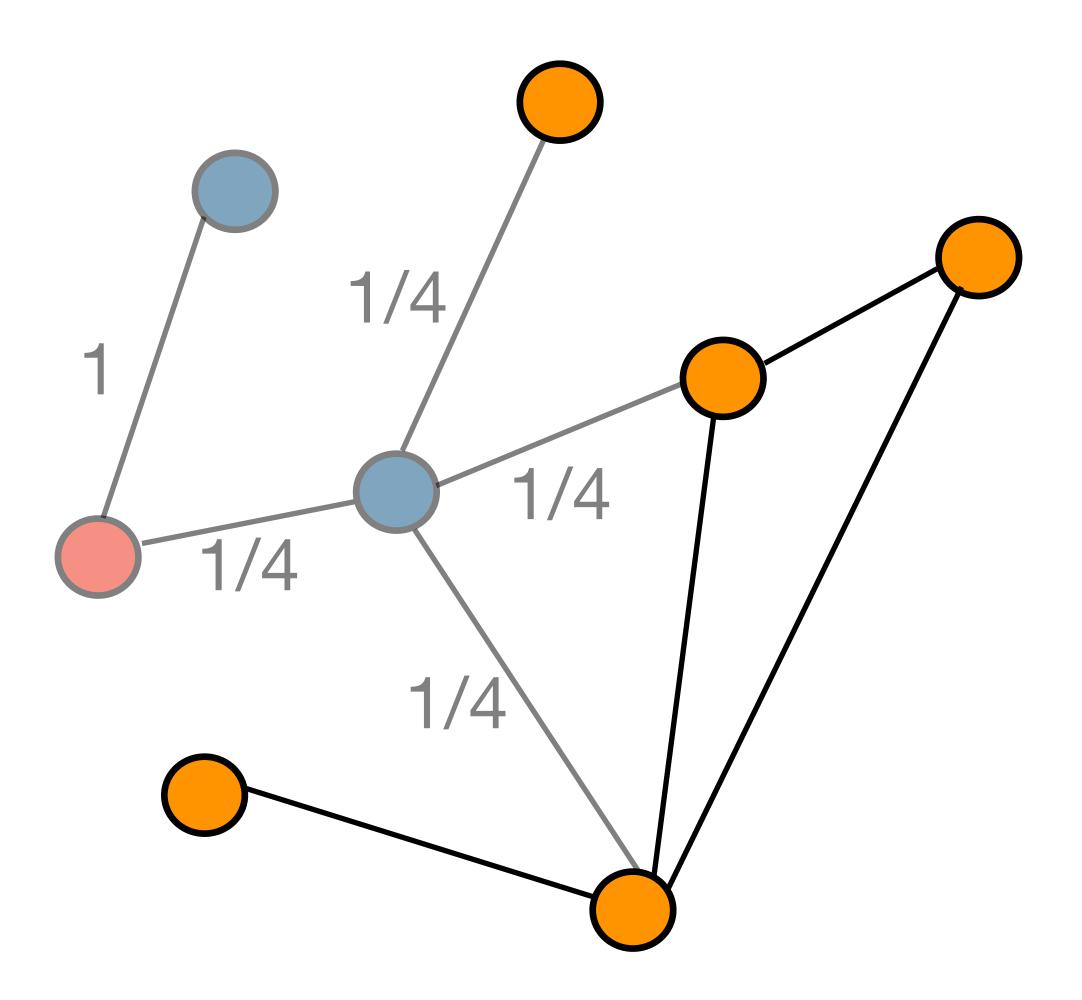
When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.



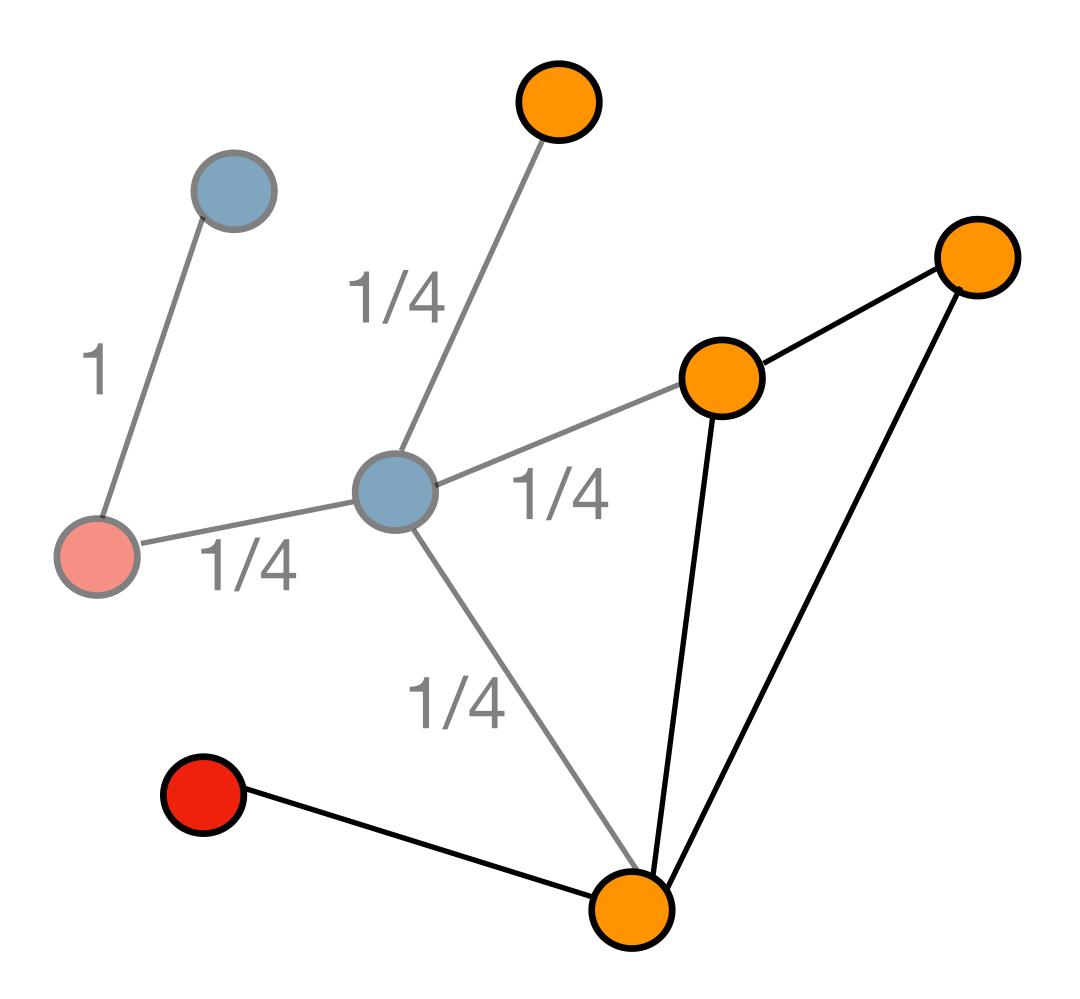
When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.



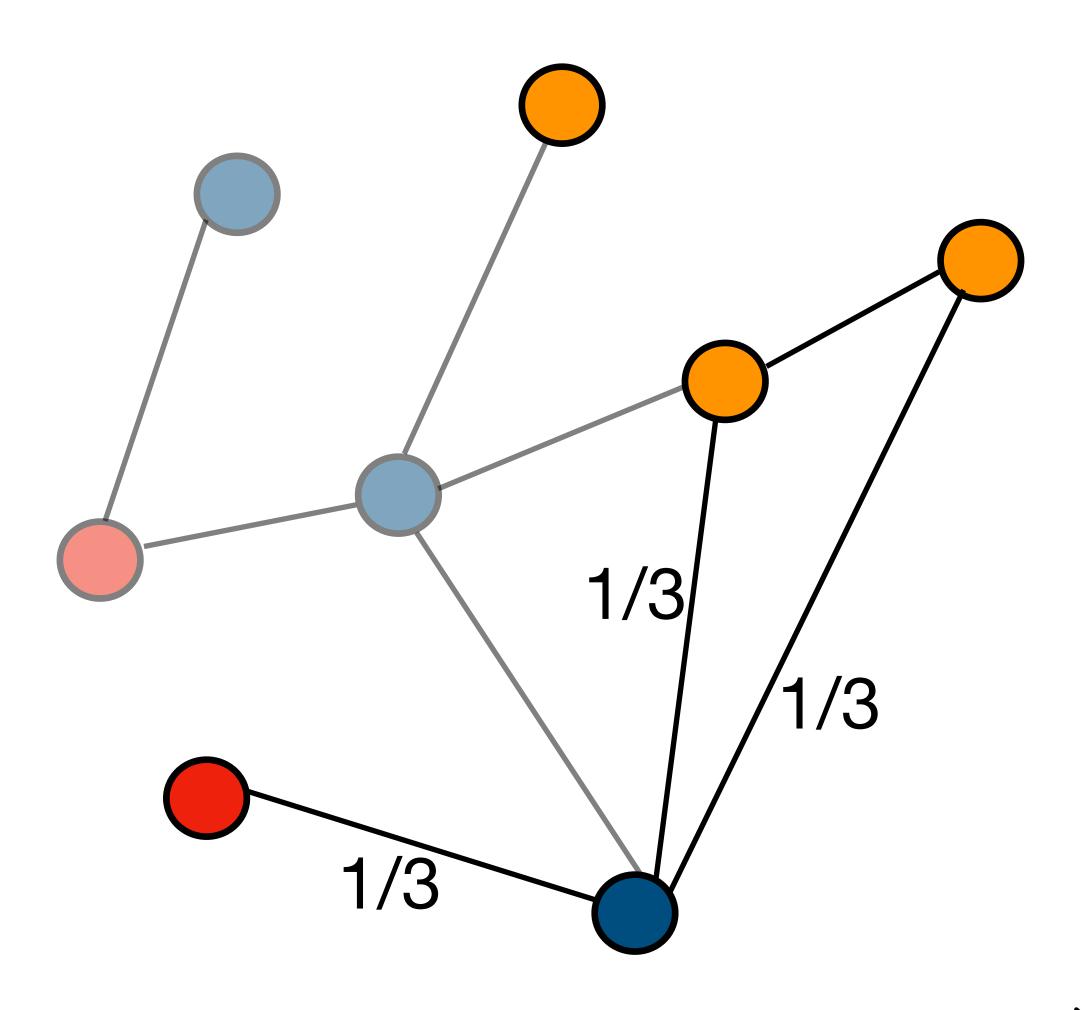
When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.



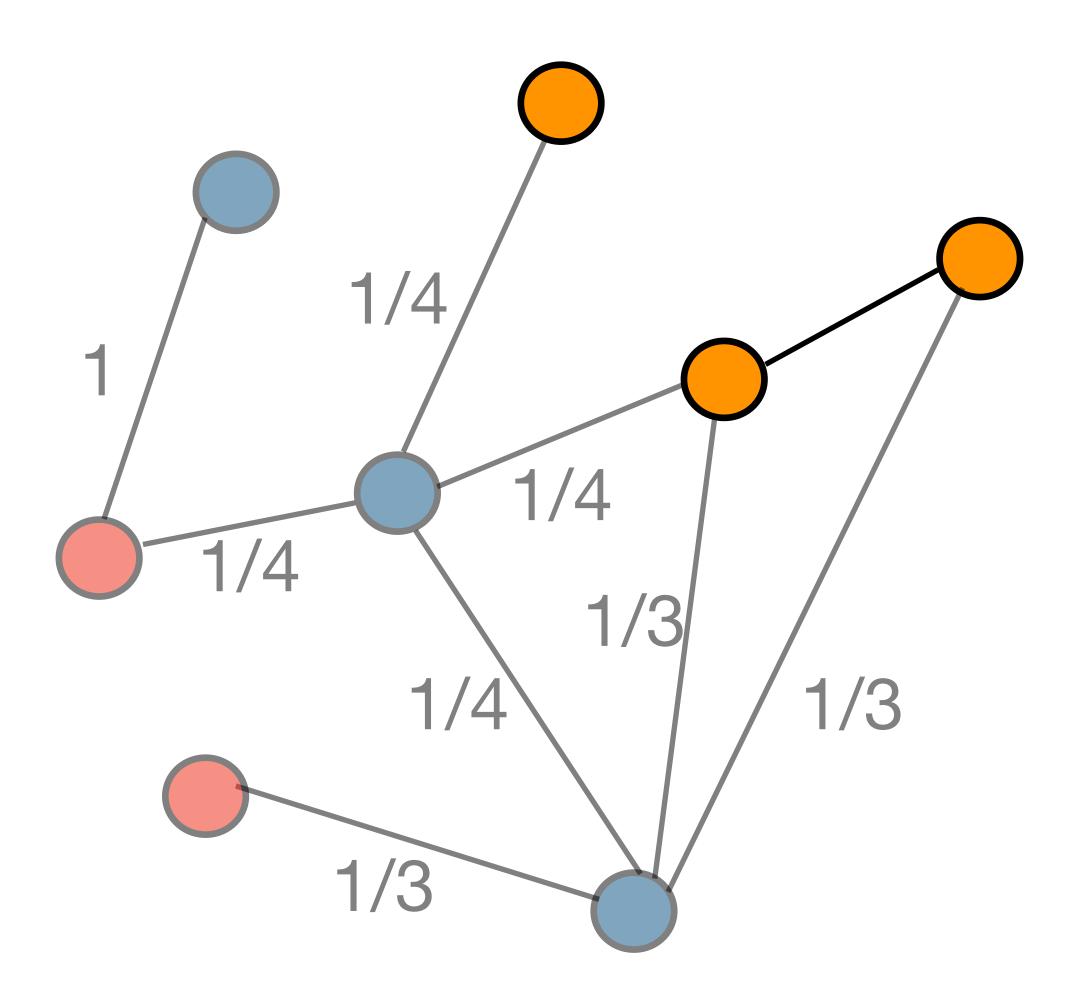
When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.



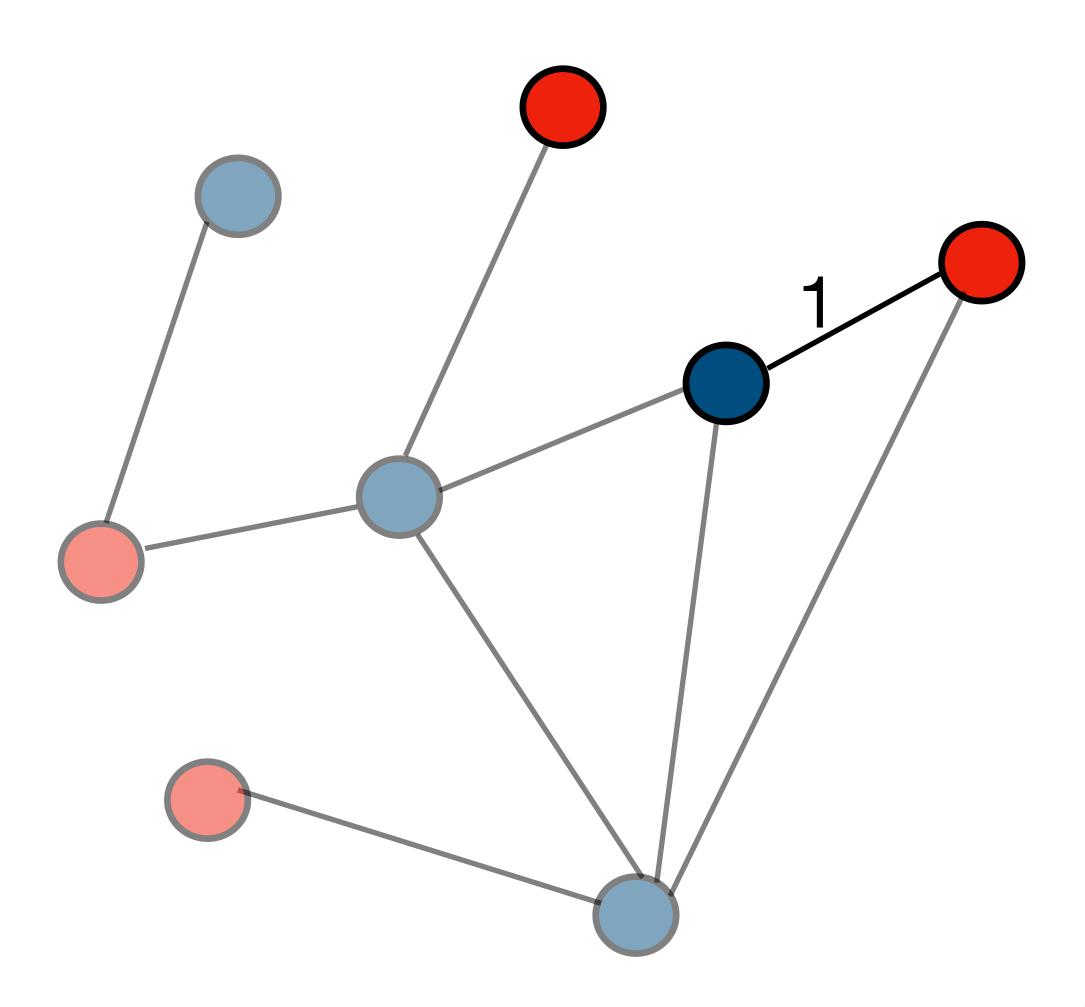
When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.



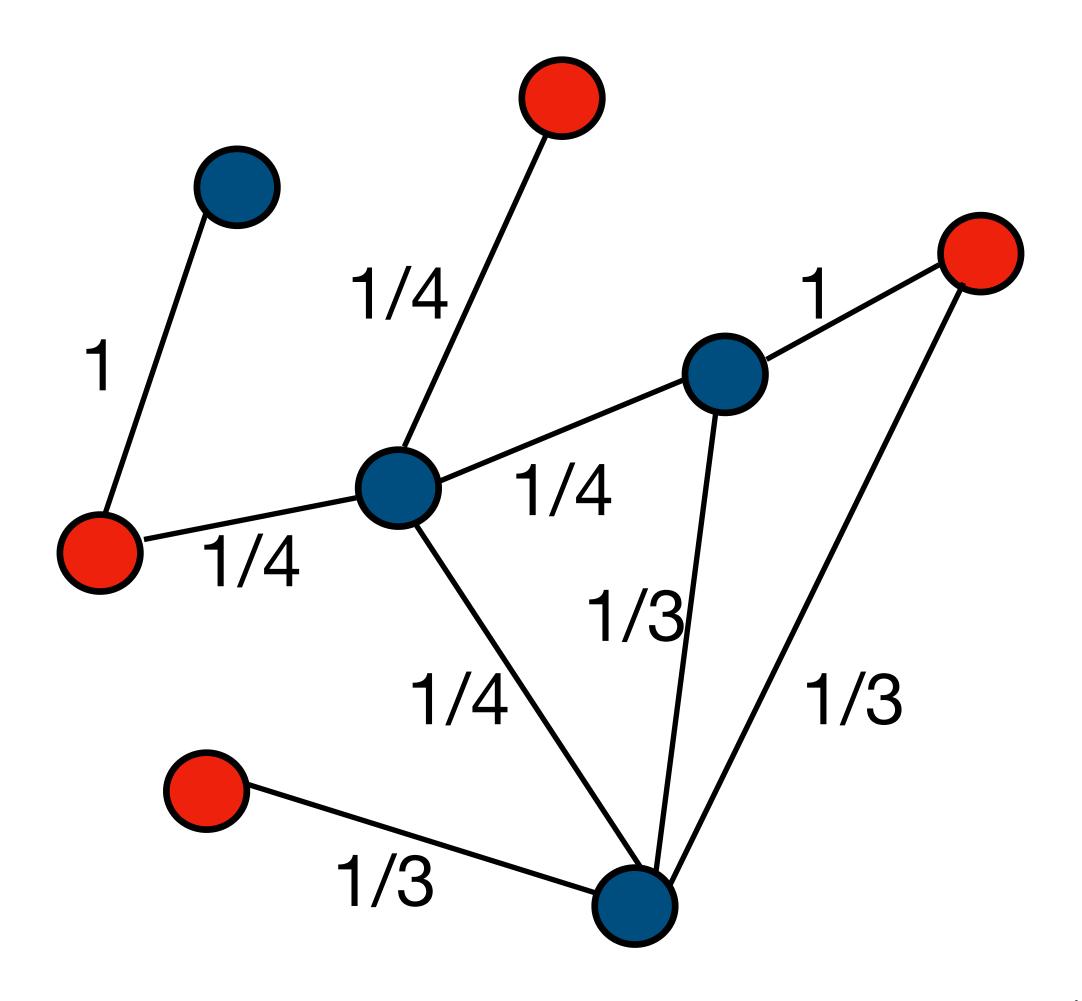
When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.



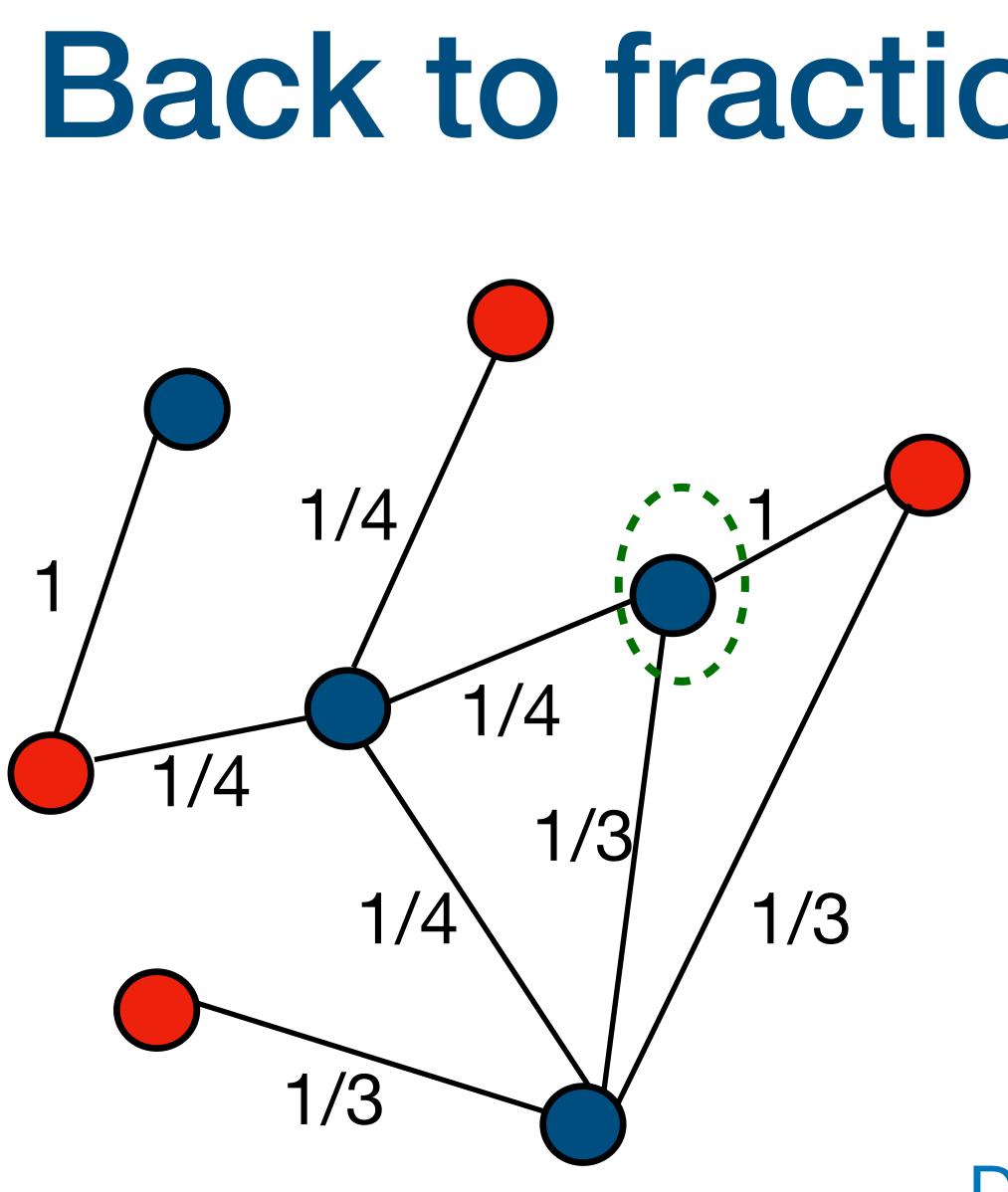
When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.



When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.



When vertex $\boldsymbol{\mathcal{U}}$ goes to VC, add a mass of 1/deg(u)to the edges between *u* and the remaining graph*.

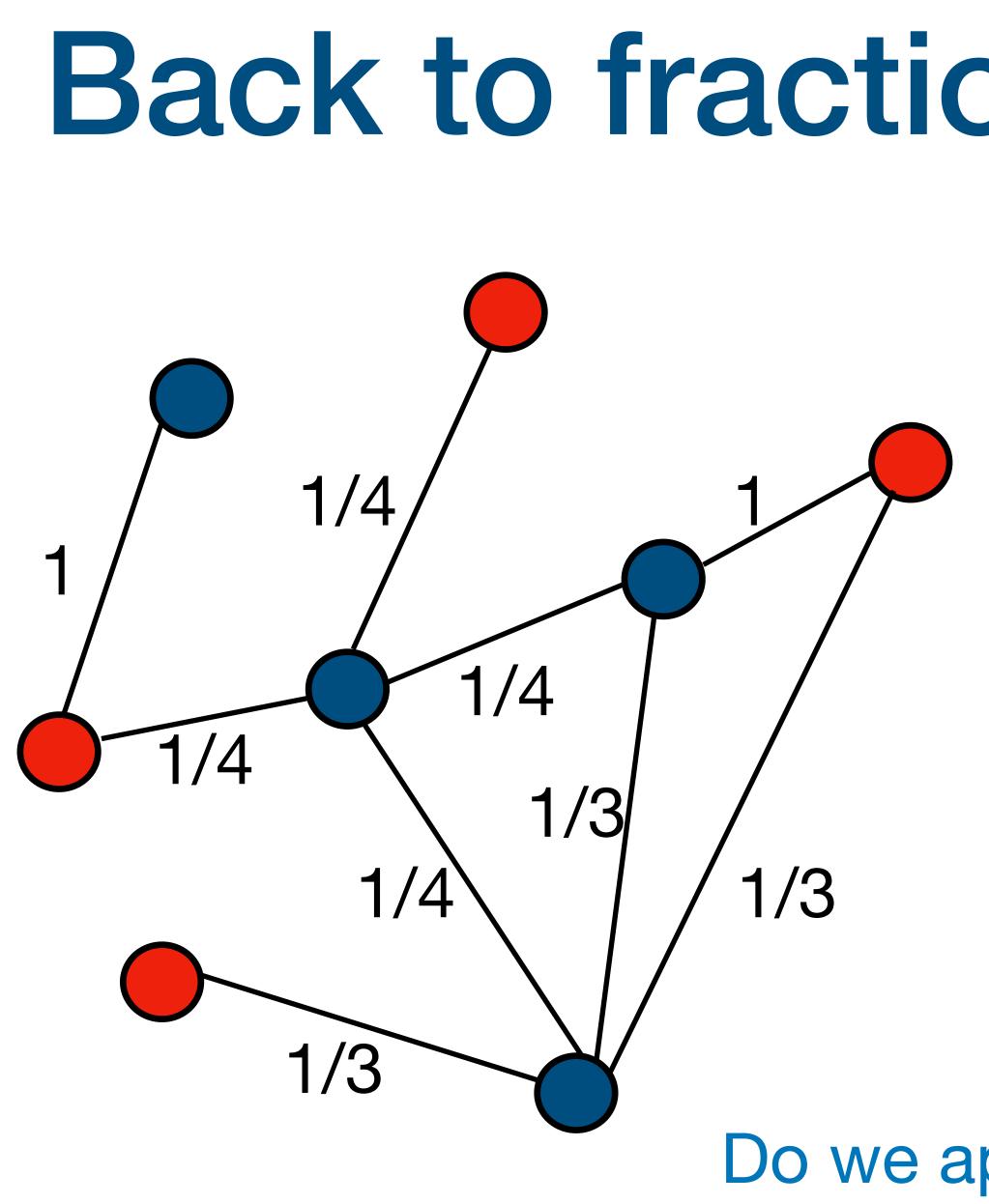


Back to fractional matching LP

$\max \sum_{e} x_{e}$ For all vertices u, $\sum_{e \ni u} x_{e} \leq 1$

With $0 \le x_e \le 1$ for all edges

Do we satisfy LP with large value?

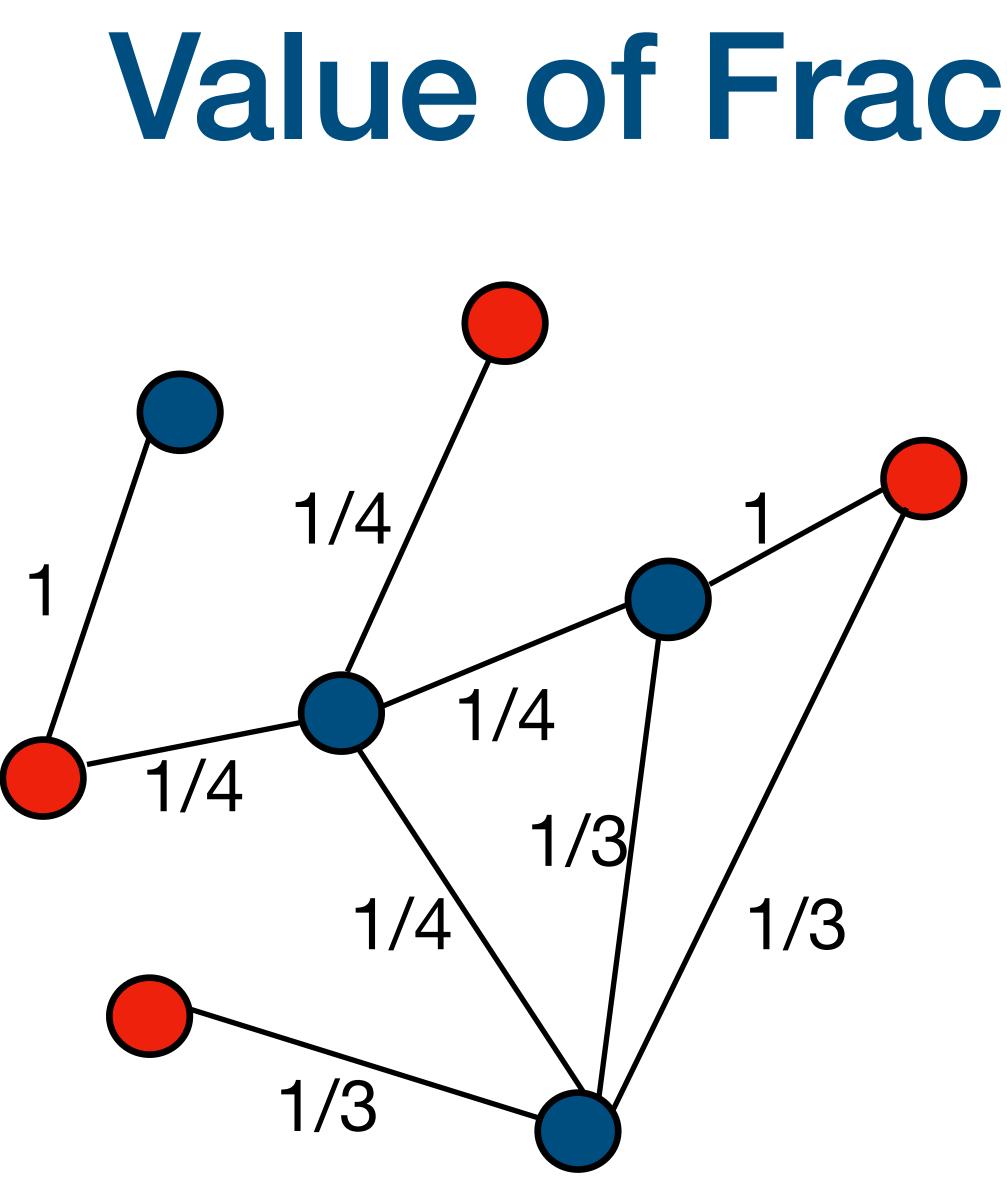


Back to fractional matching LP

max x_e For all vertices u, $\sum x_e \leq O(1)$ $e \ni u$

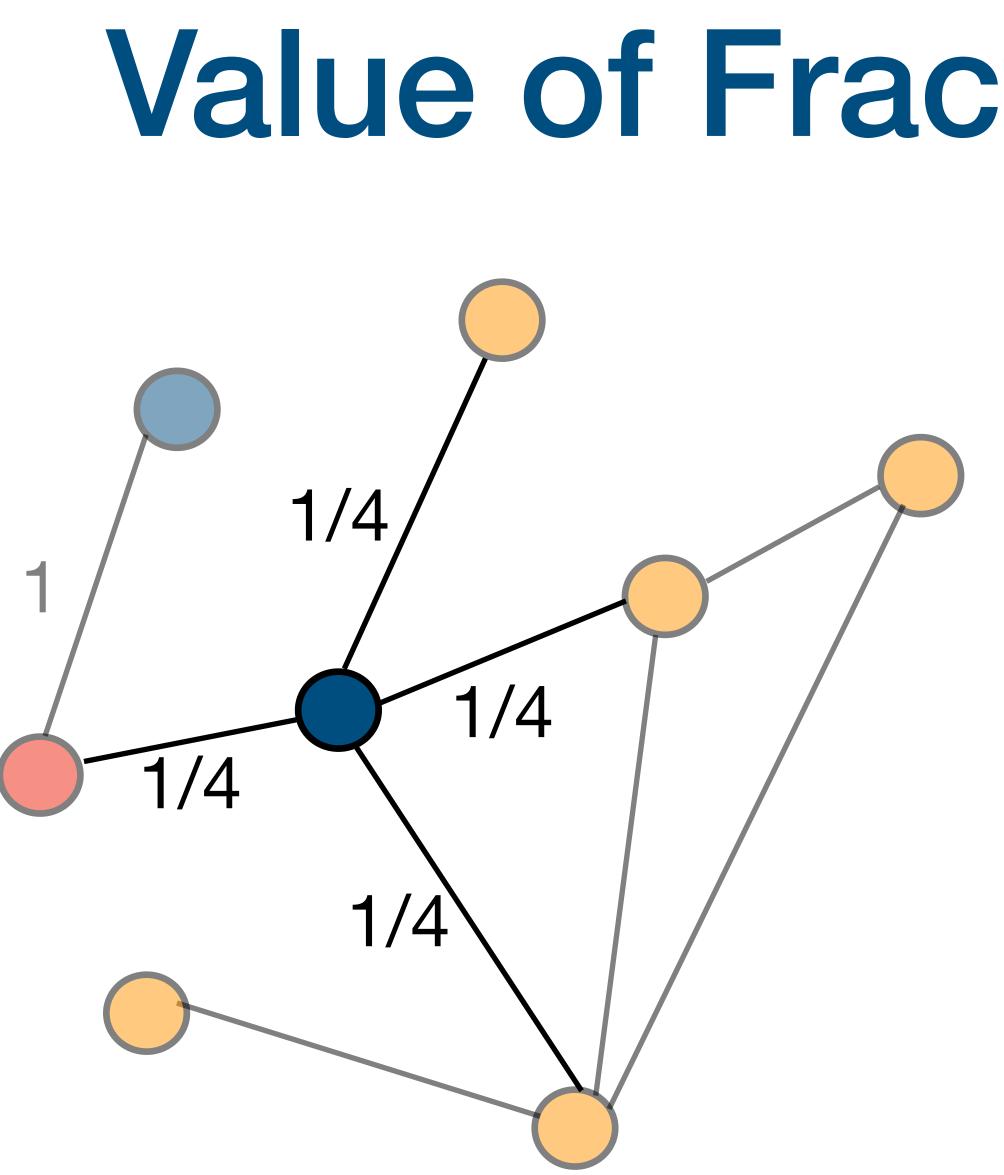
With $0 \le x_e \le 1$ for all edges

Do we approximately satisfy LP with large value?



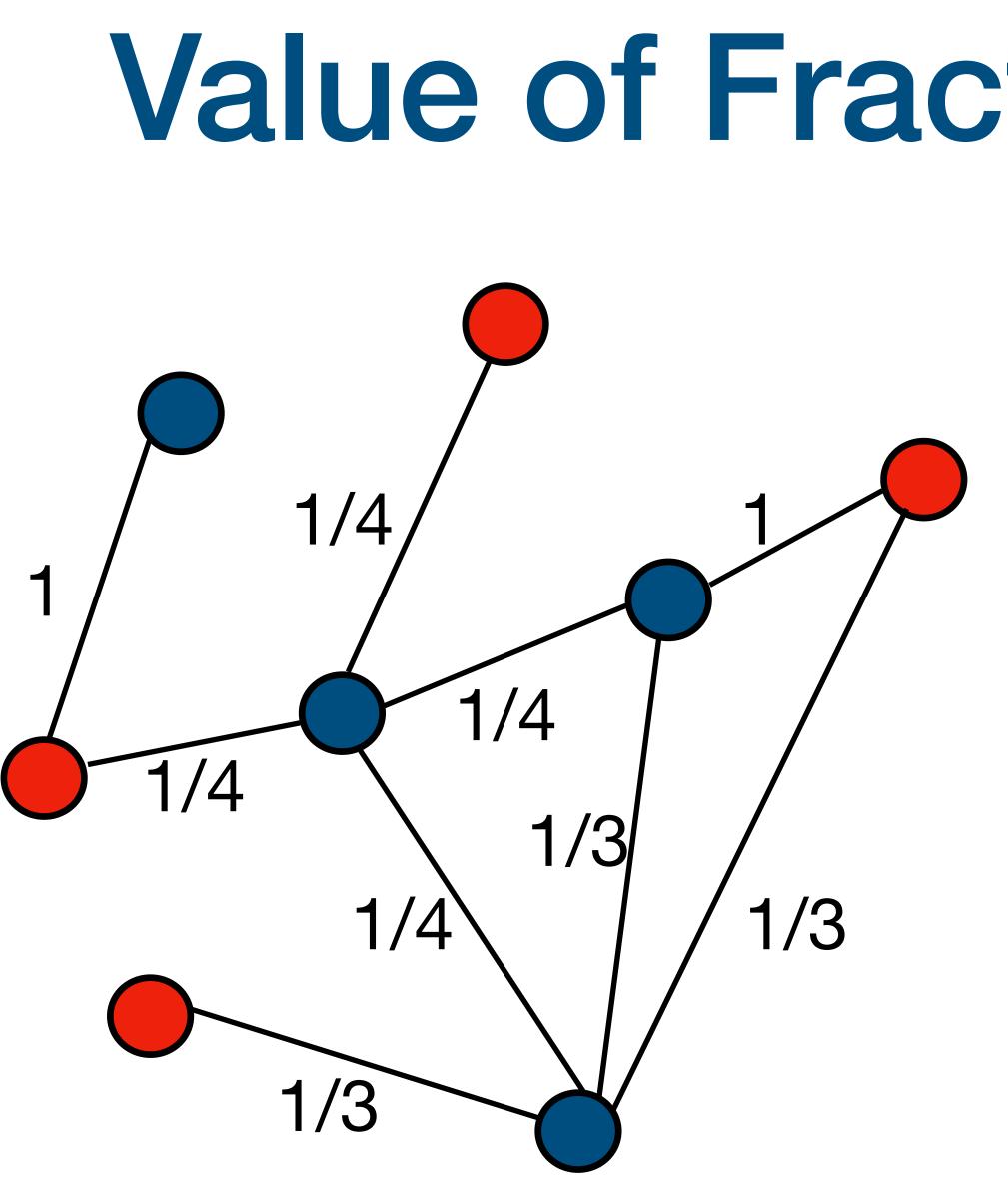
Value of Fractional Matching

Every time a vertex is added to VC, matching value increases by 1 (we add 1/deg(u) value to deg(u) vertices)



Value of Fractional Matching

Every time a vertex is added to VC, matching value increases by 1 (we add 1/deg(u) value to deg(u) vertices)

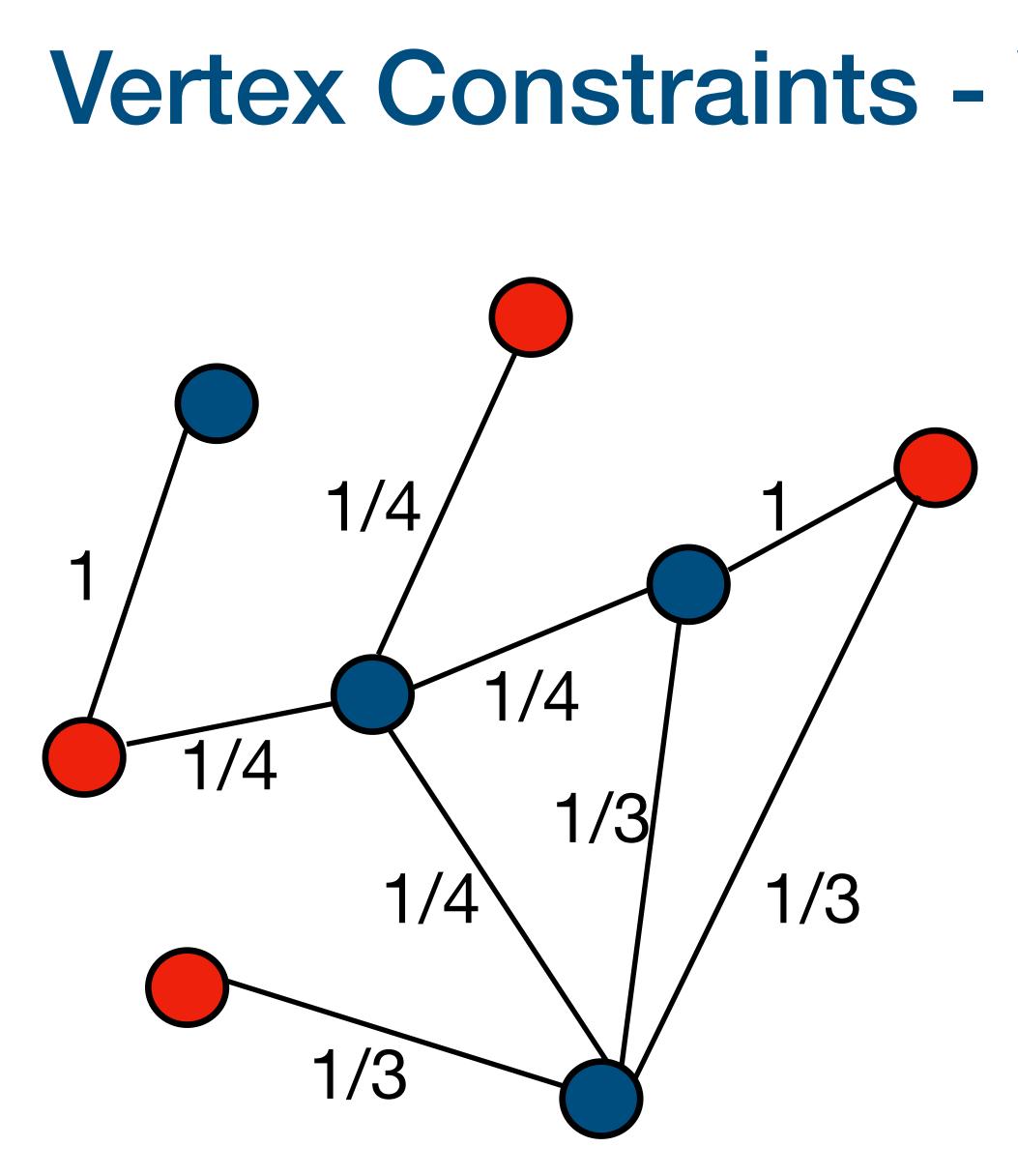


Value of Fractional Matching

Fractional Matching value: X_e e

Same as the size of the Vertex Cover* Larger than size of maximum matching

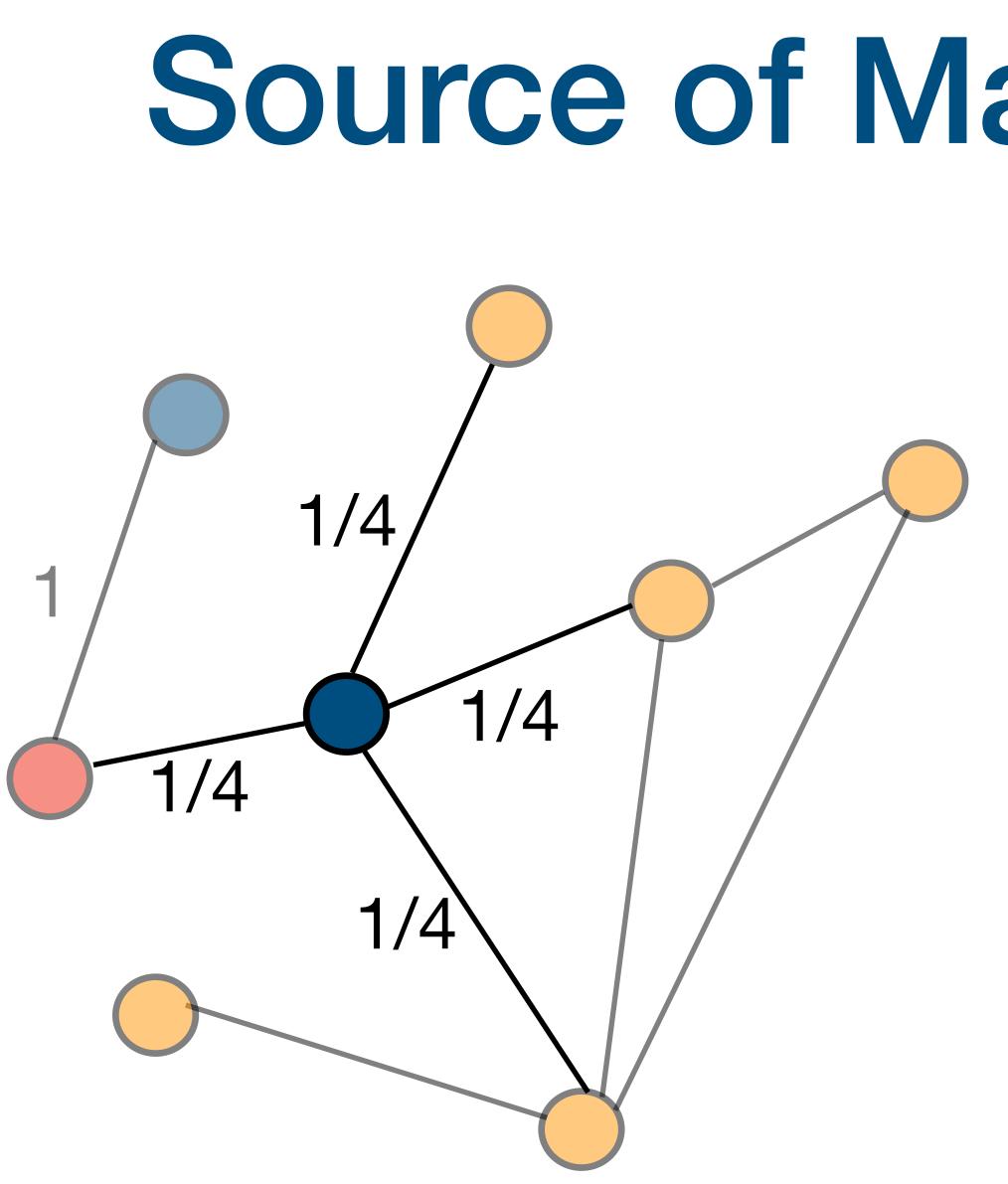
*-for now, this is not true in the actual reduction



Vertex Constraints - Why is this a matching?

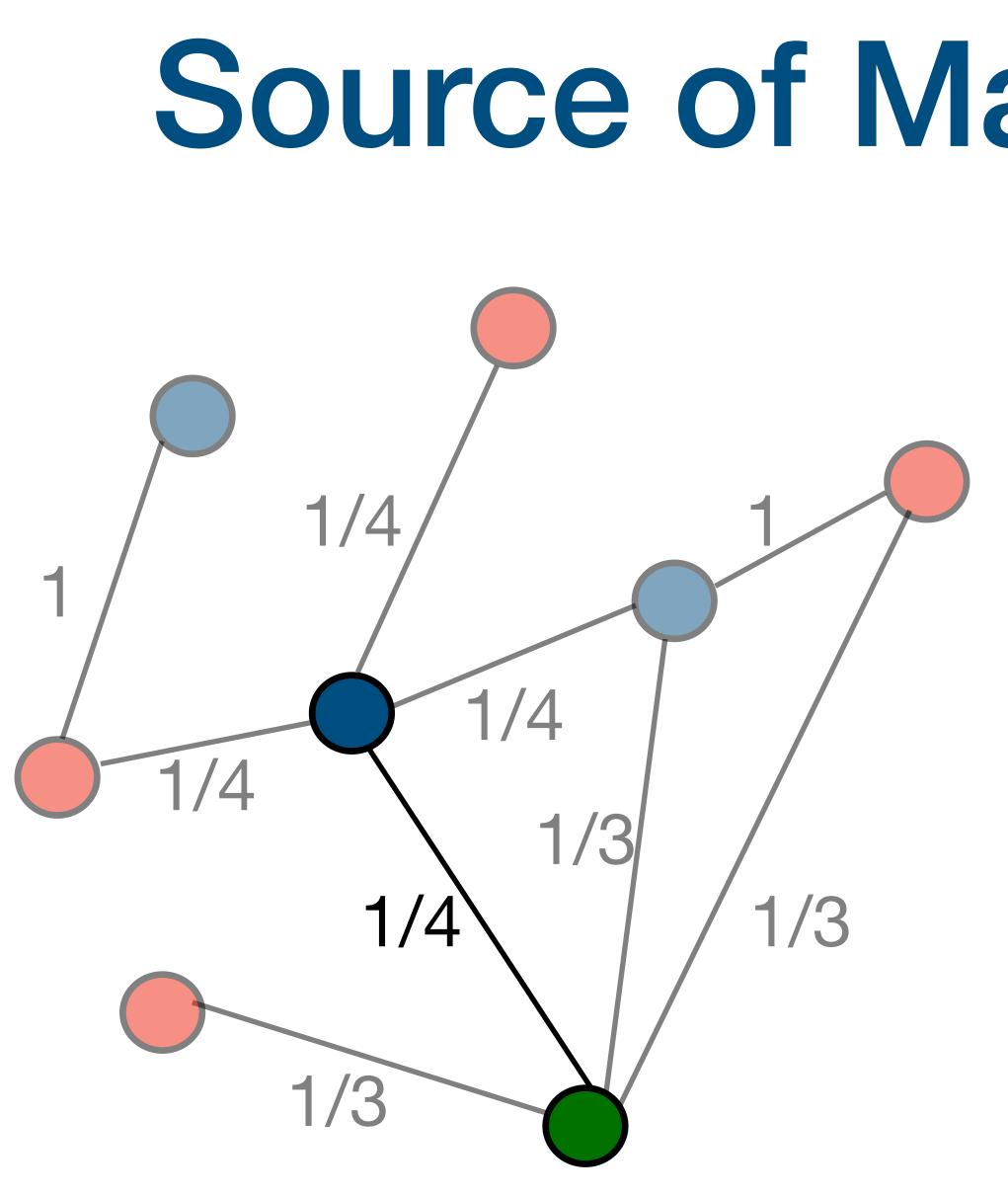
For all vertices u, $\sum x_e \leq O(1)$ $e \ni u$

With $0 \le x_e \le 1$ for all edges



Source of Mass for a Vertex

 From itself - if it is added to VC (this value is exactly 1)



Source of Mass for a Vertex

- From itself if it is added to VC (this value is exactly 1)
- From its neighbors?

In some iteration, if we expect a vertex to receive a lot of mass from neighbors,

we can expect it to be removed altogether

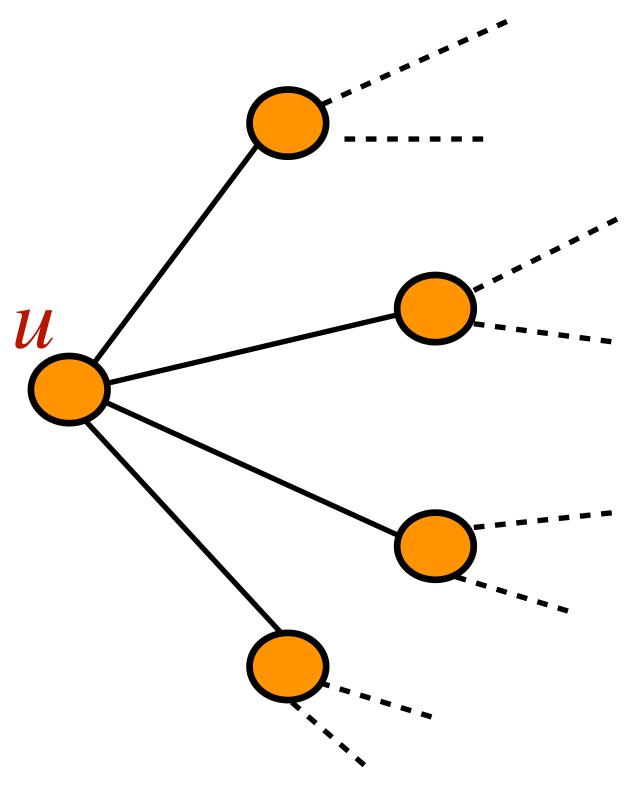
Main Observation

Probability that vertex is removed

Chosen to be in MIS

1/*n* probability

Neighbor chosen to be in MIS



Probability that vertex is removed

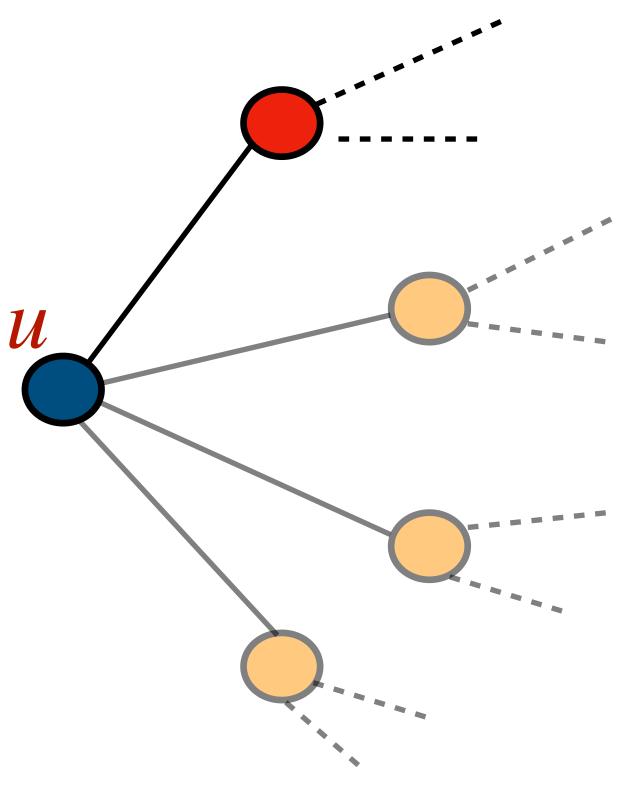
Chosen to be in MIS

1/*n* probability

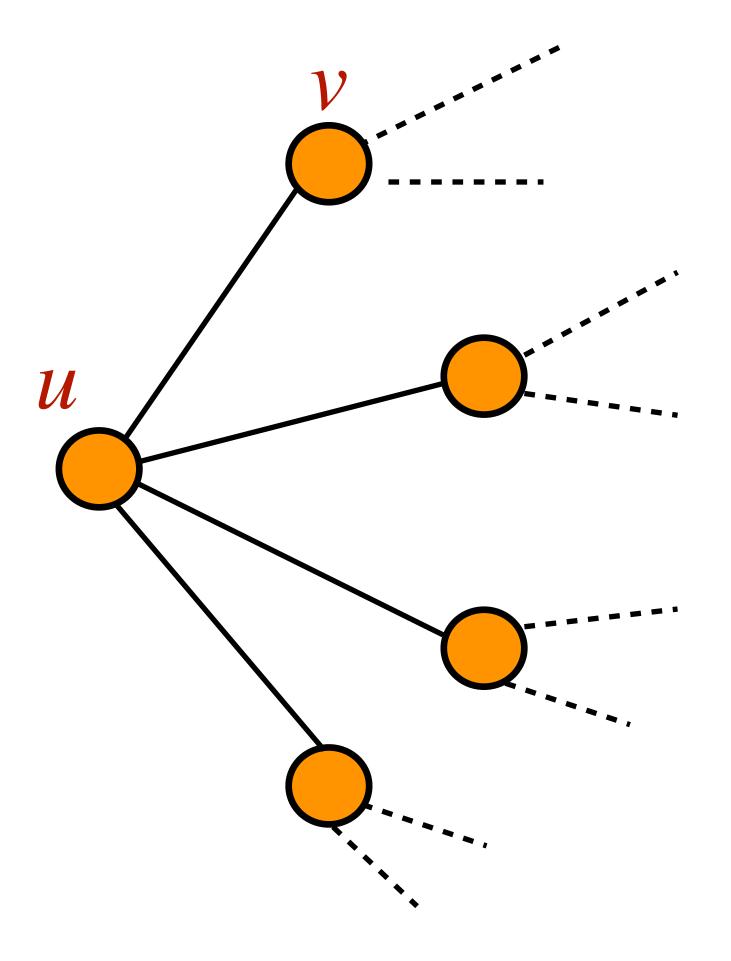
Probability is $(\deg(u) + 1)/n$ totally

Neighbor chosen to be in MIS

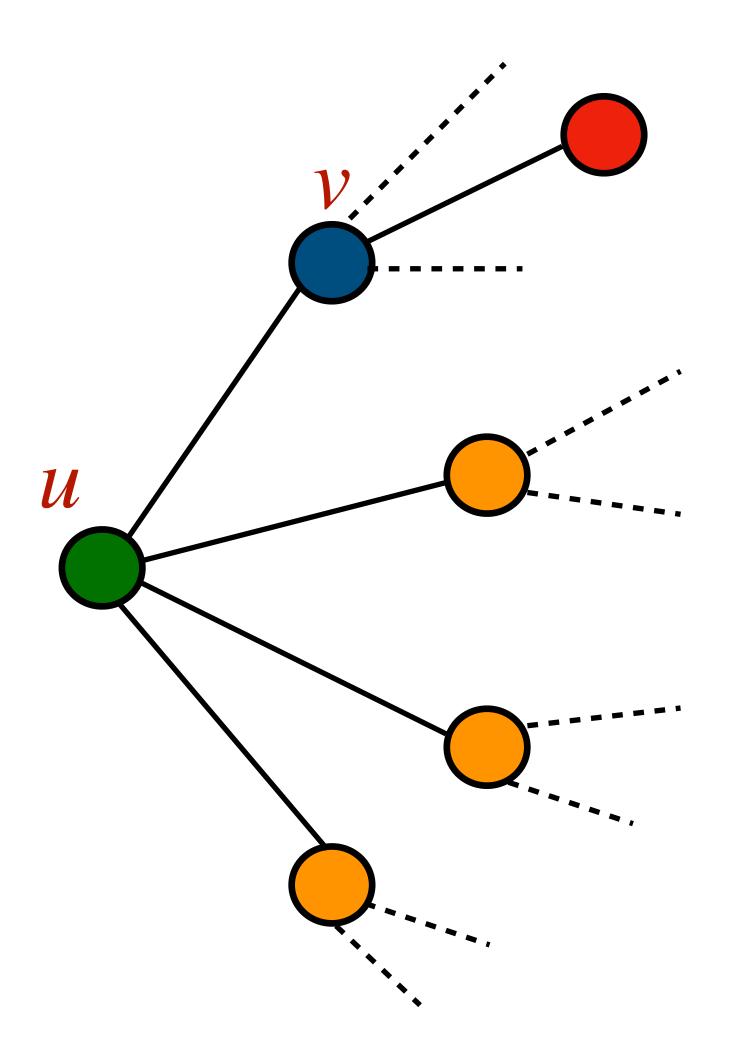
deg(u)/n probability



Mass from Neighbors



Mass from Neighbors



- Probability of neighbor v sent to VC is $\frac{\deg(v)}{n}$
- Mass added across edge (u, v) is 1/deg(v)

- In expectation, 1/n mass from each edge
 - Total expected mass is deg(u)/n

For any vertex \boldsymbol{u} , in any iteration,

If *u* gains a lot, it gets out

Expected mass from neighbors \leq Probability that u is removed

Gain a lot, then Get out Game

Conditioned on any choice of $X_1, X_2, \ldots, X_{i-1}$,

Expected value of $X_i \leq$ Probability that all the later X_i with j > i are zero.

 X_i - mass gained by vertex u at iteration i

Random Variables X_1, X_2, \ldots, X_n - mass gained at each iteration

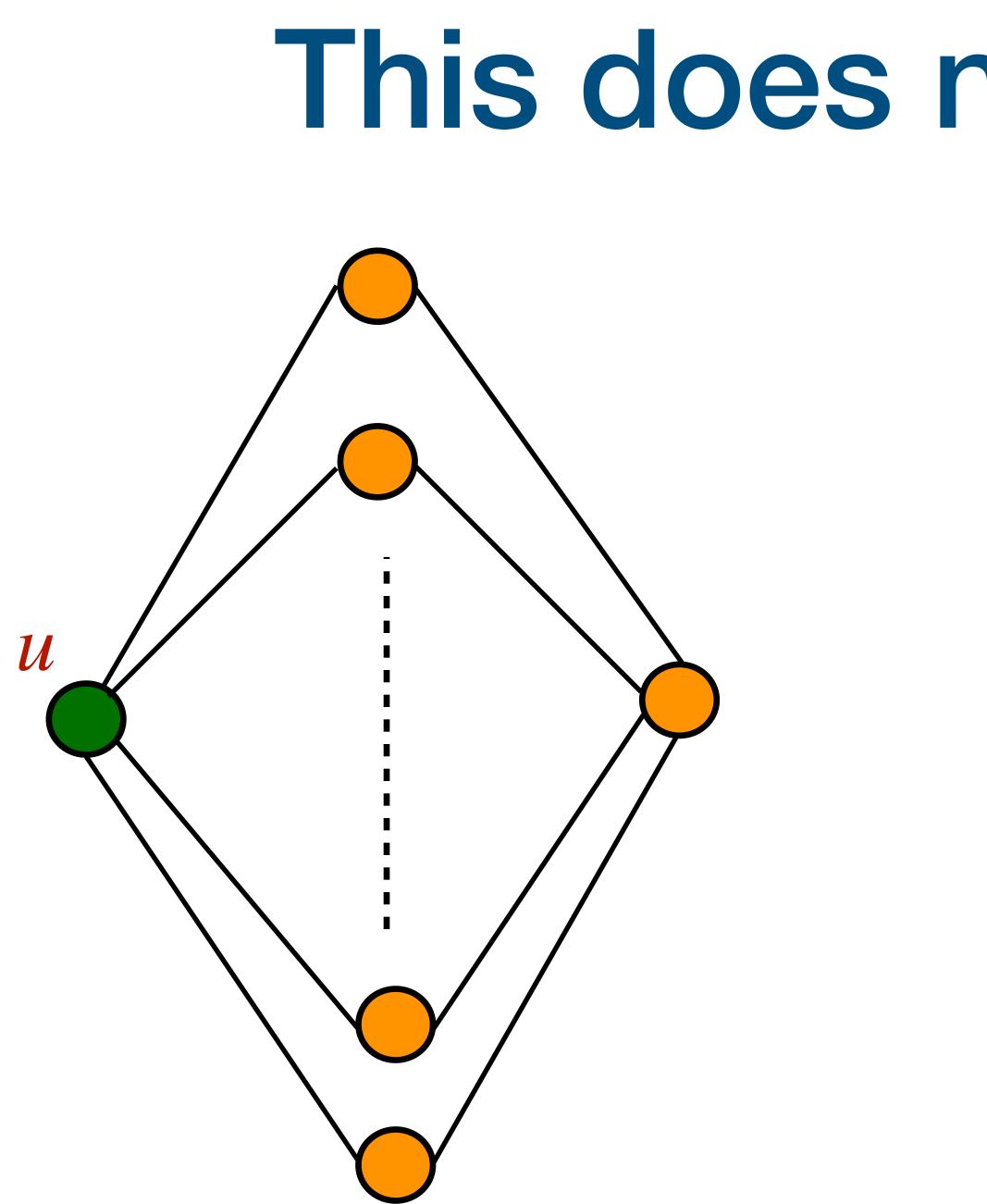
Gain a lot, then Get out Game

Random Variables X_1, X_2, \ldots, X_n with:

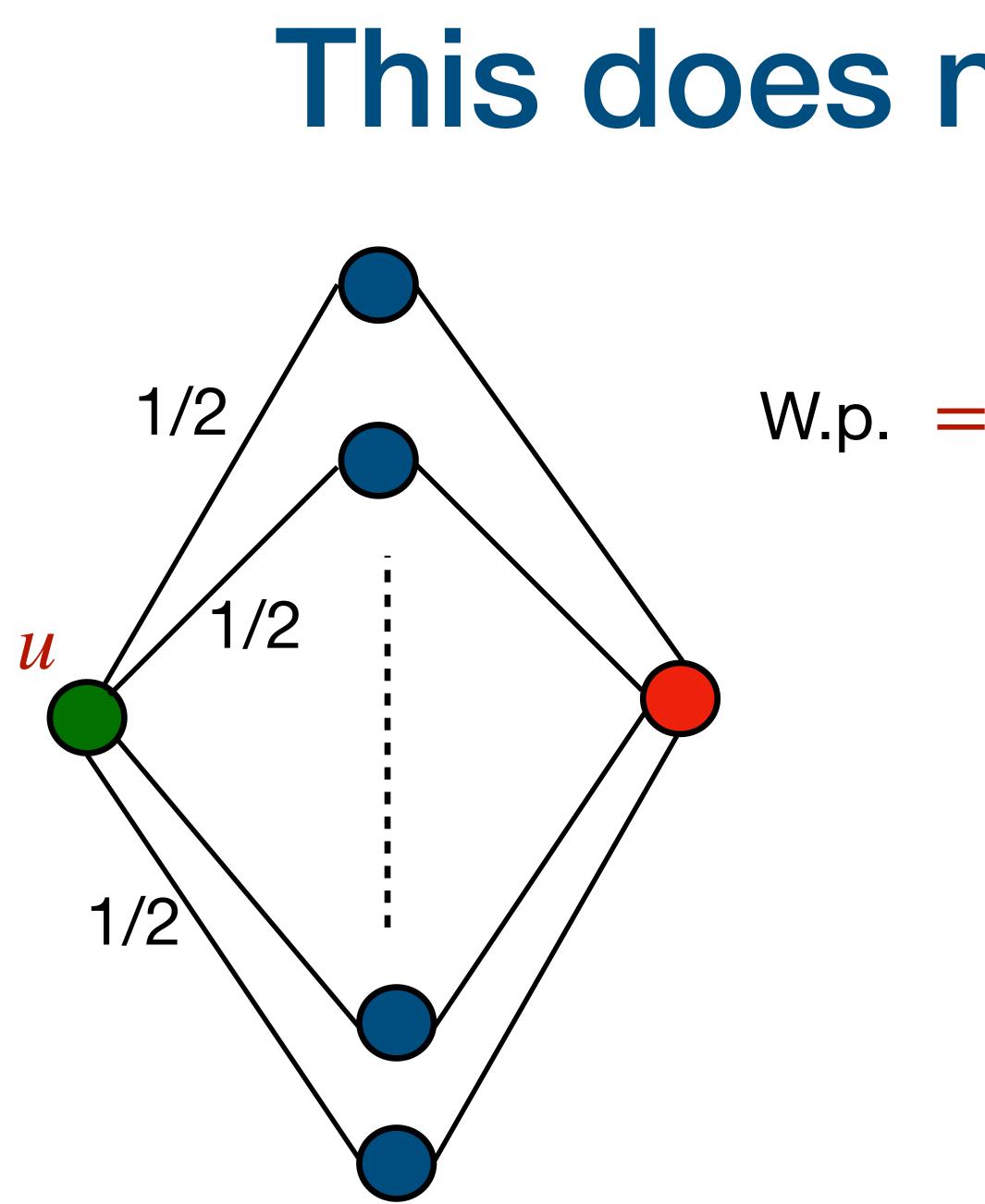
Conditioned on any choice of $X_1, X_2, \ldots, X_{i-1}$,

- Expected value of $X_i \leq$ Probability that all the later X_j with j > i are zero.

We want to bound expectation of sum to be O(1) and variance of sum to be some $O(1) \cdot$ expectation.



This does not happen ...



This does not happen ...

W.p. = 1/n mass received by u is $\approx n/2$

Expectation of mass is still O(1).

Variance of mass is $\approx n$

Gain a lot, then Get out Game

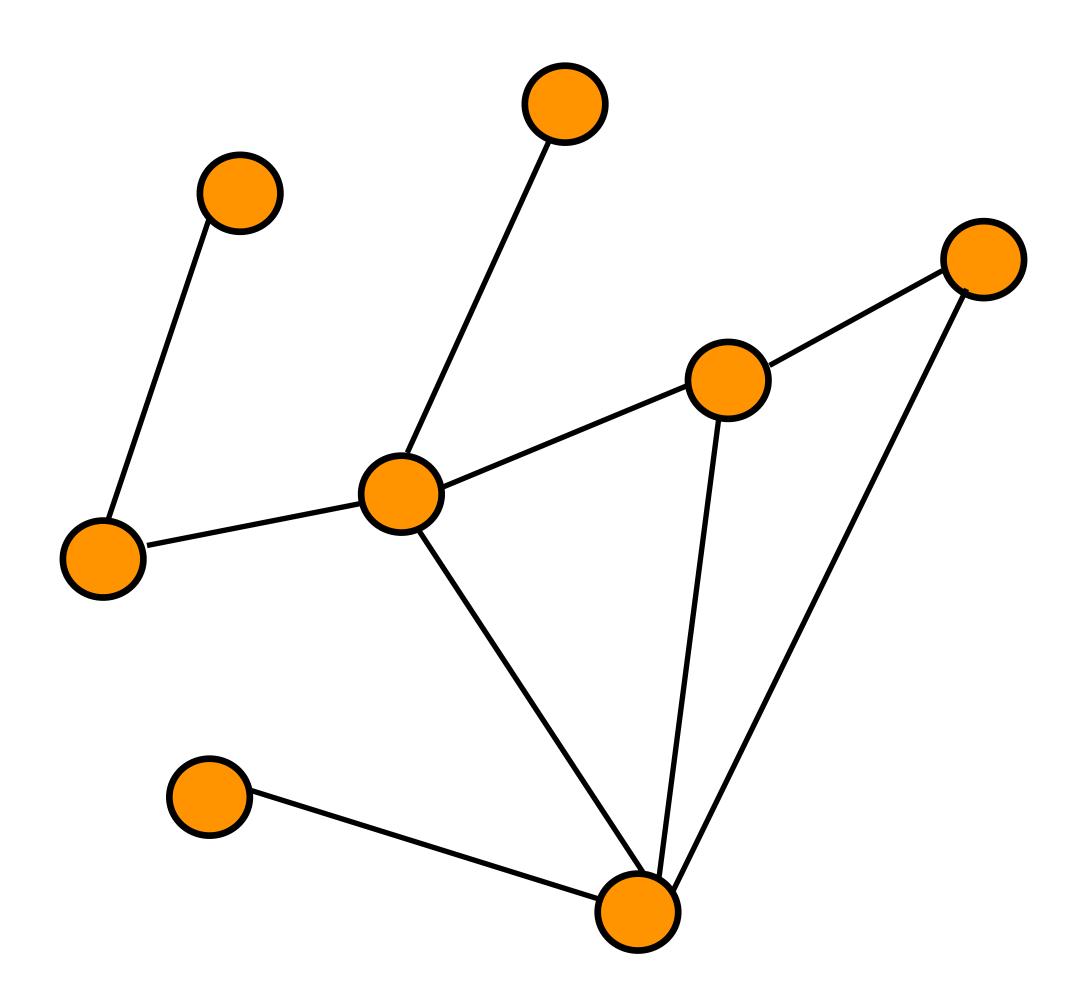
Random Variables X_1, X_2, \ldots, X_n with:

Conditioned on any choice of $X_1, X_2, \ldots, X_{i-1}$,

Expected value of $X_i \leq$ Probability that all the later X_j with j > i are zero.

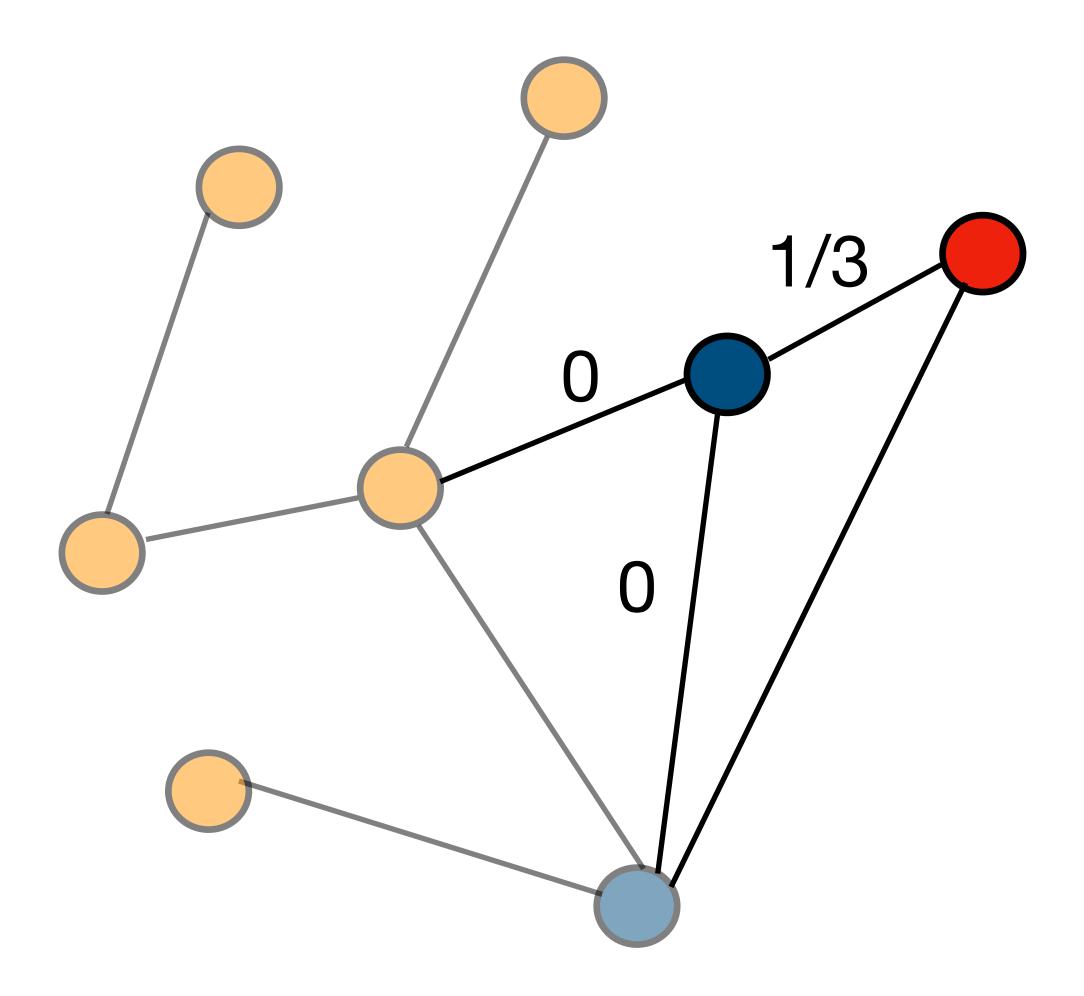
Need a good absolute bound on each X_i first

Final Reduction



When vertex *u* goes to VC, add a mass of 1/deg(*u*) to the edges from *u* to lower-degree neighbors of *u* in the remaining graph.

Final Reduction



When vertex *u* goes to VC, add a mass of 1/deg(*u*) to the edges from *u* to lower-degree neighbors of *u* in the remaining graph.

Bounding Mass at each Iteration



Mass added across edge (u, v) is 1/deg(v) only if deg(u) is at most deg(v)

$1/\deg(v) \le 1/\deg(u)$

Total mass is at most 1 at each iteration

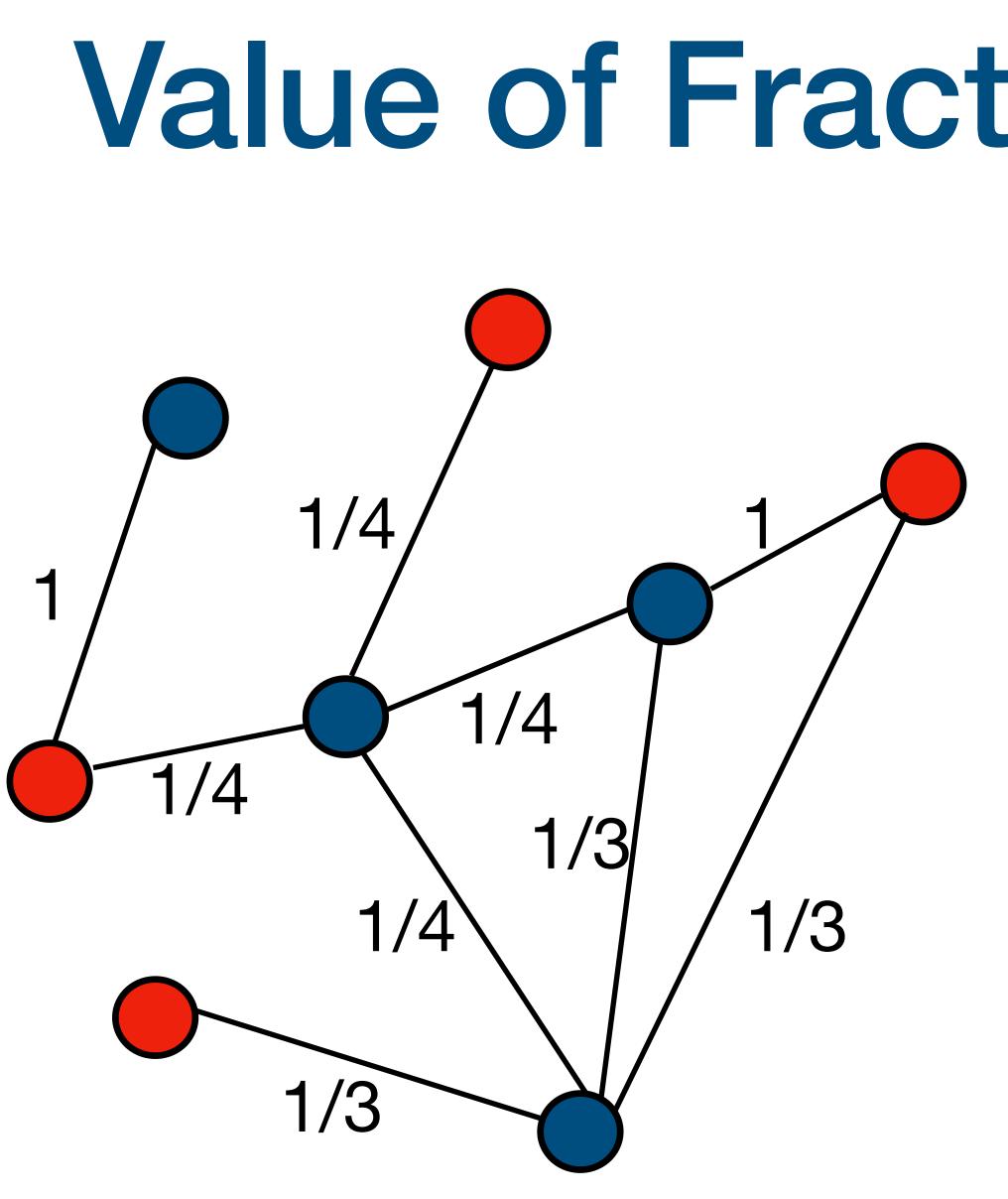
Gain a lot, then Get out Game

Random Variables X_1, X_2, \ldots, X_n :

We can bound expectation of sum to be O(1) and variance of sum to be some $O(1) \cdot$ expectation.

X_i - mass gained by vertex u at iteration i with each $X_i \leq 1$

Expected value of $X_i \leq$ Probability that all the later X_i with j > i are zero.



Value of Fractional Matching?

Fractional Matching value: $\sum_{e} x_{e}$

Same as the size of the Vertex Cov

Half of size of Vertex Cover in expectation

Back to Fractional Matching LP

$\max \sum_{e} x_{e}$ For all vertices u, $\sum_{e \ni u} x_{e} \le 1$

With $0 \le x_e \le 1$ for all edges

We satisfy LP with large value in expectation.

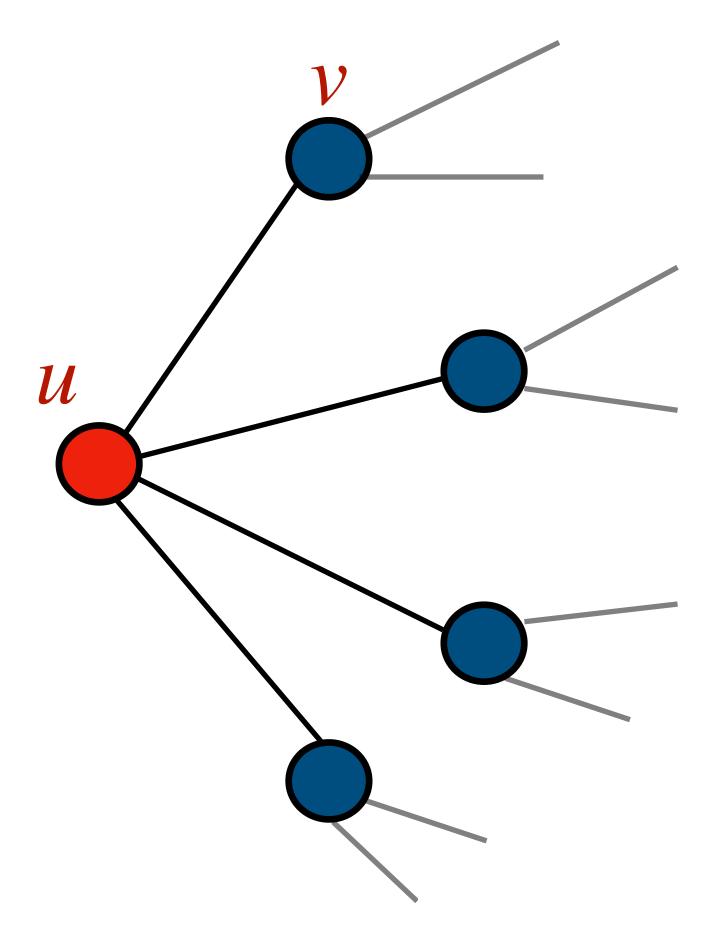
$$\sum_{e} x_{e} \ge \text{half of expected size of V}$$

For all vertices u , $\sum_{e \ge u} x_{e} \le O(1)$

With $0 \le x_e \le 1$ for all edges

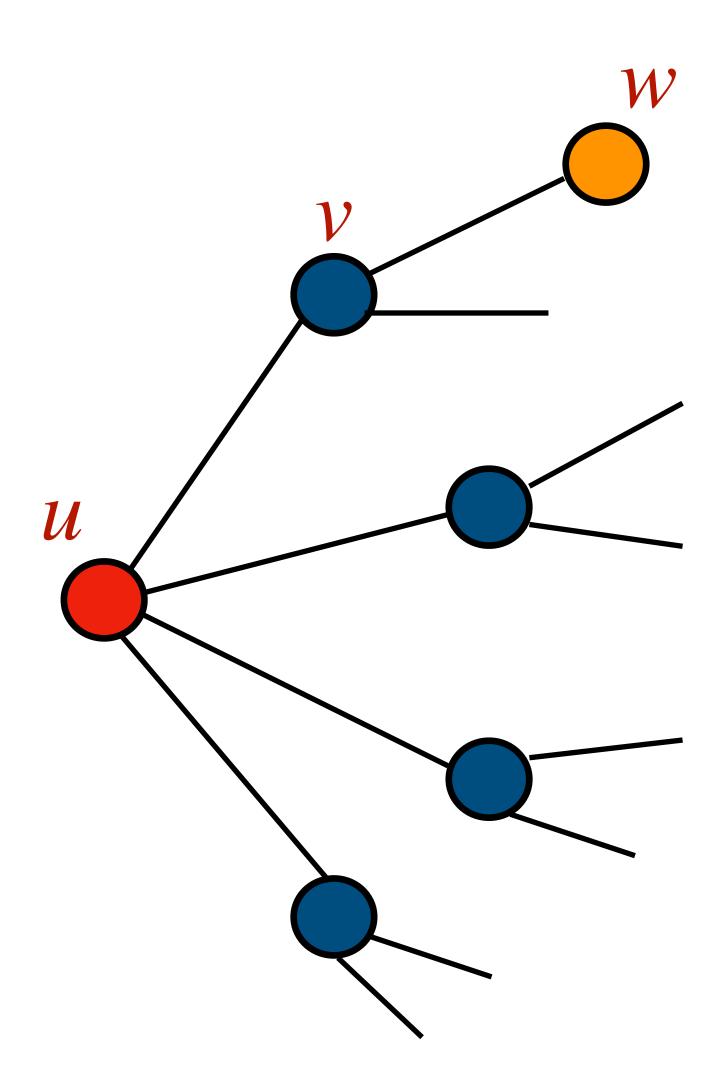
- Fractional matching and Vertex Cover
- Connections to MIS
- Our reduction to MIS
- Challenges of implementation

Plan for the rest of the talk



RGMIS Algorithm

[ACGMW '15] only needs to look at edges in the neighborhood of *u*

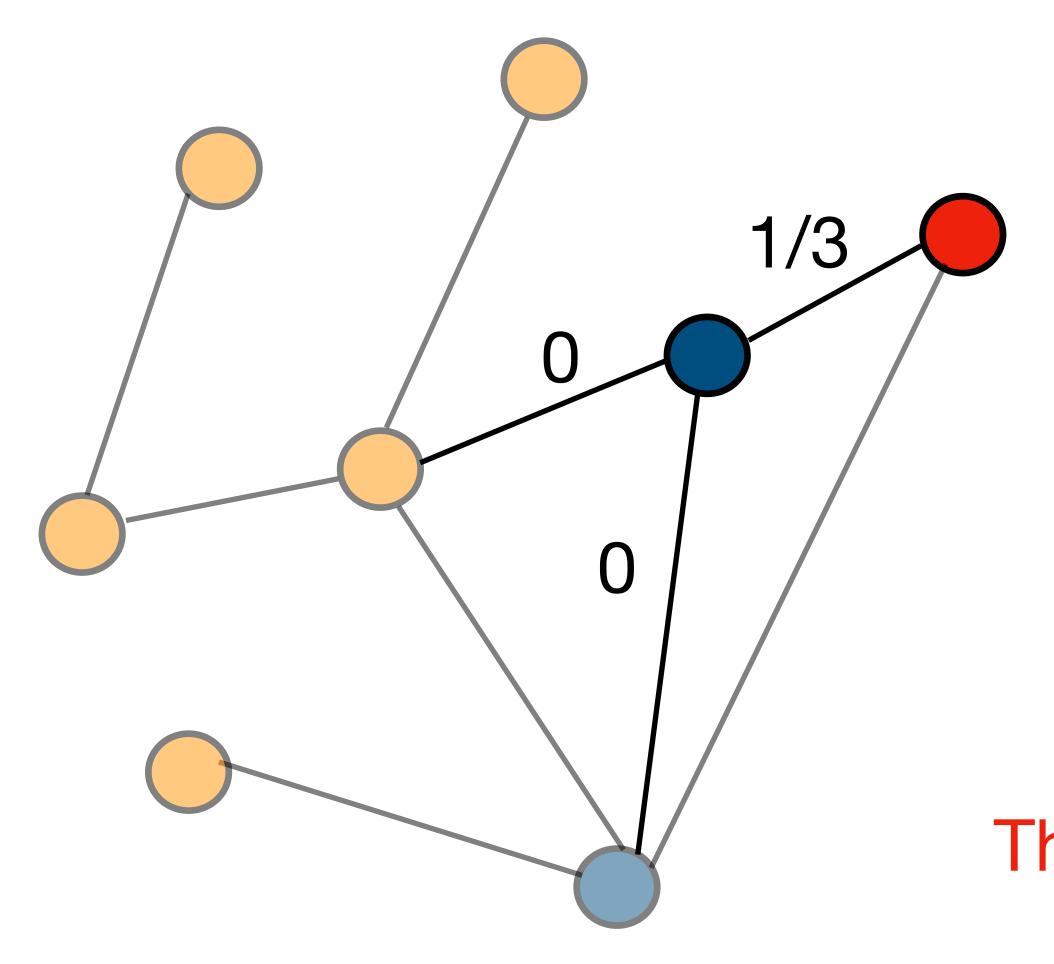


[ACGMW '15] only needs to look at edges in the neighborhood of *u*

We add mass to edges in 2-neighborhood of *u*

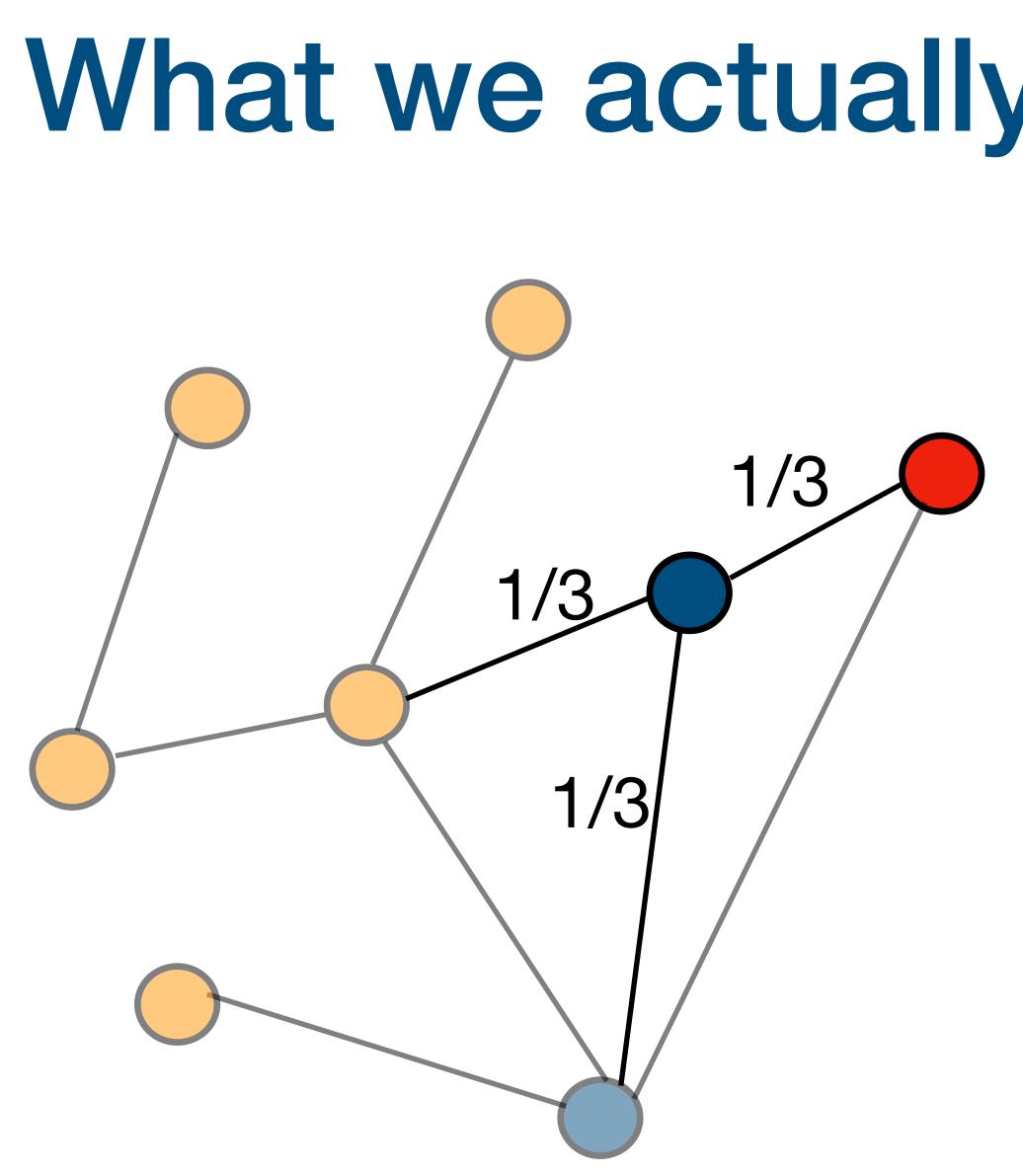
We can get this (somehow)

What more do we want?



When vertex *u* goes to VC, add a mass of 1/deg(u)to the edges from *u* to lower-degree neighbors of *u* in the remaining graph.

This we don't get - we do not implement this reduction exactly



Sample ALL THE EDGES in the 2-neighborhood with the same value



Sample ALL THE EDGES in the 2-neighborhood with the same value

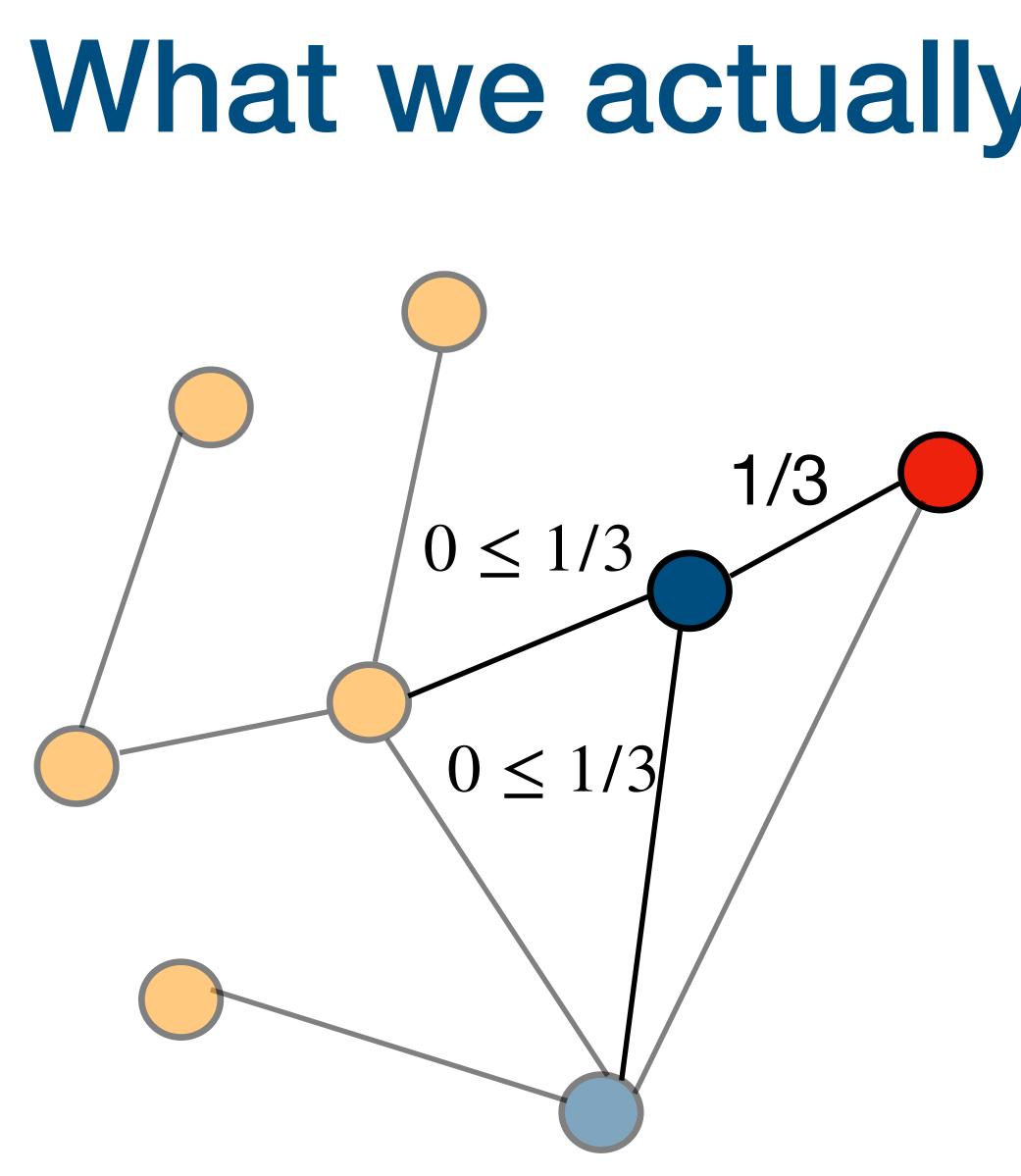
We sample with a higher probability than in our fractional matching



Sample ALL THE EDGES in the 2-neighborhood with the same value

We sample with a higher probability than in our fractional matching

Support will contain a large matching!



Sample ALL THE EDGES in the 2-neighborhood with the same value

Do we sample too many edges?

Well, no.

Concluding Remarks

We gave a reduction from random greedy MIS to O(1)-approximate maximum matching

- Using this reduction we gave a sketching algorithm for O(1)-apx matching in $O(\log \log n)$ rounds with $\tilde{O}(n)$ size sketches

Inspired by [Veldt '24] reduction to vertex cover, generalized for matchings

Pass Complexity of $(1 + \epsilon)$ -approx maximum matching for any constant ϵ in dynamic streaming in $O(n \text{ poly } \log n) \text{ space is } \Theta(\log \log n)$

[Veldt '24, ACGMW '15, AKNS '24]

Conclusion

Exploiting connections to maximal independent sets

Pass Complexity of $(1 + \epsilon)$ -approx maximum matching for any constant ϵ in dynamic streaming in $O(n \text{ poly } \log n) \text{ space is } \Theta(\log \log n)$

Open Questions:

- Dependence on ϵ for $(1 + \epsilon)$ -approx? Currently poly in $1/\epsilon$. Song-Yu '21, Assadi-S '23, Shang-En Huang Hsin-Hao Su '23]
- Better upper bounds or conditional lower bounds for MPC model?

Conclusion

[Ahn-Guha '18, Assadi-Liu-Tarjan '21, Chen-Kol-Paramonov-Saxena-

