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Matchings in Graphs

G = (V, E)
 vertices and  edgesn m



Matchings in Graphs

 of edges  
 

At most one edge  
incident to every vertex

M ⊆ E



Dynamic Streams

Edges are given as a stream of  
insertions and deletions

 addede3

 deletede1

 addede1

G = (V, E)
Vertices are known. [Ahn-Guha-McGregor ’12]
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Dynamic Streams

Edges are given as a stream of  
insertions and deletions

 addede3

 deletede1

G = (V, E)
Vertices are known. 

Space:  poly O(n log n)

[Ahn-Guha-McGregor ’12]

May be repeated for multiple passes

 addede2

 addede1



Matching in Dynamic Streams

• Multi-Pass Algorithms 
 
[Ahn-Guha-McGregor ’12, Ahn-Guha ’15, Assadi ’24]


• Single Pass Results 
 
[Konrad ’15, Chitnis-Cormode-Hajiaghayi-Monemizadeh ’15, 
Assadi-Khanna-Li-Yaroslavtsev ’16, Chitnis-Cormode-Esfandiari-
Hajiaghayi-McGregor-Monemizadeh-Vorotnikova ’16, Assadi-
Khanna-Li ’17, Dark-Konrad ’20, Assadi-Shah ’22]



Focus on -approxO(1)



Boosting Approximation Ratio
[McGregor ’05, 

 Gamlath-Kale-Mitrovic-Svensson ‘19]

-approximation 
 passes 
 space

O(1)
p
s

-approximation 
 passes 
 space

(1 + ϵ)
Oϵ(p)
Oϵ(s)

Unweighted Weighted

Any algorithm for matching



Main Question

Number of passes?

Semi-streaming space:  poly O(n log n) -approximation ratioO(1)



Prior Work on -approxO(1)

O(log n/log log n)

[Lattanzi-Moseley-Suri-Vassilvitskii-11,


-11


Ahn-Guha-McGregor ’12, Ahn-Guha ’15, Assadi ’24]

> 1
[Assadi-Khanna-Li-Yaroslavtsev ‘16 , Dark-Konrad ’20]

O(log log n)This Work

Number of Passes

Θ(log log n)



Our Results

In  poly  space, there is an -pass  
algorithm for -approximation of maximum matching.

O(n log n) O(log log n)
O(1)

In  poly  space, for any constant  > 1,  
any -approximation of maximum matching  

requires  passes.

O(n log n) c
c

Ω(log log n)

Reminder: We can boost to  for any constant (1 + ϵ) ϵ



This Talk: Only Upper Bound

In  poly  space, there is a -pass  
algorithm for -approximation of maximum matching.

O(n log n) O(log log n)
O(1)

This is a sketching algorithm. 



Graph Sketching Technique

Sketch Matrix 
S ∈ ℤs×(n

2) =

Sketch of the  
graph 

S ⋅ ϕ ∈ ℤs

Incidence Vector of edges 
ϕ ∈ {0,1}(n

2)

(v1, v2)
(v1, v3)

(vn−1, vn)



Graph Sketching Technique

Sketch Matrix 
S ∈ ℤs×(n

2) =

Sketch of the  
graph 

S ⋅ ϕ ∈ ℤs

Not explicitly stored
Stored 
in Õ(s)

Incidence Vector of edges 
ϕ ∈ {0,1}(n

2)

(v1, v2)
(v1, v3)

(vn−1, vn)



For one Edge Insertion or Deletion

S ⋅ ϕ1 + S ⋅ ϕ2 = S ⋅ (ϕ1 + ϕ2)

Update
Sketch of current graph Sketch of updated graph

Just find  and add to current sketchS ⋅ ϕupdate



Multi-Round Adaptive Sketching

Decide on sketch matrix 
  for first roundS1

Continue for next round

Get sketch of graph S1 ⋅ ϕ

Decide next sketch matrix  

for second round 
based on 

S2

S1 ⋅ ϕ
-round adaptive sketching gives 

-pass dynamic streaming algorithm
r

r



Sketching Algorithm

In  poly  space, there is an -pass  
algorithm for -approximation of maximum matching.

O(n log n) O(log log n)
O(1)

Adaptive sketching algorithm 
-size sketches 

-rounds
Õ(n)
O(log log n)



Implication for MPC model

MPC algorithm with machines of  memory and  
 working memory in  rounds

Õ(n)
Õ(n) O(log log n)

[Czumaj-Lacki-Madry-Mitrovic-Onak-Sankowski ’18, 
Ghaffari-Gouleakis-Konrad-Mitrovic-Rubinfeld ’18, 

Assadi-Bateni-Bernstein-Mirrokni-Stein ’19, 
Behnezhad-Hajiaghayi-Harris ’19]



Our Techniques



One Phrase Summary

Connection between Matching and Maximal Independent Sets



Maximal Independent Set (MIS)

Any independent set 
which is NOT a proper subset 

of another independent set

Finding them is easy!



Greedy MIS
• Pick an arbitrary ordering of vertices  
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Random Greedy MIS (RGMIS)
• Pick a random ordering of vertices  
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Random Greedy MIS (RGMIS)
• Pick a random ordering of vertices  


• Add the first existing vertex in the ordering to MIS 


• Remove its neighbors and their edges


• Repeat the process among remaining vertices

Can be implemented in -passes in  space O(log log n) Õ(n)
[Ahn-Cormode-Guha-McGregor-Wirth ’15]
This is tight [Assadi-Konrad-Naidu-S ’24]



Back to Our Results …



Our Results

 upper bound 
for matchings 

in dynamic streams

O(log log n)
MIS in  passes 

[Ahn-Cormode-Guha-McGregor-Wirth ’15]
O(log log n)

Machinery developed to  
prove  pass  

lower bound for MIS 
[Assadi-Konrad-Naidu-S ’24]

Ω(log log n)  lower bound 
for matchings  

in dynamic streams

Ω(log log n)

Insertion Only Streams



Plan for the rest of the talk

• Fractional matching and Vertex Cover


• Connections to MIS


• Our reduction to MIS


• Challenges of implementation



Plan for the rest of the talk

• Fractional matching and Vertex Cover 

• Connections to MIS


• Our reduction to MIS


• Challenges of implementation



Fractional Matching

1/2

1/2

1/2
1/3

1

1/3

1/60




For all vertices ,  

 
With  for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

0



Fractional Matching

Sample each edge w.p.  
 independentlyxe ⋅ O(log n)

Set of sampled edges 
contains -approx 

integral matching
O(1)




For all vertices ,  

 
With  for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

Swallows integrality gap



Fractional Matching




For all vertices ,  

 
With  for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

We try to find only  
a fractional matching



Dual of Fractional Matching - Vertex Cover (VC)




For all edges ,  
 

With  for all vertices

min ∑
u

yu

(u, v) yu + yv ≥ 1

0 ≤ yu ≤ 1

1/2

1/2

1

1
1

1/2

0

0



Plan for the rest of the talk

• Fractional matching and Vertex Cover


• Connections to MIS 

• Our reduction to MIS


• Challenges of implementation



(Obvious) Connection to MIS?

MIS



(Obvious) Connection to MIS?

MIS Vertex Cover

How good a vertex cover?



Generally not a good VC

Minimum VC Complement of MIS



How about Complement of 
RGMIS?



Random Greedy MIS (RGMIS) - -apx VC2

Random  
Greedy 

MIS

2-apx 
VC 

in expectation

[Veldt ’24]



Finding RGMIS

• Pick a random ordering of vertices  


• Add the first existing vertex in the ordering to MIS 


• Remove its neighbors and their edges


• Repeat the process among remaining vertices
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Finding RGMIS

• Pick a random ordering of vertices  


• Add the first existing vertex in the ordering to MIS 


• Add its neighbors to VC and remove their edges


• Repeat the process among remaining vertices

This gives a 2-approx VC in expectation!

[Veldt ’24]

By an application of LP Duality



Proof of [Veldt ’24]

Random  
 



2-apx 


Focus on edges which “send” vertices to VC



Process vertices in the order of  
the permutation

• Pick a random ordering of 
vertices  


• Add the first existing vertex in 
the ordering to MIS 


• Add its neighbors to VC and 
remove their edges


• Repeat the process among 
remaining vertices

Proof of [Veldt ’24]



• Pick a random ordering of 
vertices  


• Add the first existing vertex in 
the ordering to MIS 


• Add its neighbors to VC and 
remove their edges


• Repeat the process among 
remaining vertices

Proof of [Veldt ’24]



• Pick a random ordering of 
vertices  


• Add the first existing vertex in 
the ordering to MIS 


• Add its neighbors to VC and 
remove their edges


• Repeat the process among 
remaining vertices

Proof of [Veldt ’24]



Edge which sends the blue vertex to VC

• Pick a random ordering of 
vertices  


• Add the first existing vertex in 
the ordering to MIS 


• Add its neighbors to VC and 
remove their edges


• Repeat the process among 
remaining vertices

Proof of [Veldt ’24]



Edges which send blue vertices to VC

• Pick a random ordering of 
vertices  


• Add the first existing vertex in 
the ordering to MIS 


• Add its neighbors to VC and 
remove their edges


• Repeat the process among 
remaining vertices

Proof of [Veldt ’24]



Edges which send blue vertices to VC

• Pick a random ordering of 
vertices  


• Add the first existing vertex in 
the ordering to MIS 


• Add its neighbors to VC and 
remove their edges


• Repeat the process among 
remaining vertices

Proof of [Veldt ’24]



After we process:

• Pick a random ordering of 
vertices  


• Add the first existing vertex in 
the ordering to MIS 


• Add its neighbors to VC and 
remove their edges


• Repeat the process among 
remaining vertices

Proof of [Veldt ’24]



In this random ordering …

Focus on edges which “send” vertices to VC



In another random ordering …

Focus on edges which “send” vertices to VC



Yet another random ordering …

Focus on edges which “send” vertices to VC



: Probability of edge 
sending a vertex to VC  

(over the random 
ordering)

pe

Proof of [Veldt ’24]



: Probability of edge 
sending a vertex to VC  

(over the random 
ordering)

pe

Proof of [Veldt ’24]

Expected size of VC = ∑
e

pe



RGMIS to Fractional Matching




For all vertices ,  

 
With  for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1
 is a fractional matchingxe = pe/2
[Veldt ’24]

Expected size of VC = ∑
e

pe



• Find MIS using [ACGMW ’15] in  passes


• Find the edges which are sending vertices to VC - each edge is sampled 
here with probability 


• Try to find a large matching inside them

O(log log n)

2 ⋅ xe

So are we done?

Sampling Process is not independent!

Sampling according  
to fractional matching 

is enough to find 
-approx 

integral matching
O(1)



The Issue of the Star

Edges we get from each run of MIS are 
a bunch of stars



Plan for the rest of the talk

• Fractional matching and Vertex Cover


• Connections to MIS


• Our reduction to MIS  

• Challenges of implementation



Plan for the rest of the talk

• Fractional matching and Vertex Cover


• Connections to MIS


• Our reduction to MIS (from one run of RGMIS algorithm) 

• Challenges of implementation



Our Reduction

Whenever a vertex goes to VC, 
focus on edges to the remaining graph.



Our Reduction

When vertex  goes to VC, 
add a mass of   

to the edges between  and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*
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When vertex  goes to VC, 
add a mass of   

to the edges between  and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1

Our Reduction



Back to fractional matching LP

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1 


For all vertices ,  

 
With  for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

Do we satisfy LP with large value?



Back to fractional matching LP

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1 


For all vertices ,  

 
With  for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ O(1)

0 ≤ xe ≤ 1

Do we approximately satisfy LP with large value?



Value of Fractional Matching

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1
Fractional Matching value:∑

e

xe

Every time a vertex is added to VC, 
matching value increases by 1 

(we add  value to  
 vertices)

1/deg(u)
deg(u)



Fractional Matching value:∑
e

xe

1
1/4

1/4

1/4

1/4 Every time a vertex is added to VC, 
matching value increases by 1 

(we add  value to  
 vertices)

1/deg(u)
deg(u)

Value of Fractional Matching



Value of Fractional Matching

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1
Fractional Matching value:∑

e

xe

Same as the size of the Vertex Cover  
Larger than size of maximum matching

*

-for now, this is not true in the actual reduction*



1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1

For all vertices ,  

 
With  for all edges

u ∑
e∋u

xe ≤ O(1)

0 ≤ xe ≤ 1

Vertex Constraints - Why is this a matching?



Source of Mass for a Vertex

1
1/4

1/4

1/4

1/4
• From itself - if it is added to VC 

(this value is exactly 1)



Source of Mass for a Vertex

• From itself - if it is added to VC 
(this value is exactly 1)


• From its neighbors?

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1



Main Observation

In some iteration, if we expect a vertex to receive a lot of mass from 
neighbors,


 
we can expect it to be removed altogether



Probability that vertex is removed

Chosen to be in MIS Neighbor chosen to be in MIS

 probability1/n
u



Probability that vertex is removed

Chosen to be in MIS Neighbor chosen to be in MIS

 probability1/n  probabilitydeg(u)/n
u

Probability is  totally(deg(u) + 1)/n



Mass from Neighbors

u

v



Mass from Neighbors

• Probability of neighbor  sent to VC is 


• Mass added across edge  is 

v deg(v)/n

(u, v) 1/deg(v)

v

u

In expectation,  mass from each edge1/n

Total expected mass is deg(u)/n



If  gains a lot, it gets outu

For any vertex , in any iteration,  u

Expected mass from neighbors  Probability that  is removed≤ u



Gain a lot, then Get out Game

Random Variables  - mass gained at each iterationX1, X2, …, Xn

 - mass gained by vertex  at iteration Xi u i

Expected value of   Probability that all the later  with  are zero. Xi ≤ Xj j > i

Conditioned on any choice of ,X1, X2, …, Xi−1



Gain a lot, then Get out Game
Random Variables  with:X1, X2, …, Xn

Expected value of   Probability that all the later  with  are zero. Xi ≤ Xj j > i

We want to bound expectation of sum to be  and  
variance of sum to be some expectation.

O(1)
O(1) ⋅

Conditioned on any choice of ,X1, X2, …, Xi−1



This does not happen …

u



This does not happen …

Expectation of mass is still . O(1)u

Variance of mass is  ≈ n

W.p.  mass received by  is = 1/n u ≈ n/21/2

1/2

1/2



Gain a lot, then Get out Game
Random Variables  with:X1, X2, …, Xn

Expected value of   Probability that all the later  with  are zero. Xi ≤ Xj j > i

Conditioned on any choice of ,X1, X2, …, Xi−1

Need a good absolute bound on each  firstXi



Final Reduction

When vertex  goes to VC, 
add a mass of   
to the edges from  to  

lower-degree neighbors of   
in the remaining graph.

u
1/deg(u)

u
u



Final Reduction

When vertex  goes to VC, 
add a mass of   
to the edges from  to  

lower-degree neighbors of   
in the remaining graph.

u
1/deg(u)

u
u

1/3

0

0



Bounding Mass at each Iteration

Mass added across edge  is  only if 
 is at most 

(u, v) 1/deg(v)
deg(u) deg(v)

v

u

1/deg(v) ≤ 1/deg(u)

Total mass is at most  at each iteration1



Gain a lot, then Get out Game

Random Variables :X1, X2, …, Xn

 - mass gained by vertex  at iteration  with each Xi u i Xi ≤ 1

Expected value of   Probability that all the later  with  are zero. Xi ≤ Xj j > i

We can bound expectation of sum to be  and  
variance of sum to be some expectation.

O(1)
O(1) ⋅



Value of Fractional Matching?

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1
Fractional Matching value:∑

e

xe

Same as the size of the Vertex Cover

Half of size of Vertex Cover 
in expectation



Back to Fractional Matching LP




For all vertices ,  

 
With  for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

We satisfy LP with large value in expectation.

  half of expected size of VC


For all vertices ,  

 
With  for all edges

∑
e

xe ≥

u ∑
e∋u

xe ≤ O(1)

0 ≤ xe ≤ 1



Plan for the rest of the talk

• Fractional matching and Vertex Cover


• Connections to MIS


• Our reduction to MIS 


• Challenges of implementation



RGMIS Algorithm

u

v

[ACGMW ’15] only needs to look at  
edges in the neighborhood of u



What do we want?

u

v
[ACGMW ’15] only needs to look at  

edges in the neighborhood of u

We add mass to edges in 
 2-neighborhood of u

w

We can get this (somehow)



What more do we want?

1/3

0

0
When vertex  goes to VC, 

add a mass of   
to the edges from  to  

lower-degree neighbors of   
in the remaining graph.

u
1/deg(u)

u
u

This we don’t get - we do not implement 
this reduction exactly



1/3

1/3

1/3

Sample ALL THE EDGES 
in the 2-neighborhood 
with the same value

What we actually implement (briefly)



What we actually implement (briefly)

1/3
0 ≤ 1/3

0 ≤ 1/3

We sample with a higher probability 
than in our fractional matching

Sample ALL THE EDGES 
in the 2-neighborhood 
with the same value



What we actually implement (briefly)

1/3
0 ≤ 1/3

0 ≤ 1/3

Support will contain a large matching!

We sample with a higher probability 
than in our fractional matching

Sample ALL THE EDGES 
in the 2-neighborhood 
with the same value



What we actually implement (briefly)

1/3
0 ≤ 1/3

0 ≤ 1/3

Do we sample too many edges?

Well, no. 

Sample ALL THE EDGES 
in the 2-neighborhood 
with the same value



Concluding Remarks



Takeaways

• Inspired by [Veldt ’24] reduction to vertex cover, generalized for matchings


• Using this reduction we gave a sketching algorithm for -apx 
matching in  rounds with  size sketches

O(1)
O(log log n) Õ(n)

We gave a reduction from random greedy MIS  
to -approximate maximum matchingO(1)



Conclusion

Exploiting connections to maximal independent sets  
[Veldt ’24, ACGMW ’15, AKNS ’24]


Pass Complexity of -approx maximum 
 matching for any constant  in dynamic streaming in 

 poly  space is 

(1 + ϵ)
ϵ

O(n log n) Θ(log log n)



Conclusion

• Dependence on  for -approx? Currently poly in .  
[Ahn-Guha ’18, Assadi-Liu-Tarjan ’21, Chen-Kol-Paramonov-Saxena-
Song-Yu ’21, Assadi-S ’23, Shang-En Huang Hsin-Hao Su ’23]


• Better upper bounds or conditional lower bounds for MPC model?

ϵ (1 + ϵ) 1/ϵ

Thank You!

Open Questions: 

Pass Complexity of -approx maximum 
 matching for any constant  in dynamic streaming in 

 poly  space is 

(1 + ϵ)
ϵ

O(n log n) Θ(log log n)


