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Matchings in Graphs

o/o G = (V,E)
n vertices and m edges



Matchings in Graphs

O
O/ /O M C E of edges
O At most one edge
Incident to every vertex



Dynamic Streams

[Ahn-Guha-McGregor '12]

G=(V,L)

Vertices are known.
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Edges are given as a stream of
Insertions and deletions



Dynamic Streams

[Ahn-Guha-McGregor '12]

G=(V,E)

@
@
@ @
~ ¢, added
1 ¢; added
o
~ ¢, added
¢, deleted
@

Edges are given as a stream of
Insertions and deletions

Vertices are known.

Space: O(n poly log n)
May be repeated for multiple passes



Matching in Dynamic Streams

 Multi-Pass Algorithms

[Ahn-Guha-McGregor ’12, Ahn-Guha '15, Assadi '24]

e Single Pass Results

[Konrad 15, Chitnis-Cormode-Hajiaghayi-Monemizadeh 15,
Assadi-Khanna-Li-Yaroslavisev '16, Chitnhis-Cormode-Esfandiari-

Hajiaghayi-McGregor-Monemizadeh-Vorotnikova 16, Assadi-
Khanna-Li ’17, Dark-Konrad '20, Assadi-Shah '22]



Focus on O(1)-approx




Boosting Approximation Ratio

IMcGregor '05,

Any algorithm for matching Gamlath-Kale-Mitrovic-Svensson ‘19]
O(1)-approximation (1 + €)-approximation
P passes O_(p) passes
s space O _(s) space

Unweighted Weighted



Main Question

Number of passes?

Semi-streaming space: O(n poly log n) O(1)-approximation ratio



Prior Work on O(1)-approx

[Lattanzi—Moseley—§uri—VassiIvitskii—1 1, Number of Passes
Ahn-Guha-McGregor ’12, Ahn-Guha '15, Assadi '24]

] l O(log n/loglog n)

This Work —— ©(loglog n)

[ [ > |

[Assadi-Khanna-Li-Yaroslavtsev ‘16 , Dark-Konrad '20]




Our Results

In O(n poly log n) space, there is an O(log log n)-pass

algorithm for O(1)-approximation of maximum matching.
Reminder: We can boost to (1 + €) for any constant ¢

In O(n poly log n) space, for any constant ¢ > 1,
any c-approximation of maximum matching
requires (2(log log n) passes.



This Talk: Only Upper Bound

In O(n poly log n) space, there is a O(log log n)-pass
algorithm for O(1)-approximation of maximum matching.

This Is a sketching algorithm.



Graph Sketching Technique

Sketch of the
(v, Vo) graph
(V15 v3) S-oe 7’

Sketch Matrix
= ZSX(S)

(Vn— |E Vn)

Incidence Vector of edges

$ € 10,112



Graph Sketching Technique

Sketch of the
(v, Vo) graph
(V15 v3) S-oe 7’

Not explicitly stored
Sketch Matrix Stored

S € 7x(5) in O(s)

(Vn— |E Vn)

Incidence Vector of edges

$ € 10,112



For one Edge Insertion or Deletion

S-Pp1+S5-Pp,=5(¢+ P,)

VAR VN

Sketch of current graph Sketch of updated graph

Just find S - ¢ypdate @nd add to current sketch



Multi-Round Adaptive Sketching

Decide on sketch matrix

S for first round
: Get sketch of graph § - @

Continue for next round

\ Decide next sketch matrix §,

r-round adaptive sketching gives for second round
r-pass dynamic streaming algorithm based on S - ¢



Sketching Algorithm

In O(n poly log n) space, there is an O(log log n)-pass
algorithm for O(1)-approximation of maximum matching.

Adaptive sketching algorithm
O(n)-size sketches

O(log log n)-rounds



Implication for MPC model

[Czumaj-Lacki-Madry-Mitrovic-Onak-Sankowski ’18,
Ghaffari-Gouleakis-Konrad-Mitrovic-Rubinfeld 18,
Assadi-Bateni-Bernstein-Mirrokni-Stein ’19,
Behnezhad-Hajiaghayi-Harris '19]

MPC algorithm with machines of é(n) memory and
O(n) working memory in O(log log n) rounds



Our Techniques




One Phrase Summary

Connection between Matching and Maximal Independent Sets



Maximal Independent Set (MIS)

o« o

Any independent set
which is NOT a proper subset
of another independent set

Finding them is easy!



Greedy MIS

e Pick an arbitrary ordering of vertices
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e Add the first existing vertex in the ordering to MIS
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e Pick an arbitrary ordering of vertices
e Add the first existing vertex in the ordering to MIS
e Remove Iits neighbors and their edges

e Repeat the process among remaining vertices

6 © O ©® 0=




Greedy MIS

e Pick an arbitrary ordering of vertices
e Add the first existing vertex in the ordering to MIS
e Remove Iits neighbors and their edges

e Repeat the process among remaining vertices

6 ® O 0 0




Greedy MIS

e Pick an-e+etary ordering of vertices
e Add the first existing vertex in the ordering to MIS
e Remove Iits neighbors and their edges

e Repeat the process among remaining vertices

SN




Random Greedy MIS (RGMIS)

e Pick a random ordering of vertices
e Add the first existing vertex in the ordering to MIS
e Remove Iits neighbors and their edges

e Repeat the process among remaining vertices

SN




Random Greedy MIS (RGMIS)

e Pick a random ordering of vertices
e Add the first existing vertex in the ordering to MIS
e Remove Iits neighbors and their edges

e Repeat the process among remaining vertices

Can be implemented in O(log log n)-passes in O(n) space

[Ahn-Cormode-Guha-McGregor-Wirth ’15]
This is tight [Assadi-Konrad-Naidu-S ’24]



Back to Our Results ...



Our Results

O(log log n) upper bound
for matchings
IN dynamic streams

MIS in O(loglogn) passes — |
[Ahn-Cormode-Guha-McGregor-Wirth ’15]

Machinery developed to
4 P Q(log log n) lower bound
prove 2(log log n) pass for matehings
lower bound for MIS orma J

[Assadi-Konrad-Naidu-S ’24] in dynamic streams

Insertion Only Streams



Plan for the rest of the talk

* Fractional matching and Vertex Cover

e Connections to MIS

e QOur reduction to MIS

e Challenges of implementation
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Fractional Matching

max Z X, 1/2
¢ 1/3 AT
For all vertices u, Z x, <1 e

edu 1/2
0

With O < x, < 1 for all edges () s

1/2C)



Fractional Matching

e x, - O(log n) independently
For all vertices v, Z x, <1

eoU

max Z X Sample each edge w.p.

With 0 < x, < 1 for all edges Set of sampled edges
ontains (Q(1)-approx

Integral matching
Swallows integrality gap



Fractional Matching

max 2 X,

- We try to find only
-or all vertices 1, Z X, < 1 a fractional matching

eoU

With O < x, < 1 for all edges



Dual of Fractional Matching - Vertex Cover (VC)

1/2
minzyu 1/20/0 0 W (D 1
. 1 @

For all edges (i, V), y + vy, > 1 ()

. . @
With O <y < 1 for all vertices 0

(U
1/2



Plan for the rest of the talk

* Fractional matching and Vertex Cover

e Connections to MIS

e QOur reduction to MIS

e Challenges of implementation



(Obvious) Connection to MIS?

—



(Obvious) Connection to MIS?

Vertex Cover

—

How good a vertex cover?



Generally not a good VC

Minimum VC Complement of MIS




How about Complement of
RGMIS?



Random Greedy MIS (RGMIS) - 2-apx VC

[Veldt ’24]

Random 2-apXx

Greedy VC
MIS In expectation




Finding RGMIS

e Pick a random ordering of vertices
e Add the first existing vertex in the ordering to MIS
* Remove its neighbors and their edges

* Repeat the process among remaining vertices
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Finding RGMIS ...

e Pick a random ordering of vertices
e Add the first existing vertex in the ordering to MIS
e Add its neighbors to VC and remove their edges

* Repeat the process among remaining vertices

This gives a 2-approx VC in expectation!

By an application of LP Duality



Proof of [Veldt '24]

Focus on edges which “send” vertices to VC



Proof of [Veldt '24]

e Pick a random ordering of

vertices
_ _ * Add the first existing vertex in
Process vertices In the order of the ordering to MIS
the permUtatlcn e Add its neighbors to VC and

remove their edges

e Repeat the process among
remaining vertices

QM'Q C
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e Pick a random ordering of
vertices

e Add the first existing vertex in
the ordering to MIS

e Add its neighbors to VC and
remove their edges

e Repeat the process among
remaining vertices

(oA ee s




Proof of [Veldt '24]

e Pick a random ordering of
vertices

e Add the first existing vertex in
the ordering to MIS

e Add its neighbors to VC and
remove their edges

Edge which sends the blue vertex to VC

e Repeat the process among
remaining vertices

oA e s




Proof of [Veldt '24]

e Pick a random ordering of
vertices

e Add the first existing vertex in
the ordering to MIS

e Add its neighbors to VC and
remove their edges

Edges which send blue vertices to VC

e Repeat the process among
remaining vertices

(TR e




Proof of [Veldt '24]

e Pick a random ordering of
vertices

e Add the first existing vertex in
the ordering to MIS

e Add its neighbors to VC and
remove their edges

Edges which send blue vertices to VC

e Repeat the process among
remaining vertices




Proof of [Veldt '24]

e Pick a random ordering of
vertices

e Add the first existing vertex in
the ordering to MIS

After we process: e Add its neighbors to VC and
remove their edges

e Repeat the process among
remaining vertices

0—Q—0—9




In this random ordering ...

-
-
-
-
Focus on edges which “send” vertices to VC
-
-



In another random ordering ...

-
-
-
) -
Focus on edges which “send” vertices to VC
-
-



Yet another random ordering ...

-
-
-
-
Focus on edges which “send” vertices to VC
-
-



Proof of [Veldt '24]

(over the random
ordering)

p,- Probabillity of edge f E é:
sending a vertex to VC



Proof of [Veldt '24]

p,- Probability of edge
sending a vertex to VC
(over the random
ordering)

Expected size of VC = Z D,

€



RGMIS to Fractional Matching

Xe

max ¥

Expected size of VC = Z D, .
e For all vertices u, Z x, <1

e U

With 0 < x, < 1 for all edges
x, = p,/2 is a fractional matching — e = J

€
[Veldt '24]



So are we done?

 Find MIS using [ACGMW ’15] in O(log log n) passes

* Find the edges which are sending vertices to VC - each edge is sampled

here with probability 2 - x, '\

* Try to find a large matching inside them Sampling according

to fractional matching
IS enough to find

O(1)-approx
Sampling Process is not independent! integral matching



The Issue of the Star

/

Edges we get from each run of MIS are
a bunch of stars



Plan for the rest of the talk

* Fractional matching and Vertex Cover

e Connections to MIS

e Our reduction to MIS

e Challenges of implementation



Plan for the rest of the talk

Fractional matching and Vertex Cover
Connections to MIS
Our reduction to MIS (from one run of RGMIS algorithm)

Challenges of implementation



Our Reduction

Whenever a vertex goes to VC,
focus on edges to the remaining graph.



Our Reduction

(_
()
When vertex u goes to VC,
(
add a mass of 1/deg(u)
to the edges between 17 and the
remaining graph®.
@

*- we only add the mass to lower degree neighbors
for technical reasons we will see later
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1/4 @
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Our Reduction

e When vertex u goes to VC,
A add a mass of 1/deg(u)
- to the edges between 17 and the
remaining graph®.

1/3
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for technical reasons we will see later



Our Reduction

1/4 -
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Our Reduction

When vertex u goes to VC,
add a mass of 1/deg(u)
to the edges between 17 and the
remaining graph®.

1/4 1/3

1/3

*- we only add the mass to lower degree neighbors
for technical reasons we will see later



Back to fractional matching LP

X

max 3,

/ 1/4/
1 : 'I TN
! € . d
) For all vertices 1, x <1
1/4 2%

eou

1/4 1/3

With O < x, < 1 for all edges
1/3

Do we satisfy LP with large value®




Back to fractional matching LP

X

f 1/4 1 max ; e
For all vertices u, x, < 0O(1)
1/4 Z )
=1/
1/4 1/3
With O < x, < 1 for all edges
1/3

Do we approximately satisfy LP with large value?




Value of Fractional Matching

Fractional Matching value; Z X

€

€

1/4 1
:
1/4 Every time a vertex is added to VC,
1/4 1/3 matching value increases by 1
1/3

(we add 1/deg(u) value to
deg(u) vertices)



Value of Fractional Matching

Fractional Matching value; Z X

€

€

o
1/4 >
1 9
1/4 Every time a vertex is added to VC,
1/4
o
o

matching value increases by 1
(we add 1/deg(u) value to

deg(u) vertices)



Value of Fractional Matching

Fractional Matching value; Z X

€

/ 1/4 1

1 e

174 Same as the size of the Vertex Cover*
1/4 1/3 Larger than size of maximum matching
1/3

*-for now, this is not true in the actual reduction




Vertex Constraints - Why is this a matching?

For all vertices u, 2 x, < 0O(1)

=17

1/4 1/3 With O < x, < 1 for all edges

1/3




Source of Mass for a Vertex

e From itself - if it is added to VC
(this value is exactly 1)



Source of Mass for a Vertex

 From itself - if it is added to VC
(this value is exactly 1)

~1/4
* From its neighbors”?




Main Observation

In some iteration, if we expect a vertex to receive a lot of mass from
neighbors,

we can expect it to be removed altogether



Probability that vertex is removed

Chosen to be in MIS Neighbor chosen to be in MIS

1 /n probability




Probability that vertex is removed

Chosen to be in MIS Neighbor chosen to be in MIS

-
-
&
-
-
-
. 2
2

1 /n probability deg(u)/n probability
u

S
"~
~

Probability is (deg(u) + 1)/n totally

o~
"~
~



Mass from Neighbors

s
s
~'

"~
i
.'



Mass from Neighbors

» Probability of neighbor v sent to VC is deg(v)/n

» Mass added across edge (1, v) is 1/deg(v)

In expectation, 1/n mass from each edge

Total expected mass is deg(u)/n




If 1 gains a lot, It gets out

For any vertex i, in any Iiteration,

Expected mass from neighbors < Probability that u is removed



Gain a lot, then Get out Game

X; - mass gained by vertex u at iteration 1

Random Variables X, X,, ..., X - mass gained at each iteration

Conditioned on any choice of X, X, ..., X._,

l_

Expected value of X; < Probability that all the later X; with j > 1 are zero.



Gain a lot, then Get out Game

Random Variables X, X,, ..., X, with:

Conditioned on any choice of X, X, ..., X._,

l_

Expected value of X; < Probability that all the later X; with j > 1 are zero.

We want to bound expectation of sum to be O(1) and
variance of sum to be some O(1) - expectation.



This does not happen ...




This does not happen ...

1/2 W.p. = 1/n mass received by i is ~ n/2

Expectation of mass is still O(1).

1/2

Variance of massis ~ n




Gain a lot, then Get out Game

Random Variables X, X,, ..., X, with:

Conditioned on any choice of X, X,, ..., X._,

l_

Expected value of X; < Probability that all the later X; with j > 1 are zero.

Need a good absolute bound on each X; first



Final Reduction

When vertex 1 goes to VC,

(_
(_
(- add a mass of 1/deg(u)
(L to the edges from i to
lower-degree neighbors of u
In the remaining grapnh.

@
@



Final Reduction

When vertex 1 goes to VC,

o
1/3
0 add a mass of 1/deg(u)
) @ to the edges from u to
lower-degree neighbors of u
0
-

INn the remaining grapnh.



Bounding Mass at each lteration

Mass added across edge (1, v) is 1/deg(v) only if
deg(u) is at most deg(v)

1/deg(v) < 1/deg(u)

Total mass is at most 1 at each iteration




Gain a lot, then Get out Game

------
e’ i

~ g
........

Random Variables X, X,, ..., X :

Expected value of X; < Probability that all the later X; with j > 1 are zero.

We can bound expectation of sum to be O(1) and
variance of sum to be some O(1) - expectation.



Value of Fractional Matching?

Fractional Matching value; Z X

€

€

Half of size of Vertex Cover
IN expectation



Back to Fractional Matching LP

max Z X, 2 X, 2 half of expected size of VC
€ €
For all vertices u, Z x, <1 For all vertices u, Z x, < 0O(1)
=1 =1
With O < x, < 1 for all edges With O < x, < 1 for all edges

We satisfy LP with large value in expectation.



Plan for the rest of the talk

* Fractional matching and Vertex Cover

e Connections to MIS

e Our reduction to MIS

 Challenges of implementation



RGMIS Algorithm

/ [ACGMW ’15] only needs to look at
edges in the neighborhood of u



What do we want?

W
O
IACGMW ’15] only needs to look at
/ edges in the neighborhood of u

We add mass to edges In
2-neighborhood of u

We can get this (somehow)



What more do we want?

When vertex 1 goes to VC,

o
1/3
0 add a mass of 1/deg(u)
) (U to the edges from u to
lower-degree neighbors of u
0

INn the remaining grapnh.

This we don’t get - we do not implement
this reduction exactly



What we actually implement (briefly)

o
1/3
1/3
) ®
o

Sample ALL THE EDGES
In the 2-neighborhood
with the same value
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What we actually implement (briefly)

Sample ALL THE EDGES
0<1/3 in the 2-neighborhood
with the same value

We sample with a higher probabillity
® than in our fractional matching

- Support will contain a large matching!



What we actually implement (briefly)

Sample ALL THE EDGES
0<1/3 in the 2-neighborhood
with the same value

Do we sample too many edges?

Well, no.



Concluding Remarks




Takeaways

We gave a reduction from random greedy MIS

to O(1)-approximate maximum matching

* |nspired by [Veldt 24| reduction to vertex cover, generalized for matchings

 Using this reduction we gave a sketching algorithm for O(1)-apx
matching in O(log log n) rounds with O(n) size sketches



Conclusion

Pass Complexity of (1 4+ €)-approx maximum

matching for any constant € in dynamic streaming iIn
O(n poly log n) space is ®(log log n)

Exploiting connections to maximal independent sets
[Veldt ’24, ACGMW ’15, AKNS ’24]



Conclusion

Pass Complexity of (1 4+ €)-approx maximum

matching for any constant € in dynamic streaming iIn
O(n poly log n) space is ®(log log n)

Open Questions:

» Dependence on ¢ for (1 + €)-approx? Currently poly in 1/¢.

[Ahn-Guha ’18, Assadi-Liu-Tarjan '21, Chen-Kol-Paramonov-Saxena-
Song-Yu ‘21, Assadi-S '23, Shang-En Huang Hsin-Hao Su '23]

e Better upper bounds or conditional lower bounds for MPC model?

Thank You!



