
Maximum Matching in 
 Passes in  

Dynamic Streams
O(log log n)

Janani Sundaresan

Joint Work with

Christian Konrad
Sepehr Assadi
 Kheeran K. Naidu
Soheil Behnezhad

Matchings in Graphs

G = (V, E)
 vertices and edgesn m

Matchings in Graphs

 of edges  
 

At most one edge  
incident to every vertex

M ⊆ E

Dynamic Streams

Edges are given as a stream of  
insertions and deletions

 addede3

 deletede1

 addede1

G = (V, E)
Vertices are known. [Ahn-Guha-McGregor ’12]

 addede2

e1

e2

e3

Dynamic Streams

Edges are given as a stream of  
insertions and deletions

 addede3

 deletede1

G = (V, E)
Vertices are known.

Space: poly O(n log n)

[Ahn-Guha-McGregor ’12]

May be repeated for multiple passes

 addede2

 addede1

Matching in Dynamic Streams

• Multi-Pass Algorithms 
 
[Ahn-Guha-McGregor ’12, Ahn-Guha ’15, Assadi ’24]

• Single Pass Results 
 
[Konrad ’15, Chitnis-Cormode-Hajiaghayi-Monemizadeh ’15,
Assadi-Khanna-Li-Yaroslavtsev ’16, Chitnis-Cormode-Esfandiari-
Hajiaghayi-McGregor-Monemizadeh-Vorotnikova ’16, Assadi-
Khanna-Li ’17, Dark-Konrad ’20, Assadi-Shah ’22]

Focus on -approxO(1)

Boosting Approximation Ratio
[McGregor ’05, 

 Gamlath-Kale-Mitrovic-Svensson ‘19]

-approximation 
 passes 
 space

O(1)
p
s

-approximation 
 passes 
 space

(1 + ϵ)
Oϵ(p)
Oϵ(s)

Unweighted Weighted

Any algorithm for matching

Main Question

Number of passes?

Semi-streaming space: poly O(n log n) -approximation ratioO(1)

Prior Work on -approxO(1)

O(log n/log log n)

[Lattanzi-Moseley-Suri-Vassilvitskii-11,

-11

Ahn-Guha-McGregor ’12, Ahn-Guha ’15, Assadi ’24]

> 1
[Assadi-Khanna-Li-Yaroslavtsev ‘16 , Dark-Konrad ’20]

O(log log n)This Work

Number of Passes

Θ(log log n)

Our Results

In poly space, there is an -pass  
algorithm for -approximation of maximum matching.

O(n log n) O(log log n)
O(1)

In poly space, for any constant > 1,  
any -approximation of maximum matching  

requires passes.

O(n log n) c
c

Ω(log log n)

Reminder: We can boost to for any constant (1 + ϵ) ϵ

This Talk: Only Upper Bound

In poly space, there is a -pass  
algorithm for -approximation of maximum matching.

O(n log n) O(log log n)
O(1)

This is a sketching algorithm.

Graph Sketching Technique

Sketch Matrix 
S ∈ ℤs×(n

2) =

Sketch of the  
graph 

S ⋅ ϕ ∈ ℤs

Incidence Vector of edges 
ϕ ∈ {0,1}(n

2)

(v1, v2)
(v1, v3)

(vn−1, vn)

Graph Sketching Technique

Sketch Matrix 
S ∈ ℤs×(n

2) =

Sketch of the  
graph 

S ⋅ ϕ ∈ ℤs

Not explicitly stored
Stored 
in Õ(s)

Incidence Vector of edges 
ϕ ∈ {0,1}(n

2)

(v1, v2)
(v1, v3)

(vn−1, vn)

For one Edge Insertion or Deletion

S ⋅ ϕ1 + S ⋅ ϕ2 = S ⋅ (ϕ1 + ϕ2)

Update
Sketch of current graph Sketch of updated graph

Just find and add to current sketchS ⋅ ϕupdate

Multi-Round Adaptive Sketching

Decide on sketch matrix 
 for first roundS1

Continue for next round

Get sketch of graph S1 ⋅ ϕ

Decide next sketch matrix

for second round 
based on

S2

S1 ⋅ ϕ
-round adaptive sketching gives 

-pass dynamic streaming algorithm
r

r

Sketching Algorithm

In poly space, there is an -pass  
algorithm for -approximation of maximum matching.

O(n log n) O(log log n)
O(1)

Adaptive sketching algorithm 
-size sketches 

-rounds
Õ(n)
O(log log n)

Implication for MPC model

MPC algorithm with machines of memory and  
 working memory in rounds

Õ(n)
Õ(n) O(log log n)

[Czumaj-Lacki-Madry-Mitrovic-Onak-Sankowski ’18, 
Ghaffari-Gouleakis-Konrad-Mitrovic-Rubinfeld ’18, 

Assadi-Bateni-Bernstein-Mirrokni-Stein ’19, 
Behnezhad-Hajiaghayi-Harris ’19]

Our Techniques

One Phrase Summary

Connection between Matching and Maximal Independent Sets

Maximal Independent Set (MIS)

Any independent set 
which is NOT a proper subset 

of another independent set

Finding them is easy!

Greedy MIS
• Pick an arbitrary ordering of vertices

Greedy MIS
• Pick an arbitrary ordering of vertices

• Add the first existing vertex in the ordering to MIS

Greedy MIS
• Pick an arbitrary ordering of vertices

• Add the first existing vertex in the ordering to MIS

• Remove its neighbors and their edges

Greedy MIS
• Pick an arbitrary ordering of vertices

• Add the first existing vertex in the ordering to MIS

• Remove its neighbors and their edges

• Repeat the process among remaining vertices

Greedy MIS
• Pick an arbitrary ordering of vertices

• Add the first existing vertex in the ordering to MIS

• Remove its neighbors and their edges

• Repeat the process among remaining vertices

Greedy MIS
• Pick an arbitrary ordering of vertices

• Add the first existing vertex in the ordering to MIS

• Remove its neighbors and their edges

• Repeat the process among remaining vertices

Random Greedy MIS (RGMIS)
• Pick a random ordering of vertices

• Add the first existing vertex in the ordering to MIS

• Remove its neighbors and their edges

• Repeat the process among remaining vertices

Random Greedy MIS (RGMIS)
• Pick a random ordering of vertices

• Add the first existing vertex in the ordering to MIS

• Remove its neighbors and their edges

• Repeat the process among remaining vertices

Can be implemented in -passes in space O(log log n) Õ(n)
[Ahn-Cormode-Guha-McGregor-Wirth ’15]
This is tight [Assadi-Konrad-Naidu-S ’24]

Back to Our Results …

Our Results

 upper bound 
for matchings 

in dynamic streams

O(log log n)
MIS in passes 

[Ahn-Cormode-Guha-McGregor-Wirth ’15]
O(log log n)

Machinery developed to  
prove pass  

lower bound for MIS 
[Assadi-Konrad-Naidu-S ’24]

Ω(log log n) lower bound 
for matchings  

in dynamic streams

Ω(log log n)

Insertion Only Streams

Plan for the rest of the talk

• Fractional matching and Vertex Cover

• Connections to MIS

• Our reduction to MIS

• Challenges of implementation

Plan for the rest of the talk

• Fractional matching and Vertex Cover

• Connections to MIS

• Our reduction to MIS

• Challenges of implementation

Fractional Matching

1/2

1/2

1/2
1/3

1

1/3

1/60

For all vertices ,  

 
With for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

0

Fractional Matching

Sample each edge w.p.  
 independentlyxe ⋅ O(log n)

Set of sampled edges
contains -approx 

integral matching
O(1)

For all vertices ,  

 
With for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

Swallows integrality gap

Fractional Matching

For all vertices ,  

 
With for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

We try to find only  
a fractional matching

Dual of Fractional Matching - Vertex Cover (VC)

For all edges ,  
 

With for all vertices

min ∑
u

yu

(u, v) yu + yv ≥ 1

0 ≤ yu ≤ 1

1/2

1/2

1

1
1

1/2

0

0

Plan for the rest of the talk

• Fractional matching and Vertex Cover

• Connections to MIS

• Our reduction to MIS

• Challenges of implementation

(Obvious) Connection to MIS?

MIS

(Obvious) Connection to MIS?

MIS Vertex Cover

How good a vertex cover?

Generally not a good VC

Minimum VC Complement of MIS

How about Complement of
RGMIS?

Random Greedy MIS (RGMIS) - -apx VC2

Random  
Greedy 

MIS

2-apx 
VC 

in expectation

[Veldt ’24]

Finding RGMIS

• Pick a random ordering of vertices

• Add the first existing vertex in the ordering to MIS

• Remove its neighbors and their edges

• Repeat the process among remaining vertices

Finding RGMIS

• Pick a random ordering of vertices

• Add the first existing vertex in the ordering to MIS

• Add its neighbors to VC and remove their edges

• Repeat the process among remaining vertices

Finding RGMIS

• Pick a random ordering of vertices

• Add the first existing vertex in the ordering to MIS

• Add its neighbors to VC and remove their edges

• Repeat the process among remaining vertices

This gives a 2-approx VC in expectation!

[Veldt ’24]

By an application of LP Duality

Proof of [Veldt ’24]

Random  
 

2-apx 

Focus on edges which “send” vertices to VC

Process vertices in the order of  
the permutation

• Pick a random ordering of
vertices

• Add the first existing vertex in
the ordering to MIS

• Add its neighbors to VC and
remove their edges

• Repeat the process among
remaining vertices

Proof of [Veldt ’24]

• Pick a random ordering of
vertices

• Add the first existing vertex in
the ordering to MIS

• Add its neighbors to VC and
remove their edges

• Repeat the process among
remaining vertices

Proof of [Veldt ’24]

• Pick a random ordering of
vertices

• Add the first existing vertex in
the ordering to MIS

• Add its neighbors to VC and
remove their edges

• Repeat the process among
remaining vertices

Proof of [Veldt ’24]

Edge which sends the blue vertex to VC

• Pick a random ordering of
vertices

• Add the first existing vertex in
the ordering to MIS

• Add its neighbors to VC and
remove their edges

• Repeat the process among
remaining vertices

Proof of [Veldt ’24]

Edges which send blue vertices to VC

• Pick a random ordering of
vertices

• Add the first existing vertex in
the ordering to MIS

• Add its neighbors to VC and
remove their edges

• Repeat the process among
remaining vertices

Proof of [Veldt ’24]

Edges which send blue vertices to VC

• Pick a random ordering of
vertices

• Add the first existing vertex in
the ordering to MIS

• Add its neighbors to VC and
remove their edges

• Repeat the process among
remaining vertices

Proof of [Veldt ’24]

After we process:

• Pick a random ordering of
vertices

• Add the first existing vertex in
the ordering to MIS

• Add its neighbors to VC and
remove their edges

• Repeat the process among
remaining vertices

Proof of [Veldt ’24]

In this random ordering …

Focus on edges which “send” vertices to VC

In another random ordering …

Focus on edges which “send” vertices to VC

Yet another random ordering …

Focus on edges which “send” vertices to VC

: Probability of edge
sending a vertex to VC  

(over the random
ordering)

pe

Proof of [Veldt ’24]

: Probability of edge
sending a vertex to VC  

(over the random
ordering)

pe

Proof of [Veldt ’24]

Expected size of VC = ∑
e

pe

RGMIS to Fractional Matching

For all vertices ,  

 
With for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1
 is a fractional matchingxe = pe/2
[Veldt ’24]

Expected size of VC = ∑
e

pe

• Find MIS using [ACGMW ’15] in passes

• Find the edges which are sending vertices to VC - each edge is sampled
here with probability

• Try to find a large matching inside them

O(log log n)

2 ⋅ xe

So are we done?

Sampling Process is not independent!

Sampling according  
to fractional matching 

is enough to find 
-approx 

integral matching
O(1)

The Issue of the Star

Edges we get from each run of MIS are 
a bunch of stars

Plan for the rest of the talk

• Fractional matching and Vertex Cover

• Connections to MIS

• Our reduction to MIS

• Challenges of implementation

Plan for the rest of the talk

• Fractional matching and Vertex Cover

• Connections to MIS

• Our reduction to MIS (from one run of RGMIS algorithm)

• Challenges of implementation

Our Reduction

Whenever a vertex goes to VC, 
focus on edges to the remaining graph.

Our Reduction

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

Our Reduction

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

Our Reduction

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

1
1/4

1/4

1/4

1/4

Our Reduction

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

1
1/4

1/4

1/4

1/4

Our Reduction

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

1
1/4

1/4

1/4

1/4

Our Reduction

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

1/3
1/3

1/3

Our Reduction

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

Our Reduction

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

1

Our Reduction

When vertex goes to VC, 
add a mass of  

to the edges between and the  
remaining graph .

u
1/deg(u)

u
*

- we only add the mass to lower degree neighbors 
for technical reasons we will see later

*

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1

Our Reduction

Back to fractional matching LP

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1

For all vertices ,  

 
With for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

Do we satisfy LP with large value?

Back to fractional matching LP

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1

For all vertices ,  

 
With for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ O(1)

0 ≤ xe ≤ 1

Do we approximately satisfy LP with large value?

Value of Fractional Matching

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1
Fractional Matching value:∑

e

xe

Every time a vertex is added to VC, 
matching value increases by 1 

(we add value to  
 vertices)

1/deg(u)
deg(u)

Fractional Matching value:∑
e

xe

1
1/4

1/4

1/4

1/4 Every time a vertex is added to VC, 
matching value increases by 1 

(we add value to  
 vertices)

1/deg(u)
deg(u)

Value of Fractional Matching

Value of Fractional Matching

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1
Fractional Matching value:∑

e

xe

Same as the size of the Vertex Cover  
Larger than size of maximum matching

*

-for now, this is not true in the actual reduction*

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1

For all vertices ,  

 
With for all edges

u ∑
e∋u

xe ≤ O(1)

0 ≤ xe ≤ 1

Vertex Constraints - Why is this a matching?

Source of Mass for a Vertex

1
1/4

1/4

1/4

1/4
• From itself - if it is added to VC

(this value is exactly 1)

Source of Mass for a Vertex

• From itself - if it is added to VC
(this value is exactly 1)

• From its neighbors?

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1

Main Observation

In some iteration, if we expect a vertex to receive a lot of mass from
neighbors,

 
we can expect it to be removed altogether

Probability that vertex is removed

Chosen to be in MIS Neighbor chosen to be in MIS

 probability1/n
u

Probability that vertex is removed

Chosen to be in MIS Neighbor chosen to be in MIS

 probability1/n probabilitydeg(u)/n
u

Probability is totally(deg(u) + 1)/n

Mass from Neighbors

u

v

Mass from Neighbors

• Probability of neighbor sent to VC is

• Mass added across edge is

v deg(v)/n

(u, v) 1/deg(v)

v

u

In expectation, mass from each edge1/n

Total expected mass is deg(u)/n

If gains a lot, it gets outu

For any vertex , in any iteration, u

Expected mass from neighbors Probability that is removed≤ u

Gain a lot, then Get out Game

Random Variables - mass gained at each iterationX1, X2, …, Xn

 - mass gained by vertex at iteration Xi u i

Expected value of Probability that all the later with are zero. Xi ≤ Xj j > i

Conditioned on any choice of ,X1, X2, …, Xi−1

Gain a lot, then Get out Game
Random Variables with:X1, X2, …, Xn

Expected value of Probability that all the later with are zero. Xi ≤ Xj j > i

We want to bound expectation of sum to be and  
variance of sum to be some expectation.

O(1)
O(1) ⋅

Conditioned on any choice of ,X1, X2, …, Xi−1

This does not happen …

u

This does not happen …

Expectation of mass is still . O(1)u

Variance of mass is ≈ n

W.p. mass received by is = 1/n u ≈ n/21/2

1/2

1/2

Gain a lot, then Get out Game
Random Variables with:X1, X2, …, Xn

Expected value of Probability that all the later with are zero. Xi ≤ Xj j > i

Conditioned on any choice of ,X1, X2, …, Xi−1

Need a good absolute bound on each firstXi

Final Reduction

When vertex goes to VC, 
add a mass of  
to the edges from to  

lower-degree neighbors of  
in the remaining graph.

u
1/deg(u)

u
u

Final Reduction

When vertex goes to VC, 
add a mass of  
to the edges from to  

lower-degree neighbors of  
in the remaining graph.

u
1/deg(u)

u
u

1/3

0

0

Bounding Mass at each Iteration

Mass added across edge is only if
 is at most

(u, v) 1/deg(v)
deg(u) deg(v)

v

u

1/deg(v) ≤ 1/deg(u)

Total mass is at most at each iteration1

Gain a lot, then Get out Game

Random Variables :X1, X2, …, Xn

 - mass gained by vertex at iteration with each Xi u i Xi ≤ 1

Expected value of Probability that all the later with are zero. Xi ≤ Xj j > i

We can bound expectation of sum to be and  
variance of sum to be some expectation.

O(1)
O(1) ⋅

Value of Fractional Matching?

1
1/4

1/4

1/4

1/4

1/3
1/3

1/3

1
Fractional Matching value:∑

e

xe

Same as the size of the Vertex Cover

Half of size of Vertex Cover 
in expectation

Back to Fractional Matching LP

For all vertices ,  

 
With for all edges

max ∑
e

xe

u ∑
e∋u

xe ≤ 1

0 ≤ xe ≤ 1

We satisfy LP with large value in expectation.

 half of expected size of VC

For all vertices ,  

 
With for all edges

∑
e

xe ≥

u ∑
e∋u

xe ≤ O(1)

0 ≤ xe ≤ 1

Plan for the rest of the talk

• Fractional matching and Vertex Cover

• Connections to MIS

• Our reduction to MIS

• Challenges of implementation

RGMIS Algorithm

u

v

[ACGMW ’15] only needs to look at  
edges in the neighborhood of u

What do we want?

u

v
[ACGMW ’15] only needs to look at  

edges in the neighborhood of u

We add mass to edges in 
 2-neighborhood of u

w

We can get this (somehow)

What more do we want?

1/3

0

0
When vertex goes to VC, 

add a mass of  
to the edges from to  

lower-degree neighbors of  
in the remaining graph.

u
1/deg(u)

u
u

This we don’t get - we do not implement 
this reduction exactly

1/3

1/3

1/3

Sample ALL THE EDGES 
in the 2-neighborhood 
with the same value

What we actually implement (briefly)

What we actually implement (briefly)

1/3
0 ≤ 1/3

0 ≤ 1/3

We sample with a higher probability 
than in our fractional matching

Sample ALL THE EDGES 
in the 2-neighborhood 
with the same value

What we actually implement (briefly)

1/3
0 ≤ 1/3

0 ≤ 1/3

Support will contain a large matching!

We sample with a higher probability 
than in our fractional matching

Sample ALL THE EDGES 
in the 2-neighborhood 
with the same value

What we actually implement (briefly)

1/3
0 ≤ 1/3

0 ≤ 1/3

Do we sample too many edges?

Well, no.

Sample ALL THE EDGES 
in the 2-neighborhood 
with the same value

Concluding Remarks

Takeaways

• Inspired by [Veldt ’24] reduction to vertex cover, generalized for matchings

• Using this reduction we gave a sketching algorithm for -apx
matching in rounds with size sketches

O(1)
O(log log n) Õ(n)

We gave a reduction from random greedy MIS  
to -approximate maximum matchingO(1)

Conclusion

Exploiting connections to maximal independent sets  
[Veldt ’24, ACGMW ’15, AKNS ’24]

Pass Complexity of -approx maximum 
 matching for any constant in dynamic streaming in

 poly space is

(1 + ϵ)
ϵ

O(n log n) Θ(log log n)

Conclusion

• Dependence on for -approx? Currently poly in .  
[Ahn-Guha ’18, Assadi-Liu-Tarjan ’21, Chen-Kol-Paramonov-Saxena-
Song-Yu ’21, Assadi-S ’23, Shang-En Huang Hsin-Hao Su ’23]

• Better upper bounds or conditional lower bounds for MPC model?

ϵ (1 + ϵ) 1/ϵ

Thank You!

Open Questions:

Pass Complexity of -approx maximum 
 matching for any constant in dynamic streaming in

 poly space is

(1 + ϵ)
ϵ

O(n log n) Θ(log log n)

