Recent Progress on Euclidean (and Related) Spanners

Hung Le

UMassAmherst

Manning College of Information & Computer Sciences

Simons Institute, 01 Aug 2024

Metric *t*-Spanners

A t-spanner of a point set P in a metric space (X, d_X) is a graph $S = (P, E_S, d_X)$ such that:

$$d_S(u,v) \le t \cdot d_X(u,v) \qquad \forall u \ne v \in P \tag{1}$$

t is called the stretch of the spanner.

• Sparsity:
$$\frac{|E_S|}{|E(MST)|} = \frac{|E_S|}{n-1}$$
.
• Lightness $\frac{\omega(E_S)}{\omega(MST)}$

Graph *t*-Spanners

The *t*-spanner S is a spanning subgraph of the input graph G, preserving distances up to a factor of t.

Doubling Metrics

Two metrics: Euclidean $(\mathbb{R}^d, \|\cdot\|_2)$, and doubling metrics [Assouad;30][Gupta,Krauthgamer,Lee;03].

Doubling Metrics

Two metrics: Euclidean $(\mathbb{R}^d, \|\cdot\|_2)$, and doubling metrics [Assouad;30][Gupta,Krauthgamer,Lee;03].

Doubling Metrics

A metric (X, d_X) has doubling dimension d if any ball of radius R can be covered by 2^d balls of radius R/2, $\forall R \ge 0$.

n-point set in (ℝ^d, ∥·∥₂) has doubling dimension d + O(1).
 Any metric space has doubling dimension O(log n).

Basic Results: Metric Spanners

[Chew86] constructed O(1)-spanner with O(n) edges (or O(1) sparsity) for $P \in \mathbb{R}^2$.

Basic Results: Metric Spanners

[Chew86] constructed O(1)-spanner with O(n) edges (or O(1) sparsity) for $P \in \mathbb{R}^2$.

 $(1+\epsilon)\text{-spanner}$ for $P\in\mathbb{R}^d$ with:

- ▶ O_d((1/ϵ)^{d−1}) sparsity [Yao;82][Clarkson;87][Keil;88] [Ruppert,Seidel;91][Althofer,Das, Dobkin, Joseph,Soares;93] [Callahan,Kosaraju;93] . . .
- ► O_d((1/ε)^d) lightness [Das,Heffernan,Narasimhan;93] [Das,Narasimhan,Salowe;95] [L,Solomon;19]

Book "Geometric Spanner Networks" by Narasimhan and Smid.

Basic Results: Metric Spanners

[Chew86] constructed O(1)-spanner with O(n) edges (or O(1) sparsity) for $P \in \mathbb{R}^2$.

 $(1+\epsilon)\text{-spanner}$ for $P\in\mathbb{R}^d$ with:

- ▶ O_d((1/ϵ)^{d−1}) sparsity [Yao;82][Clarkson;87][Keil;88] [Ruppert,Seidel;91][Althofer,Das, Dobkin, Joseph,Soares;93] [Callahan,Kosaraju;93] . . .
- ► O_d((1/ε)^d) lightness [Das,Heffernan,Narasimhan;93] [Das,Narasimhan,Salowe;95] [L,Solomon;19]

Book "Geometric Spanner Networks" by Narasimhan and Smid.

 $(1+\epsilon)\text{-spanner}$ for P in doubling metric of dimension d:

 O_d((1/ε)^d) sparsity [Gao, Guibas,Nguyen;04][Har-Peled,Mendel;04][Smid,09][Chan,Gupta,Maggs,Zhou;16]
 O_d((1/ε)^{d+1}) lightness [Gottlieb;15][Filtser,Solomon;16] [Borradaile,L,Wulff-Nilsen;19][L,Solomon;23]

Basic Results: Metric Spanners (cont.)

 $(1+\epsilon)\text{-spanner}$ for $P\in\mathbb{R}^d$ with:

 $(1+\epsilon)\text{-spanner}$ for P in doubling metric of dimension d:

•
$$O_d((1/\epsilon)^d)$$
 sparsity

•
$$O_d((1/\epsilon)^{d+1})$$
 lightness

Observations:

- 1. Can get stretch $1 + \epsilon$ in metric setting.
- 2. Sparsity and lightness are off by a factor of $1/\epsilon$.
- 3. Doubling is off by a factor of $1/\epsilon$ compared to Euclidean, due to Euclidean geometry.

Basic Results: Graph Spanners

(2k - 1)-spanner with sparsity $O(n^{1/k})$ for any $k \ge 1$. [Peleg,Schäffer;89][Althöfer,Das, Dobkin, Joseph,Soares;93] [Halperin,Zwick;96]

► Tight under Erdős' Girth Conjecture.

Basic Results: Graph Spanners

(2k - 1)-spanner with sparsity $O(n^{1/k})$ for any $k \ge 1$. [Peleg,Schäffer;89][Althöfer,Das, Dobkin, Joseph,Soares;93] [Halperin,Zwick;96]

Tight under Erdős' Girth Conjecture.

 $(2k - 1)(1 + \epsilon)$ -spanner with lightness $O(n^{1/k}/\epsilon)$. [Althöfer,Das,Dobkin,Joseph,Soares;93] [Chandra,Das,Narasimhan,Soares;92] [Elkin,Neiman,Solomon;14][Chechik,Wulff-Nilsen;16] [L,Solomon;13][Bodwin;24]

Basic Results: Graph Spanners

(2k - 1)-spanner with sparsity $O(n^{1/k})$ for any $k \ge 1$. [Peleg,Schäffer;89][Althöfer,Das, Dobkin, Joseph,Soares;93] [Halperin,Zwick;96]

Tight under Erdős' Girth Conjecture.

 $(2k - 1)(1 + \epsilon)$ -spanner with lightness $O(n^{1/k}/\epsilon)$. [Althöfer,Das,Dobkin,Joseph,Soares;93] [Chandra,Das,Narasimhan,Soares;92] [Elkin,Neiman,Solomon;14][Chechik,Wulff-Nilsen;16] [L,Solomon;13][Bodwin;24]

The dependency on ϵ seems necessary, at least for $\epsilon = kn^{-1/(2k-2)}$ [Bodwin,Flics;24].

Erdős' Girth Conjecture

G = (V, E) with $|E| = \Omega(n^{1+1/k})$ and girth $\ge 2k + 1$ exists.

One Algorithm Fits All

Achieve all aformentioned bounds in all settings.

Existentially optimal [Filtser, Solomon; 16].

Outline

- 1. Introduction.
- 2. Basic Results.
- 3. Fault Tolerance.
- 4. Approximation/Instance Optimality.
- 5. Structural Alternatives.

Fault-Tolerant Spanners

[Levcopoulos,Narasimhan,Smid;98]: removing at most f points still leaves a t-spanner.

Metric Fault Tolerance

A *t*-spanner *S* is *f*-fault-vertex-tolerant if for any set $F \subseteq P$ of at most *f* points, $S \setminus F$ is a *t*-spanner of $P \setminus F$.

Graph Fault Tolerance

For graph $G = (V, E, \omega)$, S is *f*-fault-vertex-tolerant if $S \setminus F$ is a *t*-spanner of $G \setminus F$ for any set F of at most f vertices.

Fault-Tolerant Metric Spanners

Lower bounds for any constant ϵ, d :

Ω(f) for sparsity: every vertex must have degree at least f.
 Ω(f²) for ligntness [Czumaj,Zhao;03].

Fault-Tolerant Metric Spanners

Lower bounds for any constant ϵ, d :

Ω(f) for sparsity: every vertex must have degree at least f.
 Ω(f²) for ligntness [Czumaj,Zhao;03].

Tolerating f vertex (edge) faults in \mathbb{R}^d :

- O_{\epsilon,d}(f) sparsity.[Levcopoulos,Narasimhan,Smid;98]
 [Lukovszki;99]
- $O_{\epsilon,d}(f^2)$ lightness. [Czumaj,Zhao;03]

Fault-Tolerant Metric Spanners

Lower bounds for any constant ϵ, d :

Ω(f) for sparsity: every vertex must have degree at least f.
 Ω(f²) for ligntness [Czumaj,Zhao;03].

Tolerating f vertex (edge) faults in \mathbb{R}^d :

- ► O_{ϵ,d}(f) sparsity.[Levcopoulos,Narasimhan,Smid;98] [Lukovszki;99]
- $O_{\epsilon,d}(f^2)$ lightness. [Czumaj,Zhao;03]

These results are extensible to doubling metrics. [Chan,Li,Ning;12] [Chan,Li,Ning,Solomon;13][Solomon;14][L,Solomon,Than;23]

Fault-Tolerant Graph Spanners

Recall: Erdős' Girth Conjecture (EGC) implies $\Omega(n^{1/k})$ sparsity lower bound for (2k-1)-spanners.

 Ω(f^{1-1/k}n^{1/k}) sparsity/lightness lower bound for f vertex faults, assuming EGC. [Bodwin,Dinitz,Parter,Vassilevska Williams;18]

Fault-Tolerant Graph Spanners

Recall: Erdős' Girth Conjecture (EGC) implies $\Omega(n^{1/k})$ sparsity lower bound for (2k - 1)-spanners.

 Ω(f^{1-1/k}n^{1/k}) sparsity/lightness lower bound for f vertex faults, assuming EGC. [Bodwin,Dinitz,Parter,Vassilevska Williams;18]

 Sparsity O(f^{1-1/k}n^{1/k}). [Chechik,Langberg,Peleg,Roditty;10] Dinitz,Krauthgamer;11][Bodwin,Dinitz,Parter,Vassilevska Williams;18] [Bodwin,Patel;19][Dinitz,Robelle;20] [Bodwin,Dinitz,Robelle;21][Parter;22]

Fault-Tolerant Graph Spanners

Recall: Erdős' Girth Conjecture (EGC) implies $\Omega(n^{1/k})$ sparsity lower bound for (2k-1)-spanners.

- Ω(f^{1-1/k}n^{1/k}) sparsity/lightness lower bound for f vertex faults, assuming EGC. [Bodwin,Dinitz,Parter,Vassilevska Williams;18]
- Sparsity O(f^{1-1/k}n^{1/k}). [Chechik,Langberg,Peleg,Roditty;10] Dinitz,Krauthgamer;11][Bodwin,Dinitz,Parter,Vassilevska Williams;18] [Bodwin,Patel;19][Dinitz,Robelle;20] [Bodwin,Dinitz,Robelle;21][Parter;22]

Open problem: Light fault-tolerant graph spanners?

Define a reasonable model for massive failure is tricky.

▶ ν -reliable: faulty set F, there exists $F \subseteq F^+$ such that $|F^+| \leq (1 + \nu)|F|$ and distances are preserved for points in $P \setminus F^+$ in $S \setminus F$.[Bose,Dujmovic,Morin,Smid;13][Buchin,Har-Peled,Oláh;20]

Remark: this model does not work for graphs: (reliably) preserving connectivity needs $\Omega(n^2)$ edges. [Filtser,L;22]

Lower bounds:

- Any reliable O(1)-spanner in R^d must have sparsity Ω(log n).
 [Bose,Dujmovic,Morin,Smid;13].
- (Oblivious) lightness lower bound Ω(log n) for any finite stretch. [Filtser,Gitlitz,Neiman;23]

Lower bounds:

- Any reliable O(1)-spanner in R^d must have sparsity Ω(log n).
 [Bose,Dujmovic,Morin,Smid;13].
- (Oblivious) lightness lower bound Ω(log n) for any finite stretch. [Filtser,Gitlitz,Neiman;23]

Upper bounds:

- ν-reliable (1 + ε)-spanner with O_{ν,d,ε}(log n) edges in ℝ^d and doubling dim. d. [Buchin,Har-Peled,Oláh;19][Filtser,L;22].
- ▶ (Oblivious) lightness $O_{\epsilon,d,\nu}(\log n)$. [Filtser, Gitlitz, Neiman; 23]

Edge counter part of ν -reliable: ψ -dependable where every edge of the spanner may fail independently with probability $1 - \psi$. [Har-Peled,Lusardi;24]

Sparsity $O_{\epsilon,d}(\log n(1/\psi)^{4/3})$ in \mathbb{R}^d , and lower bound $O_{\epsilon,d}(\log n/\psi)$). [Har-Peled,Lusardi;24]

Color fault-tolerant spanners: vertices (or edges) are partitioned into color classes, and at most f color classes might fail. [Petruschka,Sapir,Tzalik;23]

 Sparsity O(fn^{1/k}) for edge-colored and O(f^{1-1/k}n^{1/k}) for vertex-colored. [Petruschka,Sapir,Tzalik;23]

Bounded degree fault: at most f faulty edges incident to a vertex. [Bodwin,Haeupler,Parter;24]

- ► Sparsity O_k(f^{1-1/k}n^{1/k}) for graph (2k − 1)-spanners. [Bodwin,Haeupler,Parter;24]
- ► For points in ℝ^d, bounded degree fault f with O_{ϵ,d}(f) sparsity. [Biniaz,Carufel,Maheshwari,Smid;24]
- For points in doubling dimension d, O_{e,d}(f²) sparsity.
 [Biniaz,Carufel,Maheshwari,Smid;24]

Bounded degree fault: at most f faulty edges incident to a vertex. [Bodwin,Haeupler,Parter;24]

- ► Sparsity O_k(f^{1-1/k}n^{1/k}) for graph (2k − 1)-spanners. [Bodwin,Haeupler,Parter;24]
- ► For points in ℝ^d, bounded degree fault f with O_{ϵ,d}(f) sparsity. [Biniaz,Carufel,Maheshwari,Smid;24]
- For points in doubling dimension d, O_{e,d}(f²) sparsity.
 [Biniaz,Carufel,Maheshwari,Smid;24]

Open problems:

- 1. Closing the gap between \mathbb{R}^d and doubling dimension d.
- 2. Light versions of color or bounded-degree faults.
- 3. Other models of massive failure

Outline

- 1. Introduction.
- 2. Basic Results.
- 3. Fault Tolerance.
- 4. Approximation/Instance Optimality.
- 5. Structural Alternatives.

Find a (close to) optimal t-spanner for a given input graph G or point set P. (Optimal per instance.)

Find a (close to) optimal t-spanner for a given input graph G or point set P. (Optimal per instance.)

Approximating graph *t*-spanners: $O(n^{1/k})$ -approximation by greedy algorithm (basic results) for t = 2k - 1.

Find a (close to) optimal t-spanner for a given input graph G or point set P. (Optimal per instance.)

Approximating graph *t*-spanners: $O(n^{1/k})$ -approximation by greedy algorithm (basic results) for t = 2k - 1.

- ▶ $O(\log n)$ -approximation for 2-spanners. [Kortsarz,Peleg;94]
- Õ(n^{1/4})-appproximation for 3-spanners and 4-spanners.
 [Berman,Raskhodnikova,Ruan;10][Dinitz,Krauthgamer;11]
 [Berman,Bhattacharyya,Makarychev,Raskhodnikova,Yaroslavtsev;13]
 [Dinitz,Zhang;16]
- ► For every constant t and e, 2^{log^{1-e} n/t}-approximation is hard.[Elkin,Peleg;00][Dinitz,Kortsarz,Raz;12]

Find a (close to) optimal t-spanner for a given input graph G or point set P. (Optimal per instance.)

Approximating graph *t*-spanners: $O(n^{1/k})$ -approximation by greedy algorithm (basic results) for t = 2k - 1.

- ▶ $O(\log n)$ -approximation for 2-spanners. [Kortsarz,Peleg;94]
- Õ(n^{1/4})-appproximation for 3-spanners and 4-spanners.

 [Berman,Raskhodnikova,Ruan;10][Dinitz,Krauthgamer;11]

 [Berman,Bhattacharyya,Makarychev,Raskhodnikova,Yaroslavtsev;13]

 [Dinitz,Zhang;16]
- ► For every constant t and e, 2^{log^{1-e} n/t}-approximation is hard.[Elkin,Peleg;00][Dinitz,Kortsarz,Raz;12]

Open problem:

▶ $O(n^{\epsilon})$ -approximation for *t*-spanners for a constant *t*?

Metric Spanners

 There have been a few NP-hardness results. [Klein,Kutz;06][Giannopoulos, Klein,Knauer,Kutz,Marx;10] [Carmi,Chaitman-Yerushalm;13]

▶ Approximation ratio of O((1/ε))^{d-1} from classical results. No other significant algorithmic result until now.

Metric Spanners

- There have been a few NP-hardness results. [Klein,Kutz;06][Giannopoulos, Klein,Knauer,Kutz,Marx;10] [Carmi,Chaitman-Yerushalm;13]
- ▶ Approximation ratio of O((1/ε))^{d-1} from classical results. No other significant algorithmic result until now.
- Bicriteria: (1 + O(ϵ))-spanner with O(log log(d/ϵ)|OPT|) where |OPT| is the sparsity/lightness of optimal (1 + ϵ) for the point set P ∈ ℝ^d [L,Solomon,Than,Tóth,Zhang; upcoming].

Metric Spanners

- There have been a few NP-hardness results. [Klein,Kutz;06][Giannopoulos, Klein,Knauer,Kutz,Marx;10] [Carmi,Chaitman-Yerushalm;13]
- ▶ Approximation ratio of O((1/ε))^{d−1} from classical results. No other significant algorithmic result until now.
- Bicriteria: (1 + O(ϵ))-spanner with O(log log(d/ϵ)|OPT|) where |OPT| is the sparsity/lightness of optimal (1 + ϵ) for the point set P ∈ ℝ^d [L,Solomon,Than,Tóth,Zhang; upcoming].

Open problems:

- 1. $(1 + \epsilon)$ -spanner with O(1)|OPT|?
- 2. *t*-spanner with $O(\log n)|OPT|$ for high dimensional \mathbb{R}^d for any constant *t*?
- 3. Doubling metrics?

Outline

- 1. Introduction.
- 2. Basic Results.
- 3. Fault Tolerance.
- 4. Approximation/Instance Optimality.
- 5. Structural Alternatives.

Tree Covers

[Awerbuch, Peleg; 92] [Arya, Das, Mount, Salowe, Smid; 95]

A *t*-tree cover \mathcal{T} for a point set P is collection of trees such that $\forall x, y \in P$, there exists $T_{xy} \in \mathcal{T}$ where:

$$d_{T_{xy}}(x,y) \le d_X(x,y) \le t \cdot d_{T_{xy}}(x,y)$$
(2)

Want to construct a tree cover with a few trees.

The union $S = \bigcup_{T \in \mathcal{T}} T$ is a *t*-spanner of *P*.

More: T allows approximate distances to be queried quickly: just query distances on each tree.

Metric Tree Covers

 In ℝ^d, (1 + ε)-tree cover with O_d((1/ε)^{d−1}) trees. [Arya,Das,Mount,Salowe,Smid;95]
 [Chang,Conroy,L,Milenkovic,Solomon,Than;24]

Metric Tree Covers

- In ℝ^d, (1 + ε)-tree cover with O_d((1/ε)^{d−1}) trees.
 [Arya,Das,Mount,Salowe,Smid;95]
 [Chang,Conroy,L,Milenkovic,Solomon,Than;24]
- ▶ In doubling metrics of dimension d, the number of trees is $O_d((1/\epsilon)^d)$.[Bartal,Fandina,Neiman,19]

Metric Tree Covers

In ℝ^d, (1 + ε)-tree cover with O_d((1/ε)^{d−1}) trees.
 [Arya,Das,Mount,Salowe,Smid;95]
 [Chang,Conroy,L,Milenkovic,Solomon,Than;24]

▶ In doubling metrics of dimension d, the number of trees is $O_d((1/\epsilon)^d)$.[Bartal,Fandina,Neiman,19]

Open problem: Do light tree covers exist? (Every tree in the tree cover has total edge weight $O_{\epsilon,d}(1)\omega(MST)$.)

Filtser, Gitlitz, Neiman; 23] showed that each tree could be $O_{\epsilon,d}(\log(n))\omega(MST)$.

Tree cover for general graphs

A stretch 2k - 1 tree cover with $n^{1/k} \log^{1-1/k}(n)$ trees. [Awerbuch,Peleg,92][Awerbuch,Kutten,Peleg,94][Thorup-Zwick-05]

Tree cover for general graphs

A stretch 2k - 1 tree cover with $n^{1/k} \log^{1-1/k}(n)$ trees. [Awerbuch,Peleg,92][Awerbuch,Kutten,Peleg,94][Thorup-Zwick-05]

[Bartal,Fandina,Neiman,19] asked: what stretch can we get with only 2 trees, 3 trees and so on.

▶ They showed 2 trees $\tilde{O}(\sqrt{n})$ stretch, k trees $\tilde{O}(n^{1/k})$ stretch. No lower bounds known.

Tree cover for general graphs

A stretch 2k - 1 tree cover with $n^{1/k} \log^{1-1/k}(n)$ trees. [Awerbuch,Peleg,92][Awerbuch,Kutten,Peleg,94][Thorup-Zwick-05]

[Bartal,Fandina,Neiman,19] asked: what stretch can we get with only 2 trees, 3 trees and so on.

▶ They showed 2 trees $\tilde{O}(\sqrt{n})$ stretch, k trees $\tilde{O}(n^{1/k})$ stretch. No lower bounds known.

Open problem: what is the smallest stretch achieved with 2 trees?

A Path Cover?

A *t*-tree cover \mathcal{T} where every tree in \mathcal{T} is a path?

A Path Cover?

A *t*-tree cover \mathcal{T} where every tree in \mathcal{T} is a path?

Impossible.

[Chan, Har-Peled, Jones; 19]

Locality Sensitive Ordering (LSO)

A set of paths \mathcal{P} such that for every $x \neq y$, there is a path $Q \in \mathcal{P}$ such that $Q[x, y] \subseteq B(x, \epsilon d_X(x, y)) \cup B(y, \epsilon d_X(x, y))$

LSO

Any $P \in \mathbb{R}^d$ or doubling metric of dim. d has an LSO with $O_{\epsilon,d}(1)$ paths, a.k.a., orderings. [Chan,Har-Peled,Jones;19][Filtser,L;22]

LSO

Any $P \in \mathbb{R}^d$ or doubling metric of dim. d has an LSO with $O_{\epsilon,d}(1)$ paths, a.k.a., orderings. [Chan,Har-Peled,Jones;19][Filtser,L;22]

 $S = \cup_{Q \in \mathcal{P}} Q$ is a $(1 + \epsilon)$ -spanner for P.

LSO

Any $P \in \mathbb{R}^d$ or doubling metric of dim. d has an LSO with $O_{\epsilon,d}(1)$ paths, a.k.a., orderings. [Chan,Har-Peled,Jones;19][Filtser,L;22]

$$S = \bigcup_{Q \in \mathcal{P}} Q$$
 is a $(1 + \epsilon)$ -spanner for P .

Many other applications, for example: Given $x \in P$, find a $(1 + \epsilon)$ -appproximate nearest neighbor of P:

- Return the closest point to x among all neighbors of x in paths in \mathcal{P} (two neighbors per path $Q \in \mathbf{P}$.)
- The total running time $O(|\mathcal{P}|) = O_{\epsilon,d}(1)$.

Any $P \in \mathbb{R}^d$ or doubling metric of dim. d has an LSO with $O_{\epsilon,d}(1)$ paths, a.k.a., orderings. [Chan,Har-Peled,Jones;19][Filtser,L;22]

$$S = \bigcup_{Q \in \mathcal{P}} Q$$
 is a $(1 + \epsilon)$ -spanner for P .

Many other applications, for example: Given $x \in P$, find a $(1 + \epsilon)$ -appproximate nearest neighbor of P:

Return the closest point to x among all neighbors of x in paths in \mathcal{P} (two neighbors per path $Q \in \mathbf{P}$.)

• The total running time $O(|\mathcal{P}|) = O_{\epsilon,d}(1)$.

Open problem: Other structural alternatives to spanners?

Other Things Not Mentioned Here

- Spanners in high dimensional spaces.
- Spanners in different models of computations.
- Ramsey tree covers.
- ► Etc.

Thanks!