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Plan of the talk

1 Introduction

2 Testing Uniformity and Identity

3 Tools and subroutines

4 Conclusion

Clément Canonne (Columbia University) Testing distributions with a COND oracle January 6, 2014 2 / 31



3

Background and motivation
What is distribution testing?

Property testing
Given a big, hidden “object” X one can only access by local, expensive
inspections (e.g., oracle queries), and a property P, the goal is to check in
sublinear number of inspections if (a) X has the property or (b) X is “far”
from all objects having the property.1

Testing distributions (standard model)
X is an unknown probability distribution D over some N-element set; the
testing algorithm has blackbox sample access to D.

1wrt to some specified metric, and parameter ε > 0 given to the tester.
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Distribution testing (1)
In more detail.

Distance criterion: total variation distance (∝ L1 distance)

dTV(D1,D2)
def
=

1
2‖D1 − D2‖1 =

1
2
∑

i∈[N]

|D1(i)− D2(i)|.

Definition (Testing algorithm)

Let P be a property of distributions over [N], and ORACLED be some type
of oracle which provides access to D. A q(ε,N)-query ORACLE testing
algorithm for P is a (randomized) algorithm T which, given ε,N as input
parameters and oracle access to an ORACLED oracle, and for any
distribution D over [N], makes at most q(ε,N) calls to ORACLED, and:

if D ∈ P then, w.p. at least 2/3, T outputs ACCEPT;
if dTV(D,P) ≥ ε then, w.p. at least 2/3, T outputs REJECT.
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Distribution testing (2)
Comments

A few remarks
“gray” area for dTV(D,P) ∈ (0, ε);

2/3 is completely arbitrary;
extends to several oracles and distributions;
our measure is the sample complexity (not the running time).
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Distribution testing (3)
Concrete example: testing uniformity

Property P (“being U , the uniform distribution over [N]”) ⇔ set SP of
distributions with this property (SP = {U})
Distance to P:

dTV(D,SP) = min
D′∈SP

dTV
(
D,D′

)
=

here
dTV(D,U)

General outline
1 Draw a bunch of samples from D;
2 “Process” them (for instance by counting the number of points drawn more

than once: collision-based tester);
3 Output ACCEPT or REJECT based on the result.
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Background and motivation
Well, it’s more or less settled.

Fact
In the standard sampling model, most (natural) properties are “hard” to
test; that is, require a strong dependence on N (at least Ω(

√
N)).

Example
Testing uniformity has Θ(

√
N/ε2) sample complexity

[GR00, BFR+10, Pan08], equivalence to a known distribution Θ̃(
√

N/ε2)
[BFF+01, Pan08]; equivalence of two unknown distributions Ω(N2/3)
[BFR+10, Val11, CDVV13] (and essentially matching upperbound). . .
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Our model

More power to the tester
We consider a new model where the tester can specify a subset of the
domain, and then get a draw conditioned on it landing in that subset.
Models natural applications where a scientist/experimenter has some
control over an ’experiment’ to restrict the range of possible outcomes –
e.g., by tuning the conditions or the setting: this is not captured by the
SAMP model.

Definition (COND oracle)
Fix a distribution D over [N]. A COND oracle for D, denoted CONDD, is
defined as follows: The oracle is given as input a query set S ⊆ [N] that has
D(S) > 0, and returns an element i ∈ S, where the probability that element
i is returned is DS(i) = D(i)/D(S), independently of all previous calls to
the oracle.
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Our model

Remark
generalizes the SAMP oracle (S = [N]), but allows adaptiveness;

variants of the (general) COND oracle, which only allow some specific
types of subsets to be queried: PCOND (either [N] or sets {i , j}) and
ICOND (only intervals);
not defined for sets S with zero probability under D;
similar model independently introduced by Chakraborty et
al. [CFGM13].

Question
Do COND oracles enable more efficient testing algorithms than SAMP
oracles? And what does it reveal about testing distributions?

Clément Canonne (Columbia University) Testing distributions with a COND oracle January 6, 2014 9 / 31
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Our results

Question
Do COND oracles enable more efficient testing algorithms than SAMP
oracles?

Yes, they do.
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Our results
Comparison of the COND and SAMP models on several testing problems

Problem Our results Standard model

Is D = D∗ for a
known D∗?

CONDD Õ
( 1

ε4

)
PCONDD

Õ
(

log4 N
ε4

)
Θ̃
(√

N
ε2

)
[BFF+01, Pan08]

Ω
(√

log N
log log N

)
Are D1, D2 (both
unknown) equiva-
lent?

CONDD1,D2 Õ
(

log5 N
ε4

)
Θ
(

max
(

N2/3

ε4/3 ,
√

N
ε2

))
[BFR+10, Val11, CDVV13]PCONDD1,D2 Õ

(
log6 N

ε21

)
Table : Comparison between the COND model and the standard model for these problems.
The upper bounds are for testing dTV = 0 vs. dTV ≥ ε.
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Rest of the talk

Plan for rest of talk:
sketch of testing uniformity and testing D vs. D∗ (with pairwise
queries)
introducing tools: Estimate-Neighborhood and Approx-Eval
using them: testing equivalence of two unknown distributions
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Testing Uniformity (1)
Special case of testing identity to D∗

Theorem (Testing Uniformity with PCOND)

There exists a Õ(1/ε2)-query PCONDD tester for uniformity, i.e. it accepts
w.p. at least 2/3 if D = U and rejects w.p. at least 2/3 if dTV(D,U) ≥ ε.

High-level idea
Intuitively, if D is ε-far from uniform, it must have (a) a lot of points “very
light”; and (b) a lot of weight on points “very heavy”. Sampling O(1/ε)
points both uniformly and according to D, we obtain whp both light and
heavy ones; and use PCOND to compare them.
Not good enough (O(1/ε4) queries)  refine this approach to get Õ(1/ε2).
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25

Testing Uniformity (1)
Special case of testing identity to D∗

Theorem (Testing Uniformity with PCOND)
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Testing Uniformity (2) – generalizing to D∗
From uniform to arbitrary distribution: poly(1/ε)-query algorithm

Approach does not work for general D∗. . .
The ratios can be arbitrarily big or small: e.g., if D∗(x)/D∗(y) =

√
N, need

Ω(
√

N) calls to PCONDD({x , y}) to distinguish D(x)/D(y) =
√

N from
D(x)/D(y) = 2

√
N

. . . but it can be adapted.
Idea: compare points with carefully chosen comparable sets  D(x)/D(Y )
instead of D(x)/D(y)

However, cannot do this with PCOND (Lower bound: logΩ(1) N samples)):
a COND oracle is needed.

Clément Canonne (Columbia University) Testing distributions with a COND oracle January 6, 2014 14 / 31
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Building tools (1)

Compare
Low-level procedure: compares the relative weight of disjoint sets X ,
Y , given some accuracy parameter η.
Estimate-Neighborhood
On input a point i ∈ [N] and parameter γ, estimates the weight under
D of the γ-neighborhood of i – that is, points with probability mass
within a factor (1 + γ) of D(i).
Approx-Eval
Given i ∈ [N] and accuracy parameter η, returns an approximation of
D(i) – succeeds whp for most points i .
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Building tools (2)
First tool: The low-level Compare

“Comparison is the death of joy.” – Mark Twain.

X

Y

Low

ρD
(X

)�
D

(Y
)

ρ ' D(Y )
D(X)

D(X) ≈ D(Y )

ρ

High

D(X
)
�

D(Y
)
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Building tools (3)
Second tool: Estimate-Neighborhood procedure

Definition (γ-Neighborhood)

Uγ(x)
def
=
{

y ∈ [N] :
1

1 + γ
D(x) ≤ D(y) ≤ (1 + γ)D(x)

}
, γ ∈ [0, 1]

Goal
Given a point x ∈ [N] and a parameter γ, Estimate-Neighborhood
gives a multiplicative approximation of D(Uγ(x)) – i.e., “how much weight
does D put on points like x?”
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Building tools (4)
Third tool: Approximate-EVAL oracle

EVAL oracle

A δ-EVALD simulator for D is a randomized procedure ORACLE such that
w.p. 1− δ the output of ORACLE on input i∗ ∈ [N] is D(i∗).

Clément Canonne (Columbia University) Testing distributions with a COND oracle January 6, 2014 18 / 31
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Building tools (4)
Third tool: Approximate-EVAL oracle

(Approximate) EVAL oracle

Ideally, an (ε, δ)-approximate EVALD simulator for D would be a
randomized procedure ORACLE such that w.p. 1− δ the output of
ORACLE on input i∗ ∈ [N] is a value α ∈ [0, 1] such that
α ∈ [1− ε, 1 + ε]D(i∗).
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Building tools (4)
Third tool: Approximate-EVAL oracle

(Approximate) EVAL oracle

Actually, an (ε, δ)-approximate EVALD simulator for D is a randomized
procedure ORACLE s.t for each ε, there is a fixed set S(ε) ( [N] with
D(S(ε)) < ε for which the following holds. For all i∗ ∈ [N], ORACLE(i∗) is
either a value α ∈ [0, 1] or Unknown, and furthermore:

(i) If i∗ /∈ S(ε) then w.p. 1− δ the output of ORACLE on input i∗ is a
value α ∈ [0, 1] such that α ∈ [1− ε, 1 + ε]D(i∗);

(i) If i∗ ∈ S(ε) then w.p. 1− δ the procedure either outputs Unknown or
outputs a value α ∈ [0, 1] such that α ∈ [1− ε, 1 + ε]D(i∗).
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Third tool: Approximate-EVAL oracle

(Approximate) EVAL oracle

Actually, an (ε, δ)-approximate EVALD simulator for D is a randomized
procedure ORACLE s.t for each ε, there is a fixed set S(ε) ( [N] with
D(S(ε)) < ε for which the following holds. For all i∗ ∈ [N], ORACLE(i∗) is
either a value α ∈ [0, 1] or Unknown, and furthermore:

(i) If i∗ /∈ S(ε) then w.p. 1− δ the output of ORACLE on input i∗ is a
value α ∈ [0, 1] such that α ∈ [1− ε, 1 + ε]D(i∗);

(i) If i∗ ∈ S(ε) then w.p. 1− δ the procedure either outputs Unknown or
outputs a value α ∈ [0, 1] such that α ∈ [1− ε, 1 + ε]D(i∗).

The high-level blackbox Approx-Eval

There is an algorithm Approx-Eval which uses Õ
(

(log N)5·(log(1/δ))2

ε3

)
calls

to CONDD, and is an (ε, δ)-approximate EVALD simulator.
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CONDD

Approx-Evalε

“Unknown”
or D̂(i)

i ∗∈ S (ε)

D̂(i)

i∗ /∈
S(ε)

i∗ ∈ [N]
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Building tools (5)
Third tool: Approximate-EVAL oracle

S0 = [N]

Scan over heavy elements: i not amongst them?

S1

Scan over heavy elements: i not amongst them?

S2 S′2

Sk−1

Sk = {i} S′k

S′1

Figure : Execution of Approx-Eval on some i : scan over heavy elements, randomly partition
the light ones, recurse; finally get an estimate of D(i) by multiplying estimates at each
branching.
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Applications

Testing equivalence of two unknown distributions D1, D2

Blackbox access to D1 and D2 (two oracles); distinguish D1 = D2 vs.
dTV(D1,D2) ≥ ε.

Two different approaches:
1 with PCOND and Estimate-Neighborhood – finding

“representatives” points for both distributions;
2 with COND and Approx-Eval – adapting an EVAL algorithm from

[RS09].

Other uses: estimating distance to uniformity
(Estimate-Neighborhood), testing monotonicity (Approx-Eval). . .
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Applications

Testing equivalence of two unknown distributions D1, D2

Blackbox access to D1 and D2 (two oracles); distinguish D1 = D2 vs.
dTV(D1,D2) ≥ ε.

Two different approaches:
1 with PCOND and Estimate-Neighborhood – finding

“representatives” points for both distributions;
2 with COND and Approx-Eval – adapting an EVAL algorithm from

[RS09].

Other uses: estimating distance to uniformity
(Estimate-Neighborhood), testing monotonicity2 (Approx-Eval). . .

2(extension of the original results)
Clément Canonne (Columbia University) Testing distributions with a COND oracle January 6, 2014 21 / 31



43

Applications
Testing D1 ≡ D2 with PCOND and Estimate-Neighborhood

Idea: get a succinct representation
Get a “cover for D1’’ in Õ

(
log N/ε2) representatives r1, . . . , r`;

If D1 = D2, cover perfect for D2; but
If dTV(D1,D2) ≥ ε, then for one of the representatives r∗ (covering a
set of points R∗ under D1), either

1 “many” y ∈ R∗ are not covered by r∗ under D2 (mismatching
representative); or

2 D2(R∗) differs significantly from D1(R∗) (mismatching neighborhoods)

Both can be detected efficiently; try it for each ri  poly(log N, 1/ε)
sample and time complexity.
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but
If dTV(D1,D2) ≥ ε, then for one of the representatives r∗ (covering a
set of points R∗ under D1), either

1 “many” y ∈ R∗ are not covered by r∗ under D2 (mismatching
representative); or

2 D2(R∗) differs significantly from D1(R∗) (mismatching neighborhoods)

Both can be detected efficiently; try it for each ri  poly(log N, 1/ε)
sample and time complexity.
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Conclusion

new model for studying probability distributions
arises naturally in a number of settings
allows significantly more query-efficient algorithms

generalizing to other structured domains? (e.g., the Boolean
hypercube {0, 1}n)
what about distribution learning in this framework
more properties? (entropy, independence, monotonicity†. . . )

Clément Canonne (Columbia University) Testing distributions with a COND oracle January 6, 2014 23 / 31



48

The end.

Thank you.

An extended version of this work [CRS12] is available online (arXiv:1211.2664).
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Backup slides
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Testing Uniformity (3)
Getting our hands dirty.

Algorithm 1: PCONDD-Test-Uniform
Set t = Θ(log( 1

ε )).
Select q = Θ(1) points i1, . . . , iq uniformly {Reference points}
for j = 1 to t do

Call the oracle sj = Θ(2jt) times to get h1, . . . , hsj∼ D {Heavy points?}
Draw sj points `1, . . . , `sj uniformly from [N] {Light points?}
for all pairs (x , y) = (ir , hr ′ ) and (x , y) = (ir , `r ′ ) do

Get a good estimate of D(x)/D(y). {Ideally, should be 1}
Reject if the value is not in [1− 2j−5 ε

4 , 1 + 2j−5 ε
4 ]

end for
end for
Accept
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Testing Uniformity (4)

Proof (Outline).
Sample complexity by the setting of t, q and the calls to Compare
Completeness unless Compare fails to output a correct value, no rejection

Soundness Suppose D is ε-far from U ; refinement of the previous
approach by bucketing low and high points:

Hj
def
=

{
h
∣∣∣∣ (1 + 2j−1 ε

4

) 1
N ≤ D(h) <

(
1 + 2j ε

4

) 1
N

}

Lj
def
=

{
`

∣∣∣∣ (1− 2j ε

4

) 1
N < D(`) ≤

(
1− 2j−1 ε

4

) 1
N

}
for j ∈ [t − 1], with also H0, L0,Ht , Lt to cover everything;
each loop iteration on l.3 “focuses” on a particular bucket.

+ Chernoff and union bounds.
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Building tools (6)

The (slightly) higher-level subroutine Estimate-Neighborhood

Given as input a point x , parameters γ, β, η ∈ (0, 1/2] and PCONDD
access, the procedure Estimate-Neighborhood outputs a pair
(ŵ , α) ∈ [0, 1]× (γ, 2γ) such that w.h.p

1 If D(Uα(x)) ≥ β, then ŵ ∈ [1− η, 1 + η] · D(Uα(x)), and (. . . )
2 If D(Uα(x)) < β, then ŵ ≤ (1 + η) · β, and (. . . )

Estimate-Neighborhood performs Õ
(

1
γ2η4β3

)
queries.

Remark
Does not estimate exactly D(Uγ(x)).
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Uγ

U2γ

Uα

Uα+θ

' no weight
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Building tools (7)

[N]

[
1, N

2

]
[

1, N
4

] [
N
4 + 1, N

2

]
[i − 2, i − 1] [i , i + 1]

{i} {i + 1}

[
N
2 + 1,N

]

Figure : (Rough) idea of the “binary descent” on i for Approx-Eval: get an
estimate of D(i) by multiplying estimates at each branching.

Clément Canonne (Columbia University) Testing distributions with a COND oracle January 6, 2014 31 / 31


	Slide 1: Conditional Sampling for Distribution Testing 
	Slide 2: Columbia University, 2012
	Slide 3: Columbia University, 2012
	Slide 4: Columbia University, 2012
	Slide 5: Columbia University, 2012
	Slide 6: I learned a lot. (A lot!)
	Slide 7: I learned a lot. (A lot!)
	Slide 8: I learned a lot. (A lot!)
	Slide 9: I learned a lot. (A lot!)
	Slide 10: I learned a lot. (A lot!)
	Slide 11: Thank you, Dana! And happy birthday.
	Slide 12: Thank you, Dana! And happy birthday.
	Introduction
	Testing Uniformity and Identity
	Tools and subroutines
	Conclusion
	Appendix

