The long path to \sqrt{d} monotonicity testers

C. Seshadhri (Seshadhri Comandur)

Dept. of Computer Science & Engg UC Santa Cruz

Amazon Scholar AWS

Thanks to my teachers

Manindra Agrawal

Bernard Chazelle Mike Saks

Tamara Kolda Ali Pinar

Thanks to my collaborators

Hadley Black **Deeparnab Chakrabarty**

Monotone hypergrid functions

- $f: D \rightarrow \{0,1\}$
- **Hypergrid:** $\lceil n \rceil^d$ (includes line, tesseract, etc.)
- **n = 2, Boolean Hypercube**: ${0,1\}^d$
- $x \lt y$ iff $x_i \le y_i$ for all i
- f is monotone: if $x \le y$, $f(x) \le f(y)$
- Equivalently, think of f as indicator for set

The distance to monotonicity

- Distance to monotonicity = (min changes to make set monotone)/n^d
- \bullet ε_f in [0,1)
	- Amen

•
$$
\varepsilon_f = \min_{g \text{ monotone}} |f - g|_0 / n^d
$$

Monotonicity testing

- [Bshouty-Tamon96, Lange-Vasilyan23] Learning monotone functions needs $>$ exp(\sqrt{d})
- Given ε and query access to f:

Distinguish monotone (ε_f = 0) vs far from monotone (ε_f > ε) whp

- One-sided tester: given f such that $\varepsilon_f > \varepsilon$, discover a "violation" whp
- Non-adaptive: all queries are made in advance

Big question

• [Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 00, Raskhonikova 99, Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky 99]

What is the (non-adaptive) complexity of monotonicity testing?

- Hypergrid domain, Boolean range
- > 20 papers and two decades of history

The Edge Tester

- [GGLRS00, DGGLRS00]
- Sample an edge of hypercube (x, y) u.a.r
- Query $f(x)$, $f(y)$
- Reject if violation

Theorem: the probability of finding violation is $> \varepsilon_f/d$ So if $\varepsilon_f > \varepsilon$, $O(d/\varepsilon)$ samples suffice to detect violation whp

• [DGGLRS00] O(d $log^2 d$ / ε) monotonicity tester for hypergrids

Can we beat d?

- [Blais-Brody-Matulef 12] $\Omega(d)$ lower bound when range is real
- [Chakrabarty-S 13a, Chakrabarty-S 13b]

Hypergrid domain, arbitrary range, the complexity is $\Theta(d \log n / \epsilon)$

- Non-adaptive, one-sided upper bound. Adaptive, two-sided lower bound
	- Finis. End of story
	- Optimal tester for hypercube is edge tester
- Does Boolean range make complexity lower?
	- [Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld 02] $\Omega(\sqrt{d})$ one-sided lower bound
	- Can one get o(d) complexities?

The mystery of root d, for hypercubes

- [Chakrabarty-S 13] $d^{7/8}$ query tester
- [Chen-Servedio-Tan 14] $d^{\,5/6}$ query tester
- [Khot-Minzer-Safra 15] \sqrt{d} query tester
	- Essentially, same tester as before. All in the analysis
- [Chen-De-Servedio-Tan 15, Chen-Waingarten-Xie 17] $\Omega(\sqrt{d})$ two-sided nonadaptive lower bound
- The theory of Directed Isoperimetric Theorems
	- Seemingly hypercube specific; can they generalize?

Getting to root d, for hypergrids

- [DGGLRS00] O(d log²d /ε) monotonicity tester for hypergrid
- [Berman-Raskhodnikova-Yaroslavtsev 17] O(d log d)
- [Black-Chakrabarty-S 18, BCS 20] $d^{5/2}$ ⁶ query tester
- [Braverman-Khot-Kindler-Minzer 23, BCS 23] $poly(n)$ \sqrt{d} query tester
- [BCS 24] $d^{1/2 + o(1)}$ query tester
	- All results have different testers!

The generality of hypergrids

• **Hypergrid:**

Results for uniform distribution automatically translate to any product distribution

• Otherwise uniform distribution on hypercube looks like special case

- Can even set n = ∞ , so domain is R^d
	- Monotonicity testing for measurable functions over product distributions

00…

Why did the baby grid not get any sugar?

Because it would become a hypergrid.

Directed Isoperimetry

Surfaces, volumes, and why o(d) is possible

The Edge Tester

- [GGLRS00, DGLRRS99]
- Sample an edge of hypercube (x, y) u.a.r
- Query $f(x)$, $f(y)$
- Reject if violation

Theorem: the probability of finding violation is $\sum \varepsilon_f/d$

A Geometric Interpretation

Abusing notation, S is the set of 1s. (We still use ε_f as before.) Wiolated edges

Theorem: The number of **violated** hypercube edges is = $\Omega(\varepsilon_f \cdot 2^d)$

$$
\text{Inf}_f^+ = \frac{\left|\vec{E}(S, S^c)\right|}{2^d}
$$

Theorem: $Inf_f^+ = \Omega(\varepsilon_f)$

A far from monotone function

GGLRS = Directed Poincare

• Poincare: $Inf_f = \Omega(var_f)$ •

(Directed) Poincare is tight

- Distance = $\frac{1}{2}$ 2
- Number of viol edges = 2^{d-1}
	- Total edges = $d \cdot 2^{d-1}$
- Edge tester needs $\Omega(d)$ queries to catch violation

Bypassing the (anti)-Dictator

- Sample x
- Walk "up" to get y
- Query $f(x)$, $f(y)$ and Test.

How long should we walk?

Square Root of Dimension

- Sample x
- Walk "up" to get y
- Query $f(x)$, $f(y)$ and Test.

Can't walk more than $\approx \sqrt{d}$

Analysis for the (capped) Anti-Did

- Sample x
- Walk "up" to get y
- Query $f(x)$, $f(y)$ and Test.

- Prob[x is green] $\approx 1/2$
- Prob[crossing] $\approx \sqrt{d}$. 1 \boldsymbol{d} ≈ 1 \boldsymbol{d}

Number of steps Chance of crossing in each step

The root to root d is taking a longer root.

 $\boldsymbol{\mathcal{X}}$

 \mathbf{y}

How to analyze the "path tester"

Need structural insight "far from monotone" functions/sets

How to "escape" S that is far from monotone?

Directed Isoperimetric Theorems

Undirected Hypercube **Directed Hypercube**

- Poincare: $\text{Inf}_f = \Omega(\text{var}_f)$ [DGLRRS00, GGLRS00]:
- [Margulis74]: Inf_f \cdot $\Gamma_f = \Omega(var_f^2)$
- [Talagrand 92]: $E[\sqrt{\ln f(x)}] = \Omega(var_f)$

- $Inf_f^+ = \Omega(\varepsilon_f)$
- [Chakrabarty-S 13]: Inf⁺ \cdot Γ_f^+ = $\Omega(\varepsilon_f^2)$
- [Khot-Minzer-Safra 15]: $E[\sqrt{\ln f^{+}(x)}] = \Omega(\varepsilon_{f})$

Query \overline{d} $d^{5/6}$

 \sqrt{d}

How to measure the boundary?

Boundary as bipartite graph

Boundary as bipartite graph

Directed boundary

Directed boundary

Directed Influence

 $Inf^{+}(x) =$ out-degree of x in directed G^{+}

$$
\frac{1}{2}
$$

$$
Exp_{x:1}[Inf^{+}(x)] = \frac{E^{+}(S, S^{c})}{2^{d}} = I_{f}^{+}
$$

$$
Exp_{x:1}[Inf(x)] = I_f
$$

A careful look into influence

Poincare: I_f : = Exp_{x:1} [Inf(x)] = $\Omega(var_f)$

Consider the Vertex Boundary

Consider the Vertex Boundary

"Vertex Boundary"

 ${x: 1}$ such that it has at least one influential edge incident on it}

Consider the Vertex Boundary

Margulis

$$
I_f := \text{Exp}_{x:1}[\text{Inf}(x)] \qquad \text{"Edge boundary"}
$$
\n
$$
\Gamma_f := \text{Exp}_{x:1}[\mathbb{I}\{\text{Inf}(x) > 0\}] \qquad \text{"Vertex Boundary"}
$$

Margulis 1974: $I_f \cdot \Gamma_f = \Omega(var_f^2)$

Both cannot be simultaneously small!

Directed Margulis

Interior 1's

$$
I_f^+ := \operatorname{Exp}_{x:1}[\operatorname{Inf}^+(x)] \text{''directed Edge boundary''}
$$

$$
\Gamma_f^+ := \operatorname{Exp}_{x:1}[\mathbb{I}\{\operatorname{Inf}^+(x) > 0\}]
$$

"Dir. Vrtx. boundary"
"Dir. Vrtx. boundary"

[Chakrabarty-S 13]: $I_f^+ \cdot \Gamma_f^+ = \Omega(\varepsilon_f^2)$

Wsis for the Contract of The C

 $\boldsymbol{\mathcal{X}}$

 \mathbf{y}

constant fraction of vertices on
directed boundary • Walk "up" to get By directed Margulis, if $I_f^+ = O(1)$, directed boundary.

• Analysis like this should work?

- Prob[x is green] $\approx 1/2$
- Prob[crossing] $\approx \sqrt{d}$. 1 \boldsymbol{d} ≈ 1 \boldsymbol{d}

Number of steps Chance of crossing in each step

The Talagrand theorem

 $\text{ Tal}_f := \text{Exp}_{x:1}[\sqrt{\text{Inf}(x)}]$ Talagrand 1993: *"Notion of Surface Area"* $\text{ Tal}_f = \Omega(var_f)$

Implies Margulis (by Cauchy-Schwartz), which also implies Poincare

Khot-Minzer-Safra

$$
\mathrm{ Tal}_f^+ := \mathrm{Exp}_{x:1} [\sqrt{\mathrm{Inf}^+(x)}]
$$

$$
= \Omega(\varepsilon_f)
$$

Actually, for any edge bicoloring ψ , $\text{Tail}_f^+ := \min_{\psi} E_x \left[\sqrt{\ln f_{\psi}^+(x)} \right]$

KMS lost a log factor, which [Pallavoor-Raskhodnikova-Waingarten 22] removed

Robustness
\n
$$
\text{Tail}_f^+ := \text{Exp}_{x:1} \left[\sqrt{\text{Inf}^+(x)} \right] = \Omega(1) \quad \text{Tail}_f^+ := \text{Exp}_{x:0} \left[\sqrt{\text{Inf}^+(x)} \right] = \Omega(1)
$$
\n
$$
\text{PPPPPPQ} = \text{PPQ} \quad \text{PP
$$

Adversary ψ assigns each edge to 0 or 1, to minimize Talagrand "surface area"

$$
\mathrm{ Tal}_{f}^{+} := \mathrm{min}_{\psi} \mathrm{E}_{x} \left[\sqrt{\mathrm{Inf}_{\psi}^{+}(x)} \right]
$$

Robustness
\n
$$
\text{Tail}_f^+ := \text{Exp}_{x:1} \left[\sqrt{\text{Inf}^+(x)} \right] = \Omega(1) \quad \text{Tail}_f^+ := \text{Exp}_{x:0} \left[\sqrt{\text{Inf}^+(x)} \right] = \Omega(1)
$$
\n2^d vertices

\n

Adversary ψ assigns each edge to 0 or 1, to minimize Talagrand "surface area"

$$
\mathrm{Tal}_f^+ := \mathrm{min}_{\psi} \mathrm{E}_x \left[\sqrt{\mathrm{Inf}_{\psi}^+(x)} \right] = \frac{2^d}{d} \cdot \sqrt{d} = O(1/\sqrt{d})
$$

Khot-Minzer-Safra

Interior 1's

Actually, for any edge bicoloring
\n
$$
\psi
$$
,
\n
$$
Tal_f^+ := \min_{\psi} E_x \left[\sqrt{\ln f_{\psi}^+(x)} \right] = \Omega(\varepsilon_f)
$$

KMS lost a log factor, which [Pallavoor-Raskhodnikova-Waingarten 22] removed

But what does it mean? $\text{Tail}_f^+ := \min_{\psi} E_x \left[\int \ln f_{\psi}^+(x) \right] = \Omega(\varepsilon_f)$ Assume $\varepsilon_f = \Omega(1)$ # vertices = r 2^d I_f^+ · Γ_f^+ = $\Omega(1)$ $I_f^+ = \Omega(1)$ Dir. Margulis Dir. Poincare # vertices = $2^d/r$

For some
$$
r > 1
$$
, $I_f^+ = r$ and $\Gamma_f^+ = 1/r$

The most regular boundary

• Robust Talagrand theorem of KMS implies that's exactly what happens!

Boundaries are always regular!

"Nicest case"

vertices = $2^d/r$ All degrees = r^2

There exists $r > 1$ such that boundary contains regular bipartite graph with these parameters.

• (Up to $d^{o(1)}$ factors)

Our usual examples

Boundary size = $2^d/r$ All degrees = r^2

 2^d vertices on boundary, each with degree 1

 $2^d/\sqrt{d}$ vertices on boundary, each with degree d

But what about monotonicity testing?

How to analyze the "path tester"

How to "escape" S that is far from monotone?

Be persistent!

• x is ℓ -persistent, if ℓ -length (directed walk) stays within f(x)-region whp

Pr[single step changes value] = $\frac{I_f}{d}$ \boldsymbol{d} Pr[one of ℓ -steps changes value] $\leq \ell$. I_f \boldsymbol{d} Fraction of NON ℓ -persistent vertices = O ($\ell \cdot$ I_f \boldsymbol{d} O ℓ $I_f = O(\sqrt{d})$

 $\boldsymbol{\mathcal{X}}$ $\boldsymbol{\mathcal{X}}$

If $I_f \gg \sqrt{d}$ then $I_f^+ \gg \sqrt{d}$

Edge tester itself good

 \overline{d}

The analysis, in one slide

By regularity of boundary

 ℓ

 \boldsymbol{d}

vertices $\approx 2^d/r$ All degrees $\approx r^2$ All ℓ -persistent

The analysis, in one two slides

With prob $\approx 1/r$, start with $f(x) = 1$ in this part

With prob $\approx r^2/\ell = r/\sqrt{d}$, relevant bit is flipped

When both happen, f(y) = 0 ℓ = (/*)*

y Persistent!

vertices $\approx 2^d/r$ All degrees $\approx r^2$ By regularity of boundary All ℓ -persistent

Total prob
$$
\approx \frac{1}{r} \cdot \frac{r}{\sqrt{d}} = \frac{1}{\sqrt{d}}
$$

x

The challenge of hypergrids

What is a boundary?

Move in a direction. But for "how much"? What is influence? How to define a path tester? What are upward random walks?

Domain reduction

- Set k=2, and reduce to hypercubes…?
- [BCS20] If k << d, sampled function can be close to monotone
- $[BCS20]$ If $k = poly(d)$, distance is preserved
	- So we can assume $n = poly(d)$
	- Even reduces from continuous
- [Harms-Yoshida 22] Downsampling

The embedding method

- Embedding [n] into hypercube
- [Braverman-Kindler-Khot-Minzer 23]
- First \sqrt{d} tester for any $n > 2$
	- poly(n) dependence necessary

Doing isoperimetry

- Also prove the robust version
- Direct tester analysis leads to $n\sqrt{d}$ query tester
	- Path picks uniform random step in each direction

The final step

[BCS 23-2] Getting d 1 2 $+o(1)$ query tester

- Tester does correlated walks
	- Heavily used in analysis
	- Standard tester probably works
- How to perform this analysis and not lose n factor?
	- New combinatorial tools to analyze the walk using the [BCS23-1] Talagrand theorem

$$
\begin{array}{ll}\n\text{(Mostly) end of story} & \text{# vertices = } 2^d/r \\
\text{All degrees = } r^2 \\
\text{All degrees = } r^2\n\end{array}
$$

- $d^{o(1)}$ loss annoying, comes from one specific calculation
- \boldsymbol{d} 1 2 $+o(1)$ non-adaptive one-sided monotonicity tester
	- Ends a 24 year odyssey
- Nearly matching (two-sided) lower bound

Some odds and ends

- Get rid of the $d^{o(1)}$ factor
- Are hypergrids strictly harder than hypercubes?
	- Only (log d) factors apart
- [Black-Kalemaj-Raskhodnikova 23] Tester for larger ranges, for hypercube
	- We can probably apply the methods for hypergrids

The big question

What is the adaptive complexity of monotonicity testing for hypercubes/grids?

- [Blais-Belovs 16] $\Omega(d^{1/4})$ lower bound
- [Chen-Waingarten-Xie 18] $\Omega(d^{1/3})$ lower bound
	- Every example has matching adaptive upper bound
- [Chakrabarty-S 16] $O(I_f)$ query adaptive tester
	- Proves adaptivity gap, for natural families

More on directed isoperimetry

- [Black-Kalemaj-Raskhodnikova 23] Directed Talagrand for real-range
- [Pinto 23, Pinto 24] Differential functions $f:[0,1]^d \rightarrow [0,1]$, with access to derivatives
	- Draws connections to optimal transport theory, based on undirected Poincare/Talagrand inequalities
- [Canonne-Chen-Levi-Kamath-Waingarten 21] Applications of robustness concept to distribution testing
- [Yoshida 24] Directed isoperimetry for general posets

Generalizing hypercube results

- [Pallavoor-Raskhodnikova-Waingarten 20] Estimating distance to monotonicity, \sqrt{d} -approximations in poly(d) time for hypercube
	- Can we get results for hypergrids? Also implies results for product distributions…?
- [Berman-Raskhodnikova-Yaroslavtsev 14] L_p testing

Thank you!

Here, no bad pun