The long path to \sqrt{d} monotonicity testers

C. Seshadhri (Seshadhri Comandur)

Dept. of Computer Science & Engg UC Santa Cruz Amazon Scholar AWS

Thanks to my teachers

Manindra Agrawal

Bernard Chazelle

Mike Saks

Tamara Kolda

Thanks to my collaborators

Hadley Black

Deeparnab Chakrabarty

Monotone hypergrid functions

- $f: D \rightarrow \{0,1\}$
- Hypergrid: $[n]^d$ (includes line, tesseract, etc.)
- n = 2, Boolean Hypercube: $\{0,1\}^d$
- $x \prec y$ iff $x_i \leq y_i$ for all i
- f is monotone: if $x \prec y$, $f(x) \leq f(y)$
- Equivalently, think of f as indicator for set

The distance to monotonicity

- Distance to monotonicity = (min changes to make set monotone)/n^d
- ε_f in [0,1)
 - Amen

•
$$\varepsilon_{f} = \min_{g \text{ monotone}} |f - g|_{0} / n^{d}$$

Monotonicity testing

- [Bshouty-Tamon96, Lange-Vasilyan23] Learning monotone functions needs $> \exp(\sqrt{d})$
- Given ε and query access to f:

Distinguish monotone ($\varepsilon_f = 0$) vs far from monotone ($\varepsilon_f > \varepsilon$) whp

- One-sided tester: given f such that $\varepsilon_f > \varepsilon$, discover a "violation" whp
- Non-adaptive: all queries are made in advance

Big question

• [Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 00, Raskhonikova 99, Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky 99]

What is the (non-adaptive) complexity of monotonicity testing?

- Hypergrid domain, Boolean range
- > 20 papers and two decades of history

The Edge Tester

- [GGLRS00, DGGLRS00]
- Sample an edge of hypercube (*x*, *y*) u.a.r
- Query f(x), f(y)
- Reject if violation

Theorem: the probability of finding violation is > ϵ_f/d So if $\epsilon_f > \epsilon$, O(d/ ϵ) samples suffice to detect violation whp

• [DGGLRS00] O(d log²d / ϵ) monotonicity tester for hypergrids

Can we beat d?

- [Blais-Brody-Matulef 12] $\Omega(d)$ lower bound when range is real
- [Chakrabarty-S 13a, Chakrabarty-S 13b]

Hypergrid domain, arbitrary range, the complexity is $\Theta(d \log n / \epsilon)$

- Non-adaptive, one-sided upper bound. Adaptive, two-sided lower bound
 - Finis. End of story
 - Optimal tester for hypercube is edge tester
- Does Boolean range make complexity lower?
 - [Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld 02] $\Omega(\sqrt{d})$ one-sided lower bound
 - Can one get o(d) complexities?

The mystery of root d, for hypercubes

- [Chakrabarty-S 13] $d^{7/8}$ query tester
- [Chen-Servedio-Tan 14] $d^{5/6}$ query tester
- [Khot-Minzer-Safra 15] \sqrt{d} query tester
 - Essentially, same tester as before. All in the analysis
- [Chen-De-Servedio-Tan 15, Chen-Waingarten-Xie 17] $\Omega(\sqrt{d})$ two-sided non-adaptive lower bound
- The theory of Directed Isoperimetric Theorems
 - Seemingly hypercube specific; can they generalize?

Getting to root d, for hypergrids

- [DGGLRS00] O(d log²d / ϵ) monotonicity tester for hypergrid
- [Berman-Raskhodnikova-Yaroslavtsev 17] O(d log d)
- [Black-Chakrabarty-S 18, BCS 20] $d^{5/6}$ query tester
- [Braverman-Khot-Kindler-Minzer 23, BCS 23] $poly(n) \sqrt{d}$ query tester
- [BCS 24] $d^{1/_2 + o(1)}$ query tester
 - All results have different testers!

The generality of hypergrids

• Hypergrid: $[n]^d$

Results for uniform distribution automatically translate to any product distribution

• Otherwise uniform distribution on hypercube looks like special case

- Can even set $n = \infty$, so domain is \mathbb{R}^d
 - Monotonicity testing for measurable functions over product distributions

00...

Why did the baby grid not get any sugar?

Because it would become a hypergrid.

Directed Isoperimetry

Surfaces, volumes, and why o(d) is possible

The Edge Tester

- [GGLRS00, DGLRRS99]
- Sample an edge of hypercube (*x*, *y*) u.a.r
- Query f(x), f(y)
- Reject if violation


```
Theorem: the probability of finding violation is > \varepsilon_f/d
```

A Geometric Interpretation

Abusing notation, S is the set of 1s. (We still use ε_f as before.)

Theorem: The number of **violated** hypercube edges is = $\Omega(\varepsilon_f \cdot 2^d)$

$$\operatorname{Inf}_{f}^{+} = \frac{\left|\vec{E}(S, S^{c})\right|}{2^{d}}$$

Theorem: $\operatorname{Inf}_{f}^{+} = \Omega(\varepsilon_{f})$

A far from monotone function

GGLRS = Directed Poincare

Undirected Hypercube

• Poincare: $Inf_f = \Omega(var_f)$

(Directed) Poincare is tight

• Distance = $\frac{1}{2}$

- Number of viol edges = 2^{d-1}
 - Total edges = $d \cdot 2^{d-1}$
- Edge tester needs $\Omega(d)$ queries to catch violation

Bypassing the (anti)-Dictator

- Sample *x*
- Walk "up" to get y
- Query f(x), f(y) and Test.

How long should we walk?

Square Root of Dimension

- Sample *x*
- Walk "up" to get y
- Query f(x), f(y) and Test.

Can't walk more than $\approx \sqrt{d}$

Analysis for the (capped) Anti-Did

- Sample *x*
- Walk "up" to get y
- Query f(x), f(y) and Test.

- Prob[x is green] $\approx 1/2$
- Prob[crossing] $\approx \sqrt{d} \cdot \frac{1}{d} \approx \frac{1}{\sqrt{d}}$

Number of steps

Chance of crossing in

each step

The root to root d is taking a longer root.

X

How to analyze the "path tester"

Need structural insight "far from monotone" functions/sets

How to "escape" S that is far from monotone?

Directed Isoperimetric Theorems

Undirected Hypercube

- Poincare: $Inf_f = \Omega(var_f)$
- [Margulis74]: $Inf_f \cdot \Gamma_f = \Omega(var_f^2)$
- **[Talagrand 92]:** $E[\sqrt{Inf(x)}] = \Omega(var_f)$

Directed Hypercube

- [DGLRRSOO, GGLRSOO]: $Inf_{f}^{+} = \Omega(\varepsilon_{f})$
- [Chakrabarty-S 13]: $\operatorname{Inf}_{f}^{+} \cdot \Gamma_{f}^{+} = \Omega(\varepsilon_{f}^{2})$
- [Khot-Minzer-Safra 15]: $E[\sqrt{Inf^+(x)}] = \Omega(\varepsilon_f)$

Query d $d^{5/6}$

 \sqrt{d}

How to measure the boundary?

Boundary as bipartite graph

Boundary as bipartite graph

Directed boundary

Directed boundary

 G^+ Violating Edges

Directed Influence

$$Inf^+(x) = out-degree of x in directed G^+$$

$$\operatorname{Exp}_{x:1}[\operatorname{Inf}^+(x)] = \frac{E^+(S, S^c)}{2^d} = I_f^+$$

$$\operatorname{Exp}_{x:1}[\operatorname{Inf}(x)] = I_f$$

A careful look into influence

Poincare: $I_f := \operatorname{Exp}_{x:1}[\operatorname{Inf}(x)] = \Omega(var_f)$

Consider the Vertex Boundary

Consider the Vertex Boundary

Consider the Vertex Boundary

Margulis

$$I_{f} \coloneqq \operatorname{Exp}_{x:1}[\operatorname{Inf}(x)] \qquad \text{``Edge boundary''}$$
$$\Gamma_{f} \coloneqq \operatorname{Exp}_{x:1}[\mathbb{I}\{\operatorname{Inf}(x) > 0\}] \quad \text{``Vertex Boundary''}$$

Margulis 1974: $I_f \cdot \Gamma_f = \Omega(var_f^2)$

Both cannot be simultaneously small!

Directed Margulis

Interior 1's

$$I_{f}^{+} \coloneqq \operatorname{Exp}_{x:1}[\operatorname{Inf}^{+}(x)] \quad \text{``Directed Edge boundary''}$$
$$\Gamma_{f}^{+} \coloneqq \operatorname{Exp}_{x:1}[\mathbb{I}\{\operatorname{Inf}^{+}(x) > 0\}]$$
$$\text{``Dir. Vrtx. boundary''}$$

[Chakrabarty-S 13]: $I_f^+ \cdot \Gamma_f^+ = \Omega(\varepsilon_f^2)$

ati-Dictator

X

By directed Margulis, if $I_f^+ = O(1)$, constant fraction of vertices on directed boundary.

Analysis like this should work?

• Prob[x is green] $\approx 1/2$

lysis

• Prob[crossing] $\approx \sqrt{d} \cdot \frac{1}{d} \approx \frac{1}{\sqrt{d}}$

Number of steps

Chance of crossing in each step

The Talagrand theorem

Talagrand 1993: "Notion of Surface Area" $Tal_f := Exp_{x:1}[\sqrt{Inf(x)}]$ $Tal_f = \Omega(var_f)$

Implies Margulis (by Cauchy-Schwartz), which also implies Poincare

Khot-Minzer-Safra

$$\operatorname{Tal}_{f}^{+} \coloneqq \operatorname{Exp}_{x:1}[\sqrt{\operatorname{Inf}^{+}(x)}]$$
$$= \Omega(\varepsilon_{f})$$

Actually, for any edge bicoloring ψ , $Tal_f^+ \coloneqq min_{\psi} E_x [\sqrt{Inf_{\psi}^+(x)}]$

KMS lost a log factor, which [Pallavoor-Raskhodnikova-Waingarten 22] removed

Robustness

$$\operatorname{Pal}_{f}^{+} \coloneqq \operatorname{Exp}_{x:1} \left[\sqrt{\operatorname{Inf}^{+}(x)} \right] = \Omega(1) \quad \operatorname{Tal}_{f}^{+} \coloneqq \operatorname{Exp}_{x:0} \left[\sqrt{\operatorname{Inf}^{+}(x)} \right] = \Omega(1)$$

$$\overset{2^{d} \text{ vertices}}{\overset{2^{d} \text{ edges}}{\overset{2^{d} \text{ edges}}{\overset{2^{$$

Adversary ψ assigns each edge to 0 or 1, to minimize Talagrand "surface area"

$$\operatorname{Tal}_{f}^{+} \coloneqq \min_{\psi} \operatorname{E}_{x} \left[\sqrt{\operatorname{Inf}_{\psi}^{+}(x)} \right]$$

Т

Robustness

$$Tal_{f}^{+} \coloneqq Exp_{x:1} \left[\sqrt{Inf^{+}(x)} \right] = \Omega(1) \quad Tal_{f}^{+} \coloneqq Exp_{x:0} \left[\sqrt{Inf^{+}(x)} \right] = \Omega(1)$$

$$2^{d} \text{ vertices}$$

$$2^{d} \text{ edges}$$

Adversary ψ assigns each edge to 0 or 1, to minimize Talagrand "surface area"

$$\operatorname{Tal}_{f}^{+} \coloneqq \min_{\psi} \operatorname{E}_{x} \left[\sqrt{\operatorname{Inf}_{\psi}^{+}(x)} \right] = \frac{2^{d}}{d} \cdot \sqrt{d} = O(1/\sqrt{d})$$

Khot-Minzer-Safra

Interior 1's

Actually, for any edge bicoloring

$$\psi$$
,
 $\operatorname{Tal}_{f}^{+} \coloneqq \min_{\psi} \operatorname{E}_{x} \left[\sqrt{\operatorname{Inf}_{\psi}^{+}(x)} \right] = \Omega(\varepsilon_{f})$

KMS lost a log factor, which [Pallavoor-Raskhodnikova-Waingarten 22] removed

But what does it mean? $\operatorname{Tal}_{f}^{+} \coloneqq \min_{\psi} \operatorname{E}_{x} \left[\sqrt{\operatorname{Inf}_{\psi}^{+}(x)} \right] = \Omega(\varepsilon_{f})$ Assume $\varepsilon_f = \Omega(1)$ # vertices = $r 2^d$ $I_f^+ \cdot \Gamma_f^+ = \Omega(1)$ Dir. Margulis $I_f^+ = \Omega(1)$ Dir. Poincare # vertices = $2^d/r$

For some r > 1,
$$I_f^+ = r$$
 and $\Gamma_f^+ = 1/r$

The most regular boundary

 Robust Talagrand theorem of KMS implies that's exactly what happens!

Boundaries are always regular!

"Nicest case"

vertices = $2^d/r$ All degrees = r^2

There exists r > 1 such that boundary contains regular bipartite graph with these parameters.

• (Up to d^{o(1)} factors)

Our usual examples

Boundary size = $2^d/r$ All degrees = r^2

<u>anti-dictator</u>

 2^d vertices on boundary, each with degree 1

 $2^d/\sqrt{d}$ vertices on boundary, each with degree d But what about monotonicity testing?

How to analyze the "path tester"

How to "escape" S that is far from monotone?

Be persistent!

 x is ℓ-persistent, if ℓ-length (directed walk) stays within f(x)-region whp

Pr[single step changes value] = $\frac{I_f}{d}$ Pr[one of ℓ -steps changes value] $\leq \ell \cdot \frac{I_f}{d}$ Fraction of NON ℓ -persistent vertices = $O\left(\ell \cdot \frac{I_f}{d}\right)$ $\downarrow I_f = O(\sqrt{d}) \longrightarrow O\left(\frac{\ell}{\sqrt{1}}\right)$

If $I_f \gg \sqrt{d}$ then $I_f^+ \gg \sqrt{d}$

Edge tester itself good

The analysis, in one slide

By regularity of boundary

vertices $\approx 2^d/r$ All degrees $\approx r^2$ All ℓ -persistent

The analysis, in one two slides

With prob $\approx 1/r$, start with f(x) = 1 in this part

With prob $\approx r^2/\ell = r/\sqrt{d}$, relevant bit is flipped

When both happen, f(y) = 0

Persistent!

By regularity of boundary # vertices $\approx 2^d/r$ All degrees $\approx r^2$ All ℓ -persistent $\ell = o(\sqrt{d}/r)$

Total prob
$$\approx \frac{1}{r} \cdot \frac{r}{\sqrt{d}} = \frac{1}{\sqrt{d}}$$

Х

The challenge of hypergrids

What is a boundary?

Move in a direction. But for "how much"? What is influence? How to define a path tester? What are upward random walks?

Domain reduction

- Set k=2, and reduce to hypercubes...?
- [BCS20] If k << d, sampled function can be close to monotone
- [BCS20] If k = poly(d), distance is preserved
 - So we can assume n = poly(d)
 - Even reduces from continuous
- [Harms-Yoshida 22] Downsampling

The embedding method

- Embedding [n] into hypercube
- [Braverman-Kindler-Khot-Minzer 23]
- First \sqrt{d} tester for any n > 2
 - poly(n) dependence necessary

Doing isoperimetry

- Also prove the robust version
- Direct tester analysis leads to $n\sqrt{d}$ query tester
 - Path picks uniform random step in each direction

The final step

[BCS 23-2] Getting $d^{\frac{1}{2}+o(1)}$ query tester

- Tester does correlated walks
 - Heavily used in analysis
 - Standard tester probably works
- How to perform this analysis and not lose n factor?
 - New combinatorial tools to analyze the walk using the [BCS23-1] Talagrand theorem

(Mostly) end of story

$$\begin{aligned}
& \text{H vertices} = 2^{d}/r \\
& \text{All degrees} = r^{2} \\
& \text{min}_{\psi} \mathbb{E}_{x} \left[\sqrt{\ln f_{\psi}^{+}(x)} \right] = \Omega(\varepsilon_{f}/\log n) \end{aligned}$$

- $d^{o(1)}$ loss annoying, comes from one specific calculation
- $d^{\frac{1}{2}+o(1)}$ non-adaptive one-sided monotonicity tester
 - Ends a 24 year odyssey

1

• Nearly matching (two-sided) lower bound

Some odds and ends

- Get rid of the $d^{o(1)}$ factor
- Are hypergrids strictly harder than hypercubes?
 - Only (log d) factors apart
- [Black-Kalemaj-Raskhodnikova 23] Tester for larger ranges, for hypercube
 - We can probably apply the methods for hypergrids

The big question

What is the adaptive complexity of monotonicity testing for hypercubes/grids?

- [Blais-Belovs 16] $\Omega(d^{1/4})$ lower bound
- [Chen-Waingarten-Xie 18] $\Omega(d^{1/3})$ lower bound
 - Every example has matching adaptive upper bound
- [Chakrabarty-S 16] $O(I_f)$ query adaptive tester
 - Proves adaptivity gap, for natural families

More on directed isoperimetry

- [Black-Kalemaj-Raskhodnikova 23] Directed Talagrand for real-range
- [Pinto 23, Pinto 24] Differential functions $f: [0,1]^d \rightarrow [0,1]$, with access to derivatives
 - Draws connections to optimal transport theory, based on undirected Poincare/Talagrand inequalities
- [Canonne-Chen-Levi-Kamath-Waingarten 21] Applications of robustness concept to distribution testing
- [Yoshida 24] Directed isoperimetry for general posets

Generalizing hypercube results

- [Pallavoor-Raskhodnikova-Waingarten 20] Estimating distance to monotonicity, \sqrt{d} -approximations in poly(d) time for hypercube
 - Can we get results for hypergrids? Also implies results for product distributions...?
- [Berman-Raskhodnikova-Yaroslavtsev 14] L_p testing

Thank you!

Here, no bad pun