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Monotone hypergrid functions

• 𝑓: 𝐷 → {0,1}

• Hypergrid: 𝑛 𝑑

(includes line, tesseract, etc.)

• n = 2, Boolean Hypercube:      0,1 𝑑

•  𝑥 ≺ 𝑦 iff 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖

• f is monotone: if x ≺ y, f(x) ≤ f(y)

• Equivalently, think of f as indicator for set

n-1,n-1, …

00…
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The distance to monotonicity

• Distance to monotonicity = (min changes to make set monotone)/nd

• εf in [0,1)
• Amen

• εf = min g monotone|f – g|0 / nd

Make f monotone

Add

Delete1
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Monotonicity testing

• [Bshouty-Tamon96, Lange-Vasilyan23] Learning monotone functions needs 
> exp( 𝑑)

• Given ε and query access to f:

 Distinguish monotone (εf = 0) vs far from monotone (εf > ε) whp

• One-sided tester: given f such that εf > ε, discover a “violation” whp

• Non-adaptive: all queries are made in advance

x

y
x ≺ y

f(x) = 1
f(y) = 0



Big question

• [Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky 00, Raskhonikova 99, Dodis-
Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky 99] 

What is the (non-adaptive) complexity of monotonicity testing?

• Hypergrid domain, Boolean range

•  > 20 papers and two decades of history 
7
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The Edge Tester

• [GGLRS00, DGGLRS00]
• Sample an edge of hypercube (𝑥, 𝑦) u.a.r
• Query 𝑓 𝑥 , 𝑓 𝑦  
• Reject if violation

Theorem: the probability of finding violation is > εf /d
So if εf > ε, O(d/ε) samples suffice to detect violation whp

• [DGGLRS00] O(d log2d /ε) monotonicity tester for hypergrids

x

y



Can we beat d?

• [Blais-Brody-Matulef 12] Ω 𝑑  lower bound when range is real

• [Chakrabarty-S 13a, Chakrabarty-S 13b]

    Hypergrid domain, arbitrary range, the complexity is Θ(𝑑 log 𝑛 /ε)

• Non-adaptive, one-sided upper bound. Adaptive, two-sided lower bound
• Finis. End of story
• Optimal tester for hypercube is edge tester

• Does Boolean range make complexity lower?
• [Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld 02]

Ω( 𝑑) one-sided lower bound
• Can one get o(d) complexities?
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The mystery of root d, for hypercubes

• [Chakrabarty-S 13] 𝑑7/8 query tester

• [Chen-Servedio-Tan 14] 𝑑5/6 query tester

• [Khot-Minzer-Safra 15] 𝑑 query tester
• Essentially, same tester as before. All in the analysis

• [Chen-De-Servedio-Tan 15, Chen-Waingarten-Xie 17] Ω( 𝑑) two-sided non-
adaptive lower bound

• The theory of Directed Isoperimetric Theorems
• Seemingly hypercube specific; can they generalize?
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Getting to root d, for hypergrids

• [DGGLRS00] O(d log2d /ε) monotonicity tester for hypergrid

• [Berman-Raskhodnikova-Yaroslavtsev 17] O(d log d)

• [Black-Chakrabarty-S 18, BCS 20] 𝑑 Τ5
6 query tester

• [Braverman-Khot-Kindler-Minzer 23, BCS 23] 𝑝𝑜𝑙𝑦 𝑛 𝑑 query tester

• [BCS 24] 𝑑 Τ1
2 +𝑜(1) query tester

• All results have different testers!
11



The generality of hypergrids

• Hypergrid: 𝑛 𝑑

Results for uniform distribution automatically 

translate to any product distribution

• Otherwise uniform distribution on hypercube 

looks like special case

• Can even set n = ∞, so domain is R𝑑

• Monotonicity testing for measurable functions 

over product distributions

n-1,n-1, …

00…

1

p 1-p



Why did the baby grid not 
get any sugar?

Because it would become a hypergrid.
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Directed Isoperimetry
Surfaces, volumes, and why o(d) is possible
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The Edge Tester

• [GGLRS00, DGLRRS99]
• Sample an edge of hypercube (𝑥, 𝑦) u.a.r
• Query 𝑓 𝑥 , 𝑓 𝑦  
• Reject if violation

Theorem: the probability of finding violation is > 𝜀𝑓/𝑑

x

y



A Geometric Interpretation

S

A far from monotone function

Theorem:  The number of violated hypercube edges 
is = Ω(𝜀𝑓 ⋅ 2𝑑)

Inf𝑓
+ =

𝐸 𝑆, 𝑆𝑐

2𝑑

Theorem:  Inf𝑓
+ = Ω(𝜀𝑓)

Violated edges
Abusing notation, S is the set of 1s. (We still use 𝜀𝑓 as before.)



Undirected Isoperimetry: Poincare

11

Influential Edges

Inf𝑓 =
𝐸 𝑆, 𝑆𝑐

2𝑑

Poincare Inequality/Edge Expansion/Influence Bound:  
For any f, Inf𝑓  = Ω(𝑣𝑎𝑟𝑓)

𝑣𝑎𝑟𝑓 =
#1′𝑠

2𝑑 ⋅
#0′𝑠

2𝑑  = 
|𝑆|

2𝑑  ∙ (1 −
𝑆

2𝑑 )  

Surface area > (Function of) Volume



GGLRS = Directed Poincare

Undirected Hypercube Directed Hypercube

• Poincare: Inf𝑓 = Ω(𝑣𝑎𝑟𝑓) • GGLRS: Inf𝑓
+ = Ω(𝜀𝑓)

11

Directed expansion/
surface area

Directed volume…?



(Directed) Poincare is tight

1

0

• Distance = 
1

2

• Edge tester needs Ω(𝑑) queries to 
catch violation

• Number of viol edges = 2𝑑−1

• Total edges = 𝑑 ∙ 2𝑑−1



Bypassing the (anti)-Dictator

• Sample 𝑥
• Walk “up” to get 𝑦
• Query 𝑓 𝑥 , 𝑓(𝑦) and Test. 

How long should we walk?
𝒙

𝒚



Square Root of Dimension

• Sample 𝑥
• Walk “up” to get 𝑦
• Query 𝑓 𝑥 , 𝑓(𝑦) and Test. 

1
0

𝐶𝜖 𝑑

Can’t walk more than ≈ 𝑑 



Analysis for the (capped) Anti-Dictator

• Prob[𝑥 is green] ≈ 1/2

• Prob[crossing]  ≈ 𝑑 ⋅
1

𝑑
≈

1

𝑑

• Sample 𝑥
• Walk “up” to get 𝑦
• Query 𝑓 𝑥 , 𝑓(𝑦) and Test. 

𝒙

𝒚

Number of steps Chance of crossing in 
each step

The root to root d 
is taking a longer 

root.



How to analyze the “path tester”

1

Need structural insight
“far from monotone” functions/sets

𝒙

𝒚

How to “escape” S that is far from monotone?



Directed Isoperimetric Theorems

Undirected Hypercube Directed Hypercube

• Poincare: Inf𝑓 = Ω(𝑣𝑎𝑟𝑓) • [DGLRRS00, GGLRS00]: 
Inf𝑓

+ = Ω(𝜀𝑓)

• [Margulis74]:    

 Inf𝑓 ⋅ Γ𝑓 = Ω(𝑣𝑎𝑟𝑓
2)

• [Talagrand 92]:  

  E[ Inf 𝑥 ] = Ω(𝑣𝑎𝑟𝑓)

• [Chakrabarty-S 13]:    

  Inf𝑓
+  ⋅ Γ𝑓

+ = Ω(𝜀𝑓
2)

• [Khot-Minzer-Safra 15]: 

  E[ Inf + 𝑥 ] = Ω(𝜀𝑓)

Query

𝑑

𝑑5/6

𝑑



How to measure the 
boundary?

25



Boundary as bipartite graph

1



Boundary as bipartite graph

1



Directed boundary

1



Directed boundary

1

Violating Edges

𝐺+



Directed Influence

Inf + 𝑥 = out-degree of 𝑥 in directed 𝐺+

Exp𝑥:𝟏[Inf + 𝑥 ] = 
𝐸+ 𝑆, 𝑆𝑐

2d =  𝐼𝑓
+

Exp𝑥:𝟏 Inf 𝑥 =  𝐼𝑓  



A careful look into influence

𝐼𝑓: = Exp𝑥:𝟏 Inf 𝑥 =  Ω(𝑣𝑎𝑟𝑓) Poincare:

anti-dictator

𝐼𝑓 = Θ(1)

anti-majority

𝐼𝑓 =

≈
𝑑

2
 

≈
1

𝑑

Θ( 𝑑)



Consider the Vertex Boundary

Interior 1’s

If  ≔  Exp𝑥:𝟏[Inf 𝑥 ] “Edge boundary”

“Vertex Boundary”



Consider the Vertex Boundary

Interior 1’s

If  ≔  Exp𝑥:𝟏[Inf 𝑥 ] “Edge boundary”

“Vertex Boundary”

{𝑥: 𝟏 such that it has at least one 
influential edge incident on it}

1

2𝑑 ⋅ 



Consider the Vertex Boundary

Interior 1’s

If  ≔  Exp𝑥:𝟏[Inf 𝑥 ] “Edge boundary”

“Vertex Boundary”

{𝑥: 𝟏 such that it has at least one 
influential edge incident on it}

1

2𝑑 ⋅ 

Exp𝑥:𝟏[𝕀{Inf 𝑥 > 0}]



Vertex Boundaries

anti-dictator anti-majority

Edge boundary = Θ(1) Edge boundary = Θ( 𝑑)

Every vertex in the boundary Only 1/ 𝑑 fraction in boundary

Vertex boundary =  Θ(1) Vertex boundary = Θ(1/ 𝑑)

Small

Small

Large

Large

Lowest possible!
(By Poincare)

Lowest possible!
(By Harper)



Margulis

Interior 1’s

I𝑓  ≔  Exp𝑥:𝟏[Inf 𝑥 ] “Edge boundary”

“Vertex Boundary”Γ𝑓  ≔  Exp𝑥:𝟏[𝕀{Inf 𝑥 > 0}]

Margulis 1974:

𝐼𝑓 ⋅  Γ𝑓  = Ω(𝑣𝑎𝑟𝑓
2)

Both cannot be simultaneously small!



Vertex Boundaries

anti-dictator anti-majority

Exp𝑥:𝟏[Inf 𝑥 ] = 1 Exp𝑥:𝟏[Inf 𝑥 ] = Θ( 𝑑)

Every vertex in the boundary Only 1/ 𝑑 fraction in boundary

Exp𝑥:𝟏 𝕀 Inf 𝑥 > 0 = 1 Exp𝑥:𝟏 𝕀 Inf 𝑥 > 0 = Θ(1/ 𝑑)

Small

Small

Large

Large



Directed Margulis

Interior 1’s

If
+  ≔  Exp𝑥:𝟏[Inf + 𝑥 ] “Directed  Edge boundary”

Exp𝑥:𝟏[𝕀{Inf + 𝑥 > 0}]Γ𝑓
+  ≔

“Dir. Vrtx. boundary”

[Chakrabarty-S 13]:

𝐼𝑓
+ ⋅  Γ𝑓

+  = Ω(𝜀𝑓
2)



Analysis for the (capped) Anti-Dictator

• Prob[𝑥 is green] ≈ 1/2

• Prob[crossing]  ≈ 𝑑 ⋅
1

𝑑
≈

1

𝑑

• Sample 𝑥
• Walk “up” to get 𝑦
• Query 𝑓 𝑥 , 𝑓(𝑦) and Test. 

𝒙

𝒚

Number of steps Chance of crossing in 
each step

By directed Margulis, if 𝐼𝑓
+ = 𝑂(1), 

constant fraction of vertices on 
directed boundary.

Analysis like this should work?



Interior 1’s

The Talagrand theorem

Tal𝑓  ≔  Exp𝑥:𝟏[ Inf(𝑥)]

Talagrand 1993: “Notion of Surface Area”

Tal𝑓 = Ω(𝑣𝑎𝑟𝑓) 

Implies Margulis (by Cauchy-Schwartz), 
which also implies Poincare



Khot-Minzer-Safra

Interior 1’s

Tal𝑓
+ ≔ Exp𝑥:𝟏[ Inf +(𝑥)]

= Ω(𝜀𝑓) 

KMS lost a log factor, which [Pallavoor-Raskhodnikova-Waingarten 22] removed

Actually, for any edge bicoloring 
𝜓, 

Tal𝑓
+ ≔ min𝜓E𝑥[ Inf𝜓

+(𝑥)]



Robustness

Tal𝑓
+  ≔  Exp𝑥:𝟏 Inf + 𝑥 =  Ω(1)

Adversary 𝜓 assigns each edge to 0 or 1, to minimize Talagrand “surface area”

Tal𝑓
+ ≔ min𝜓E𝑥[ Inf𝜓

+(𝑥)]

2d vertices

2d edges

Tal𝑓
+  ≔  Exp𝑥:𝟎 Inf + 𝑥 =  Ω(1)



Robustness

Tal𝑓
+  ≔  Exp𝑥:𝟏 Inf + 𝑥 =  Ω(1)

Adversary 𝜓 assigns each edge to 0 or 1, to minimize Talagrand “surface area”

Tal𝑓
+ ≔ min𝜓E𝑥 Inf𝜓

+ 𝑥 =
2𝑑

𝑑
∙ 𝑑 = 𝑂(1/ 𝑑)

2d vertices

2d edges

Tal𝑓
+  ≔  Exp𝑥:𝟎 Inf + 𝑥 =  Ω(1)



Khot-Minzer-Safra

Interior 1’s

KMS lost a log factor, which [Pallavoor-Raskhodnikova-Waingarten 22] removed

Actually, for any edge bicoloring 
𝜓, 

Tal𝑓
+ ≔ min𝜓E𝑥 Inf𝜓

+ 𝑥 = Ω(𝜀𝑓)



But what does it mean?

= Ω(𝜀𝑓) Tal𝑓
+ ≔ min𝜓E𝑥[ Inf𝜓

+(𝑥)]

Assume 𝜀𝑓 =  Ω(1) 

𝐼𝑓
+ ⋅  Γ𝑓

+  = Ω(1)

𝐼𝑓
+ = Ω(1)

Dir. Margulis

Dir. Poincare

For some r > 1, 𝐼𝑓
+ = 𝑟 and Γ𝑓

+ = 1/𝑟  

# vertices = 2𝑑/𝑟

# vertices = 𝑟 2𝑑



The most regular boundary

• Robust Talagrand theorem of KMS implies that’s exactly what 
happens!

# vertices = 2𝑑/𝑟

# edges = 𝑟 2𝑑

“Nicest case”

# vertices = 2𝑑/𝑟

All degrees = 𝑟2



Boundaries are always regular!

There exists r > 1 such that boundary 
contains regular bipartite graph with these 
parameters.

• (Up to do(1) factors)

“Nicest case”

# vertices = 2𝑑/𝑟

All degrees = 𝑟2

1

Assume 𝜀𝑓 =  Ω(1) 



Our usual examples

anti-dictator anti-majority

2𝑑  vertices on boundary, 
each with degree 1

2𝑑/ 𝑑 vertices on 
boundary, 
each with degree 𝑑

Boundary size = 2𝑑/𝑟

All degrees = 𝑟2



But what about 
monotonicity testing?

49



How to analyze the “path tester”

1

𝒙

𝒚
How to “escape” S that is far from monotone?



Be persistent!

• x is ℓ-persistent, if ℓ-length (directed walk) 
stays within f(x)-region whp

51

𝒙
𝒙

Pr[single step changes value] = 
𝐼𝑓

𝑑

Pr[one of ℓ-steps changes value]  ≤ ℓ ∙
𝐼𝑓

𝑑
 

Fraction of NON ℓ-persistent vertices =  O ℓ ⋅
𝐼𝑓

𝑑
 

If 𝐼𝑓 ≫ 𝑑 then 𝐼𝑓
+ ≫ 𝑑 Edge tester itself good

O
ℓ

𝑑

𝐼𝑓 = 𝑂( 𝑑)



The analysis, in one slide

By (robust) Directed 
Talagrand, boundary is

# vertices = 2𝑑/𝑟

All degrees = 𝑟2

Frac. non-persistent = O
ℓ

𝑑
 

Set ℓ ≪ 𝑑/𝑟 
so frac. ≪ 1/𝑟 

Non- ℓ-persistent

# vertices ≈ 2𝑑/𝑟

All degrees ≈ 𝑟2

By regularity 
of boundary

All ℓ-persistent



The analysis, in one two slides

# vertices ≈ 2𝑑/𝑟

All degrees ≈ 𝑟2

By regularity 
of boundary

All ℓ-persistent

With prob ≈ 1/𝑟, start 
with f(x) = 1 in this part   

x

With prob ≈ 𝑟2/ℓ = 𝑟/ 𝑑,
relevant bit is flipped

ℓ = 𝑜( 𝑑/𝑟) When both happen, f(y) = 0

y

Persistent!

Total prob ≈ 
1

𝑟
 ∙

𝑟

𝑑 
=

1

𝑑



The challenge of hypergrids

54



What is a boundary?

Move in a direction. But for “how much”?

What is influence?

How to define a path tester? What are upward 
random walks?

1



The augmentation view

• Degree is now 𝑑 log 𝑛
• Can we treat it a hypercube/product structure?

• [BCS18] Directed Margulis holds
• Define boundaries in the graph theoretic way
• 𝑑5/6 log 𝑛 query tester, using path tester 

56

1
2

4
2i

Add all these edges to the
hypercube

Directed Margulis proofs more amenable to alternate 
domains. 

[KMS15] very intricate proof; doesn’t seem to 
generalize

Does directed 
Talagrand 

hold?



Domain reduction
• Set k=2, and reduce to 

hypercubes…?

• [BCS20] If k << d, sampled 
function can be close to 
monotone

• [BCS20] If k = poly(d), 
distance is preserved
• So we can assume n = poly(d)

• Even reduces from 
continuous

• [Harms-Yoshida 22] 
Downsampling

57

[𝑛]𝑑

[𝑘]𝑑

Is distance to monotonicity
preserved?

R𝑑



The embedding method

• Embedding [n] into 
hypercube

• [Braverman-Kindler-
Khot-Minzer 23]

• First 𝑑 tester for any 
n > 2
• poly(n) dependence 

necessary

58

{0,1}𝑑∙𝑝𝑜𝑙𝑦(𝑛)

[𝑛]𝑑 Distance to monotonicity
preserved

[𝑛] {0,1}𝑝𝑜𝑙𝑦(𝑛)



Doing isoperimetry

• Also prove the robust version

• Direct tester analysis leads to 𝑛 𝑑 query tester 
• Path picks uniform random step in each direction

59

x
Dimension contains
violation

Inf + 𝑥 = 
# dimensions where x is

in violation

[BCS23−1] Tal𝑓
+  

≔ Exp𝑥:𝟏[ Inf +(𝑥)]= Ω(𝜀𝑓/ log 𝑛) 

x
“step” uar in [xi, n]



The final step

[BCS 23-2]  Getting 𝑑
1

2
+𝑜(1) query tester

• Tester does correlated walks
• Heavily used in analysis 

• Standard tester probably works

• How to perform this analysis and not lose 

   n factor?
• New combinatorial tools to analyze the walk

using the [BCS23-1] Talagrand theorem

60

𝒙

𝒚

𝒚′

𝒙′

y

Persistent!



(Mostly) end of story

• 𝑑𝑜(1) loss annoying, comes from one specific calculation

𝑑
1

2
+𝑜(1) non-adaptive one-sided monotonicity tester

• Ends a 24 year odyssey

• Nearly matching (two-sided) lower bound

61

min𝜓E𝑥 Inf𝜓
+ 𝑥 = Ω(𝜀𝑓/ log 𝑛)

# vertices = 2𝑑/𝑟

All degrees = 𝑟2



Some odds and ends

• Get rid of the 𝑑𝑜(1) factor

• Are hypergrids strictly harder than hypercubes?
• Only (log d) factors apart

• [Black-Kalemaj-Raskhodnikova 23] Tester for larger ranges, for 
hypercube
• We can probably apply the methods for hypergrids

62



The big question

What is the adaptive complexity of monotonicity testing for 
hypercubes/grids?

• [Blais-Belovs 16] Ω 𝑑1/4  lower bound

• [Chen-Waingarten-Xie 18] Ω 𝑑1/3  lower bound
• Every example has matching adaptive upper bound

• [Chakrabarty-S 16] 𝑂 𝐼𝑓  query adaptive tester
• Proves adaptivity gap, for natural families 

63



More on directed isoperimetry

• [Black-Kalemaj-Raskhodnikova 23] Directed Talagrand for real-range

• [Pinto 23, Pinto 24] Differential functions 𝑓: [0,1]𝑑→ [0,1], with 
access to derivatives
• Draws connections to optimal transport theory, based on undirected 

Poincare/Talagrand inequalities

• [Canonne-Chen-Levi-Kamath-Waingarten 21] Applications of 
robustness concept to distribution testing

• [Yoshida 24] Directed isoperimetry for general posets

64



Generalizing hypercube results

• [Pallavoor-Raskhodnikova-Waingarten 20] Estimating distance to 
monotonicity, 𝑑-approximations in poly(d) time for hypercube
• Can we get results for hypergrids? Also implies results for product 

distributions…?

• [Berman-Raskhodnikova-Yaroslavtsev 14] Lp testing

65



Thank you!
Here, no bad pun

66

1

𝒙

𝒚
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