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• Balanced Separator Theorem
• [Lipton-Tarjan 70]
• Facilitates Divide and Conquer Algorithms



Hyperfinite Decompositions: Recursively use Planar Sep Theorem
• [Elek 08, BSS 08, AST 94]
• Intuitively, hyperfinite decomposition enables approximation algos for 

various graph parameters.



To reiterate:

Bdd degree planar graphs are (ε,k)-Hyperfinite with k = 
O(1/ε)2

Can break V(G) into subsets of size O(1/ε)2 by deleting only 
an ε-fraction of edges.
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Goal:  Assuming adjacency list query model

Build an Oracle which returns the component a vertex v
belongs to with respect to some hyperfinite decomposition.
Annoyance: Multiple hyperfinite decompositions



Goal: A little more detailed
(Read only random tape)

Goal: Build a primitive which 
runs in time poly(1/ε) and 
returns P(v) for any v ∈ V.



P(v)
v

Goal: Build a primitive which 
runs in time poly(1/ε) and 
returns P(v) for any v ∈ V.

1. |P(v)| ≤ poly(1/ε)
2. G[P(v)] connected
3. Pr(#Edges Cut < ε|E|) ≥ 2/3

(Read only random tape)
Goal: A little more detailed



Why care about this primitive/goal?

Ø Gives property testers for planarity [HKNO 10, LR 15].
Ø Can estimate various graph parameters eg, max 

independent set, min vertex cover etc.
Ø Yields exp (1/ε) 2 testers for all planar properties [NS 13, 

BKS 22].



Previous Implementations of Partition Oracles.

Ø [HKNO 10]: An exp(d/ε) time implementation.
Ø [LR 15]: exp(O(log2(d/ε)) time implementation.

(Refines HKNO 10 analysis)

Key principle in [HKNO 10, LR 15]

Ø Describe a global poly(n)-time algo first to find a 
hyperfinite decomposition.

Ø Simulate Locally.



Previous Implementations of Partition Oracles.

Global (ε,k) Partition Oracle of [LR 15]. (A rough sketch) 
1. Set l =  O(log(d/ε)).
2. Set G0 = G.
3. Perform l iterations. In ith iteration
Ø Pick some random edges and contract. Merge end points.
Ø If any piece violates the size bound, unmerge.

Sketch of [LR 15] analysis.
1. #Edges Cut in Gi ≤  0.99 × #Edges Cut in Gi-1

2. After l iterations, #Edges Cut in Gl ≤ O(εdn)
3. Time taken to find piece of v in Gi: O(k2i)



Random Walks on planar graphs: A different starting point

v

Let pv, l = Ml.!v

What is | pv, l |##?

One notes that | pv, l |## ≈ 1/l.

≈ √&

≈ √&



Random Walks on planar graphs: A different starting point

Lemma: Let G be a bdd degree planar graph. Then for at least 
(1 – 1/l) fraction of vertices v ∈ V, it holds that | pv, l |## ≥ l -10

< α-2

< αnd Think α = ε2/100 l

$ $ [Number of Cut Edges on W] 
v ~ π W ~ Wv,l

≤ α l = ε2/100



Random Walks on planar graphs: A different starting point

Lemma: Let G be a bdd degree planar graph. Then for at least 
(1 – 1/l) fraction of vertices v ∈ V, it holds that | pv, l |## ≥ l -10

< α-2

< αnd Think α = ε2/100 l

$ $ [Number of Cut Edges on W] 

By a Markov Bound, for at least (1 – ε) fraction of vertices, 
the probability W never leaves is at least 1-ε.

v ~ π W ~ Wv,l

≤ α l = ε2/100

⇒ | pv, l |## ≥ poly(ε)



Random Walks on planar graphs: A different starting point

Call such vertices non-leaky (| pv, l |"" ≥ poly(ε)).

Define procedure C(s) = {$% &'()* &+,,'-. /0 1),$ //4
., +0 . +. $'(5*

We are ready for our global algorithm.
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Few Leaky Vertices Lemma à A global algorithm

Our Algorithm (crudely)

/* Random Tape holds a random 
permutation of V */

Let F = free vertices in i-th iteration.
Pick smallest s ∈ F
Find C(s)
Assign P(s) = C(s) ∩ F
Update F = F \ P(s)

s
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Few Leaky Vertices Lemma à A global algorithm

Our Algorithm (crudely)

/* Random Tape holds a random 
permutation of V */

Let F = free vertices in i-th iteration.
Pick smallest s ∈ F
Find C(s)
Assign P(s) = C(s) ∩ F
Update F = F \ P(s) Challenges in local impl.

Need to find the “free vertex” s which 
captures v.
Need to find C(s) ∩ F

v s

Def: We say anchor(v) = s
where v ∈ P(s)



Few Leaky Vertices Lemma à A global algorithm

Suppose you can find anchor(v) for any 
v ∈ V.

Can handle both challenges now.

Challenges in local impl.

Need to find the “free vertex” s which 
captures v.
Need to find C(s) ∩ F

v s

Def: We say anchor(v) = s
where v ∈ P(s)



Few Leaky Vertices Lemma à A global algorithm

Annoyance:

How do I find anchor(v)?

v has a list of potential anchors. Need 
to know if any of those were already 
captured.

Need to determine anchors recursively.

We could not analyze this process. Challenges in local impl.

Need to find the “free vertex” s which 
captures v.
Need to find C(s) ∩ F

v s

Def: We say anchor(v) = s
where v ∈ P(s)



A New global algorithm

v s

Our Algorithm (still crudely)

/* Random Tape holds a random 
permutation of V */

Let F = V
For s = 1 to n
Ø Find C(s)
Ø Assign P(s) = C(s) ∩ F
Ø Update F = F \ P(s)

Easy to implement locally.

A danger

While C(s) has a small edge boundary.
P(s) need not!
Way out: Amortize.



A New global algorithm

v s

Handling Danger via Isoperimetry

Theorem: Suppose |F| ≥ εn. Then for at 
least ε2n vertices s ∈ F, it holds that 

|C(s) ∩ F| ≥ ε3|C(s)|

Using this theorem, you can show that 
for every clustered vertex, on an 
average you cut εd edges.

A danger

While C(s) has a small edge boundary.
P(s) need not!
Way out: Amortize.



More applications?

[Levi-Shoshan 21] Gave a tester for Hamiltonicity on Planar 
Graphs using Partition Oracles.
[Basu-K-Seshadhri 22] Gave an exp(1/ε2) query tester for all 
planar properties.



Open Problems

Ø Extending to unbounded degree planar graphs.
Ø Distributed applications?
Ø LCA for Hyperfinite Decompositions?

Thanks for your time


