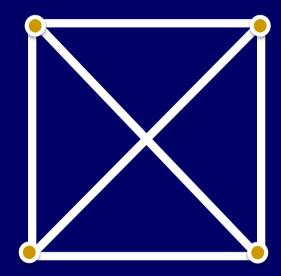
Planar Partition Oracles in $poly(1/\epsilon)$ time

- July 31, Simons Institute
- Workshop on Sublinear Graph Simplification
- Akash Kumar (IIT Bombay)

C. Seshadhri (UCSC)

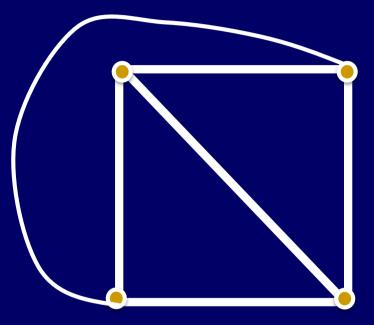
Andrew Stolman (Katana Labs)

What are planar graphs?

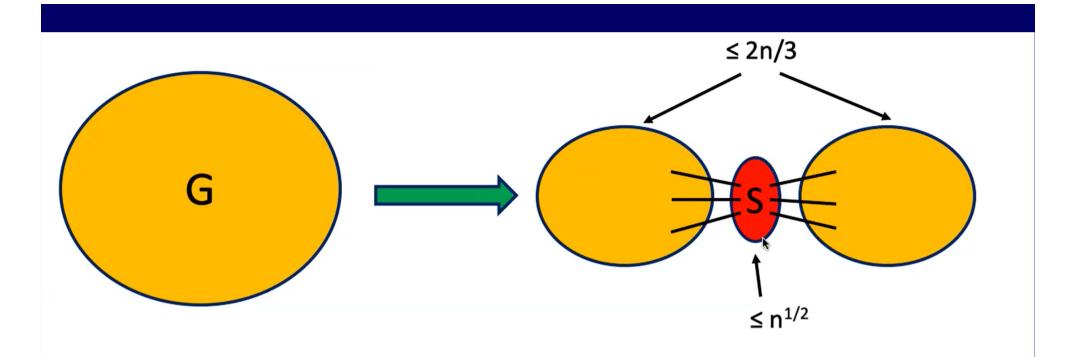


 K_4

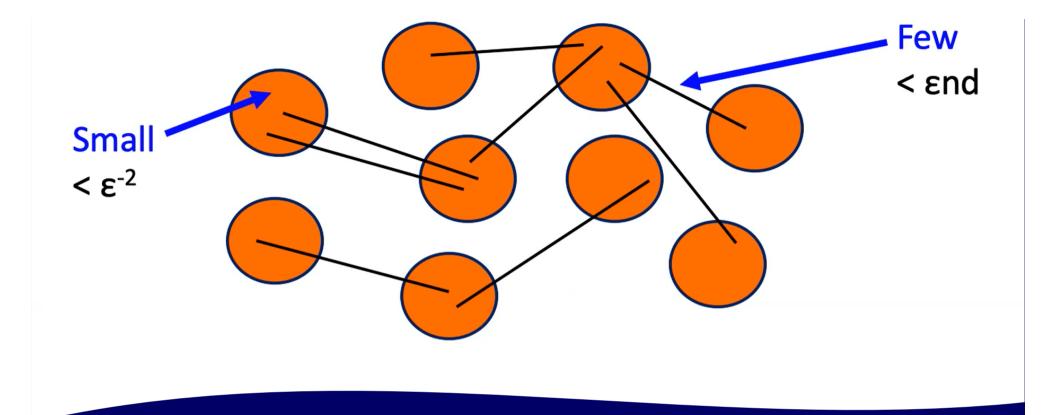
What are planar graphs?



 K_4



- Balanced Separator Theorem
- [Lipton-Tarjan 70]
- Facilitates Divide and Conquer Algorithms

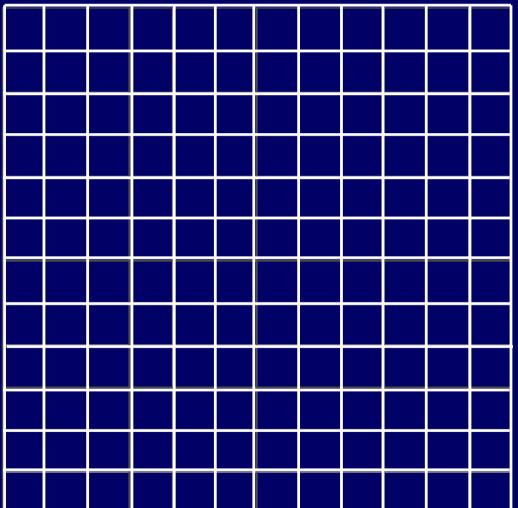


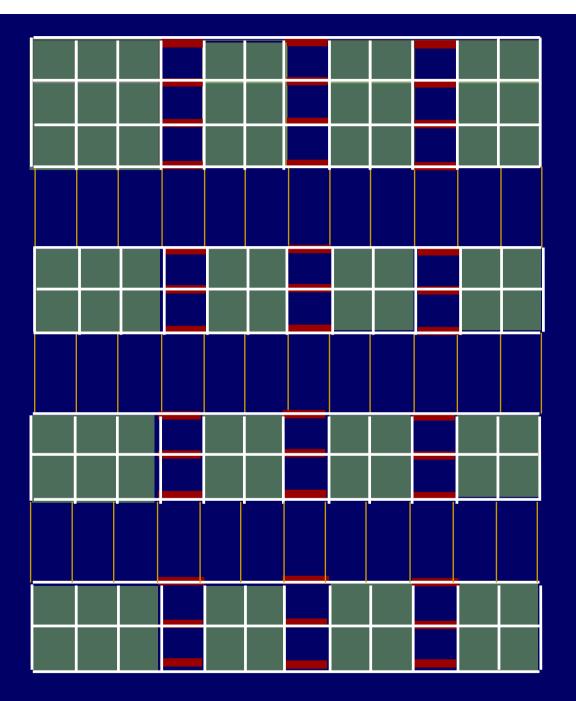
Hyperfinite Decompositions: Recursively use Planar Sep Theorem

- [Elek 08, BSS 08, AST 94]
- Intuitively, hyperfinite decomposition enables approximation algos for various graph parameters.

To reiterate:

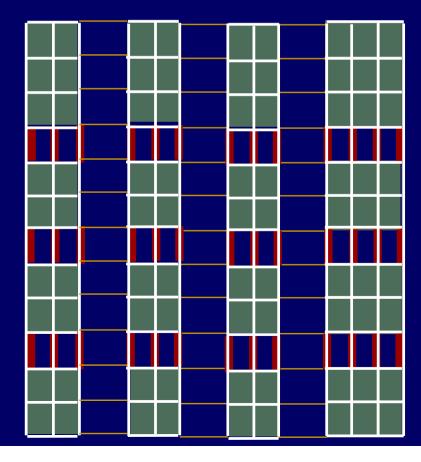
Bdd degree planar graphs are (ε, k) -Hyperfinite with $k = O(1/\varepsilon)^2$ Can break V(G) into subsets of size $O(1/\varepsilon)^2$ by deleting only an ε -fraction of edges.





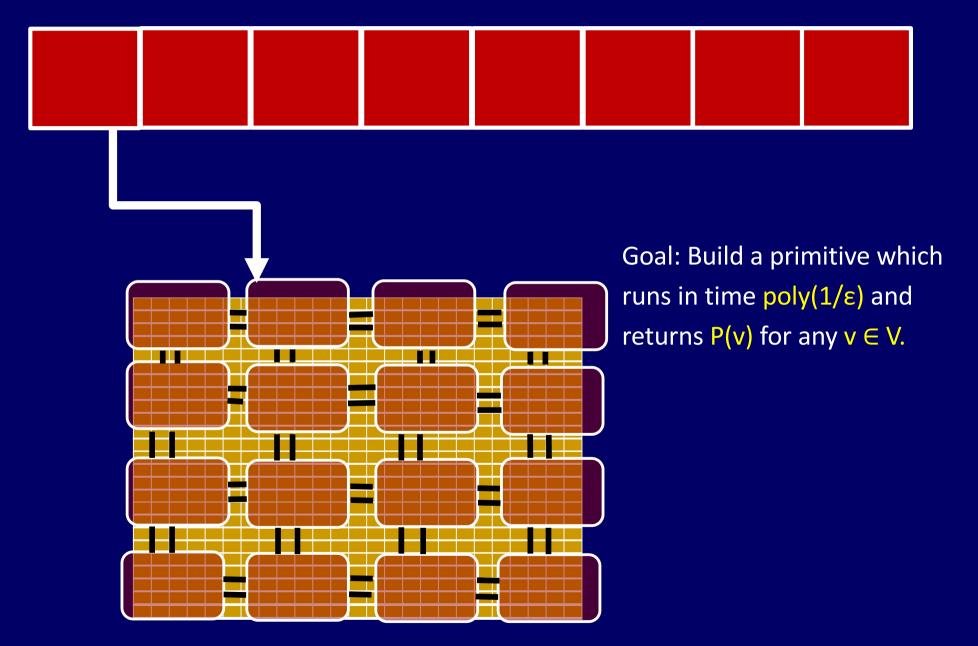
Goal: Assuming adjacency list query model

Build an Oracle which returns the component a vertex v belongs to with respect to *some hyperfinite* decomposition. Annoyance: Multiple hyperfinite decompositions



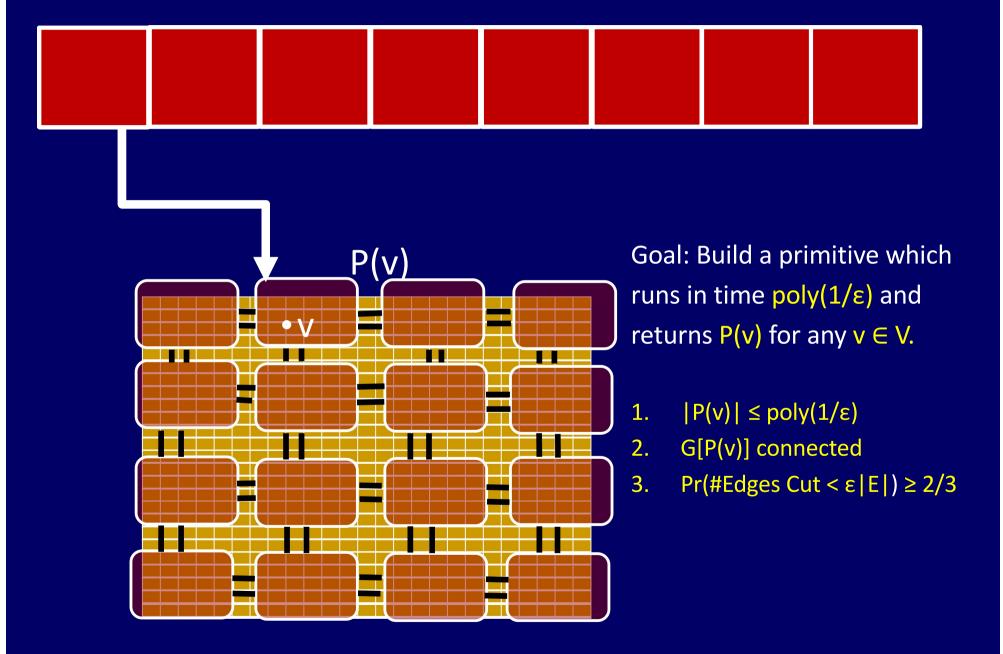
Goal: A little more detailed

(Read only random tape)



Goal: A little more detailed

(Read only random tape)



Why care about this primitive/goal?

- Gives property testers for planarity [HKNO 10, LR 15].
 Can estimate various graph parameters eg, max independent set, min vertex cover etc.
- Yields exp (1/ε)² testers for all planar properties [NS 13, BKS 22].

Previous Implementations of Partition Oracles.

 [HKNO 10]: An exp(d/ε) time implementation.
 [LR 15]: exp(O(log²(d/ε)) time implementation. (Refines HKNO 10 analysis)

Key principle in [HKNO 10, LR 15]

Describe a *global* poly(n)-time algo first to find a hyperfinite decomposition.

Simulate Locally.

Previous Implementations of Partition Oracles.

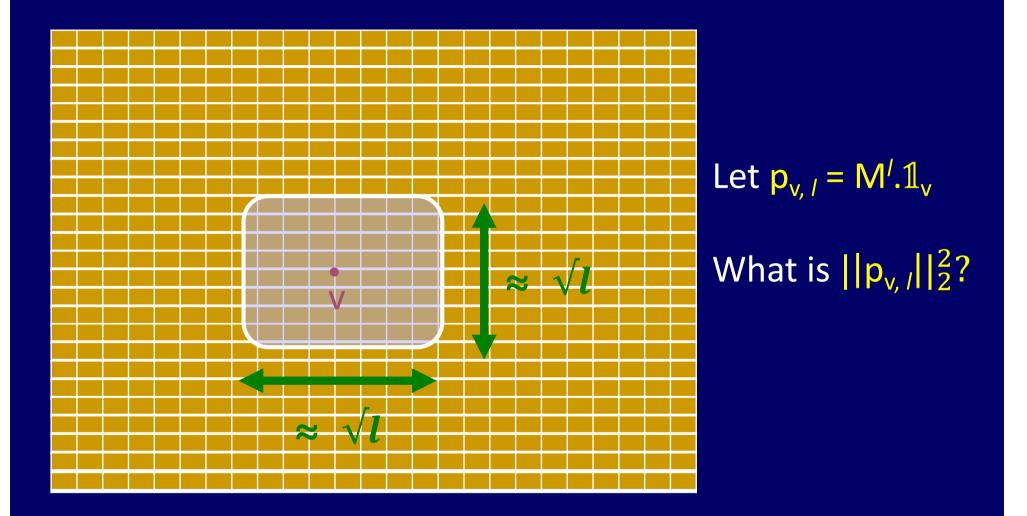
Global (*ɛ*,*k*) Partition Oracle of [LR 15]. (A rough sketch)

- 1. Set $l = O(\log(d/\epsilon))$.
- 2. Set $G^0 = G$.
- 3. Perform / iterations. In ith iteration
- Pick some random edges and contract. Merge end points.
- If any piece violates the size bound, unmerge.

Sketch of [LR 15] analysis.

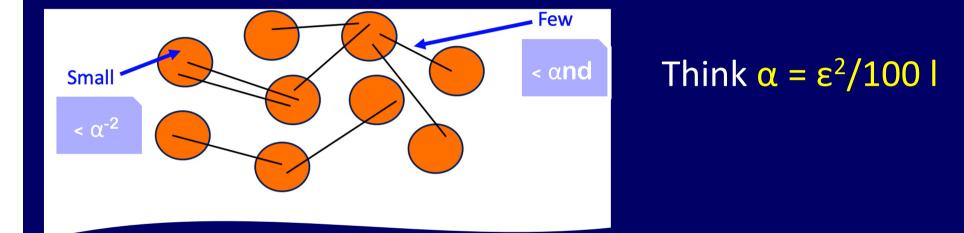
- 1. #Edges Cut in $G^{i} \leq 0.99 \times #Edges$ Cut in G^{i-1}
- 2. After / iterations, #Edges Cut in $G' \leq O(\epsilon dn)$
- 3. Time taken to find piece of v in Gⁱ: O(k²ⁱ)

Random Walks on planar graphs: A different starting point



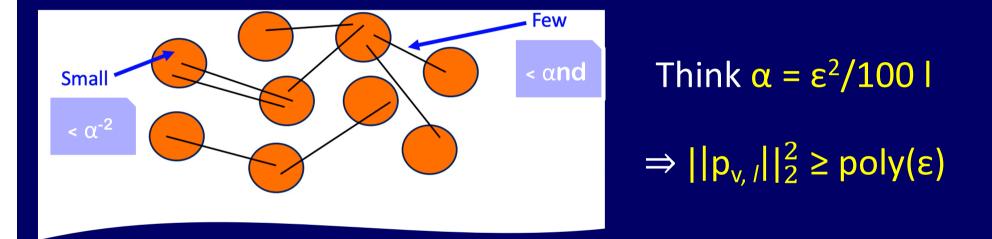
One notes that $||p_{v,l}||_2^2 \approx 1/l$.

Random Walks on planar graphs: A different starting point Lemma: Let G be a bdd degree planar graph. Then for at least (1 - 1/l) fraction of vertices $v \in V$, it holds that $||p_{v,l}||_2^2 \ge l^{-10}$



$\mathbb{E} \quad \mathbb{E} \quad [\text{Number of Cut Edges on W}] \leq \alpha \mid = \epsilon^2 / 100$ v ~ $\pi \quad \text{W} \sim W_{v,l}$

Random Walks on planar graphs: A different starting point Lemma: Let G be a bdd degree planar graph. Then for at least (1 - 1/l) fraction of vertices $v \in V$, it holds that $||p_{v,l}||_2^2 \ge l^{-10}$



 $\mathbb{E} \quad \mathbb{E} \quad [\text{Number of Cut Edges on W}] \le \alpha \mid = \epsilon^2 / 100$ v ~ $\pi \quad \text{W} \sim W_{v,l}$

By a Markov Bound, for at least $(1 - \varepsilon)$ fraction of vertices, the probability W never leaves is at least $1-\varepsilon$.

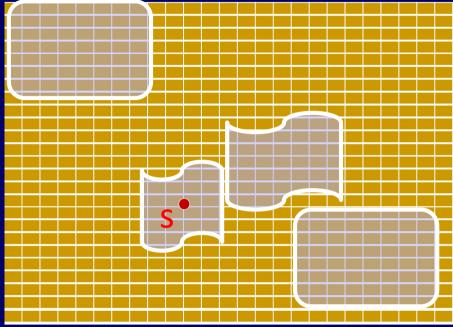
Random Walks on planar graphs: A different starting point

Call such vertices non-leaky $(||p_{v, l}||_2^2 \ge poly(\varepsilon))$.

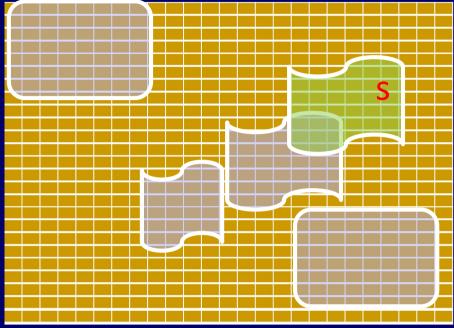
Define procedure C(s) = $\begin{cases} s, if s is leaky \\ l_1 heavy hitters of pv_1 o/w \end{cases}$

We are ready for our global algorithm.

Few Leaky Vertices Lemma \rightarrow A global algorithm



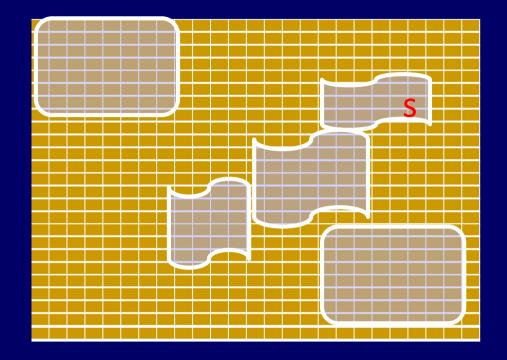
Few Leaky Vertices Lemma \rightarrow A global algorithm



Our Algorithm (crudely)

/* Random Tape holds a random
permutation of V */

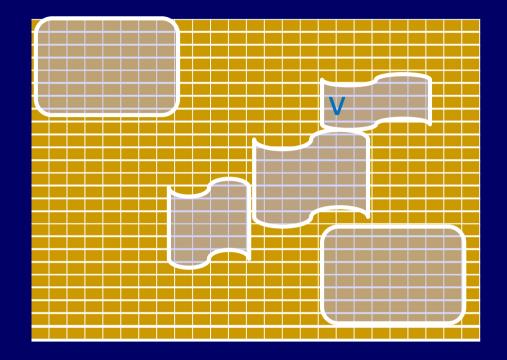
Let F = free vertices in i-th iteration. Pick smallest $s \in F$ Find C(s) Assign P(s) = C(s) \cap F Update F = F \ P(s)



Our Algorithm (crudely)

/* Random Tape holds a random
permutation of V */

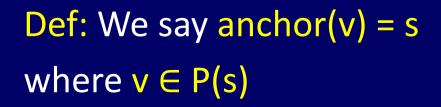
Let F = free vertices in i-th iteration. Pick smallest $s \in F$ Find C(s) Assign P(s) = C(s) \cap F Update F = F \ P(s)

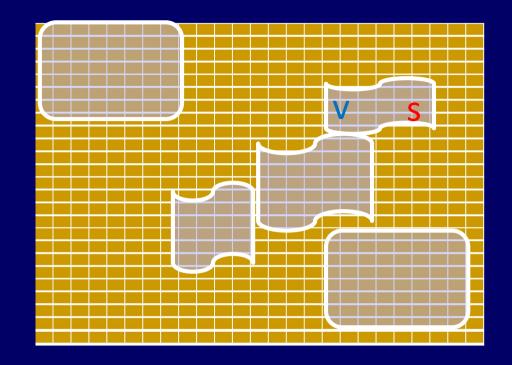


Our Algorithm (crudely)

/* Random Tape holds a random
permutation of V */

Let F = free vertices in i-th iteration. Pick smallest $s \in F$ Find C(s) Assign P(s) = C(s) \cap F Update F = F \ P(s)



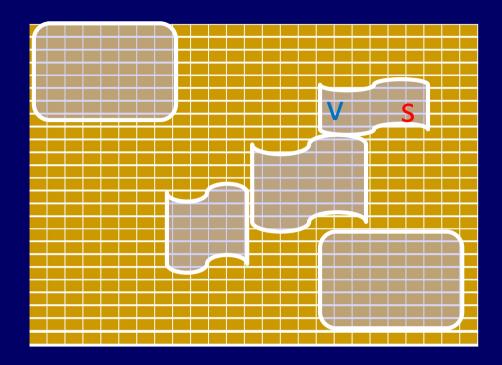


Challenges in local impl.

Need to find the "free vertex" s which captures v. Need to find $C(s) \cap F$

Suppose you can find anchor(v) for any $v \in V$.

Can handle both challenges now.



Challenges in local impl.

Def: We say anchor(v) = s where $v \in P(s)$ Need to find the "free vertex" s which captures v. Need to find $C(s) \cap F$

Few Leaky Vertices Lemma \rightarrow A global algorithm

Annoyance:

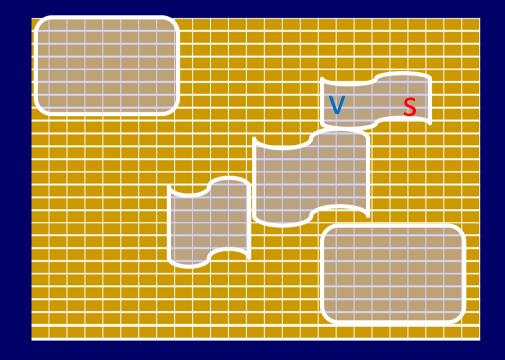
How do I find anchor(v)?

v has a list of potential anchors. Need to know if any of those were already captured.

Need to determine anchors recursively.

We could not analyze this process.

Def: We say anchor(v) = s where $v \in P(s)$



Challenges in local impl.

Need to find the "free vertex" s which captures v. Need to find $C(s) \cap F$

A New global algorithm

Our Algorithm (still crudely)

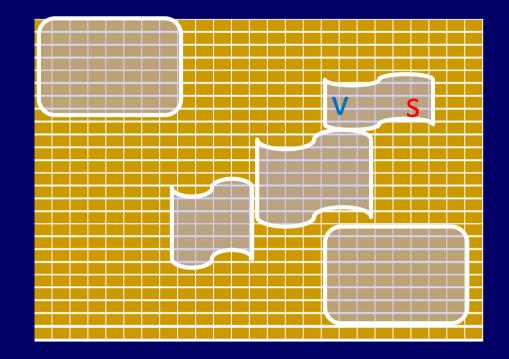
/* Random Tape holds a random
permutation of V */

Let F = V

For s = 1 to n

- Find C(s)
- Assign $P(s) = C(s) \cap F$
- Update F = F \ P(s)

Easy to implement locally.



A danger

While C(s) has a small edge boundary.P(s) need not!Way out: Amortize.

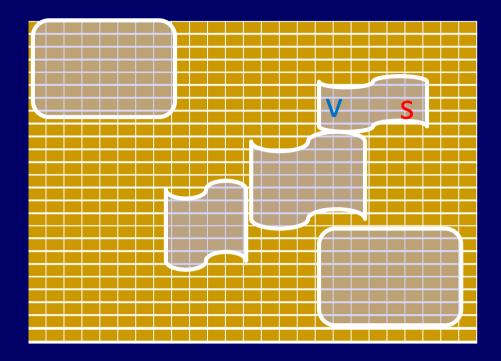
A New global algorithm

Handling Danger via Isoperimetry

Theorem: Suppose $|F| \ge \varepsilon n$. Then for at least $\varepsilon^2 n$ vertices $s \in F$, it holds that

 $|\mathsf{C}(\mathsf{s}) \cap \mathsf{F}| \geq \varepsilon^3 |\mathsf{C}(\mathsf{s})|$

Using this theorem, you can show that for every clustered vertex, on an average you cut **Ed** edges.



A danger

While C(s) has a small edge boundary.P(s) need not!Way out: Amortize.

[Levi-Shoshan 21] Gave a tester for Hamiltonicity on Planar Graphs using Partition Oracles.
[Basu-K-Seshadhri 22] Gave an exp(1/ɛ²) query tester for all planar properties.

Open Problems

Extending to unbounded degree planar graphs.

- Distributed applications?
- LCA for Hyperfinite Decompositions?

Thanks for your time