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Reactive Synthesis from LTL Specifications

m We have seen:

m 2EXPTIME-complete.

m LTL = DPW = parity Game.

m Competition!
m Arena + LTL?

= GR[1].

m Early work in robotics.

m Work by Maoz, Somenzi, Holzmann, ...

m Synthesis in SE (Uchitel, Braberman, ...)
m What if the Arena is infinite?

m Decidable classes: Pushdown and beyond (e.g. [Wal'01]).

m Undecidable classes: Finkbeiner, Piskac, Farzan, Dimitrova, ...
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Problem - Infinite-state Arenas with LTL objectives

m Arena/Program over infinite-state variables V: P = (V E, C, valy, §)
m V is a finite set of variables, possibly with an infinite domain (e.g., integers),
E is a finite set of Boolean variables controlled by the environment,
C is a finite set of Boolean variables controlled by the controller,
valp € Val(V) is initial valuation of V,
§: Val(V) x 28°C s Val(V) is the transition function.

m We focus on finitely representable arenas, using a finite set of predicates and
updates (more in a couple slides).

m Game = (P, ¢), where ¢ is an LTL objective over EU CU PR, and PR is
the set of predicates over V.

m In each move: environment (E) moves first, then controller (C), and finally
the arena/program transition updates the variable valuation.

Arena P E; . G Arena P
val; d(val;, E; U G)

m Trace: (Va/(), EoU C()), (5(va/07 EyU Co)7 Eu Cl)7
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Problem - Realisability and Unrealisability

m Game = (P, ¢), where ¢ is an LTL objective over EU CU PR, and PR is
the set of predicates over V.

Arena P | E o G Arena P
val; 6(va/,-, E; U C,)

m ¢ is realisable modulo P iff:
there is a Mealy Machine C with input ¥, = 2EY"" and output ¥, = 2€
s.t. every trace t of C that is concretisable on P also satisfies ¢.

m ¢ is unrealisable modulo P iff:
there is a Moore Machine Cs with output ¥ou = 2FYP" and input ¥, = 2©
s.t. every trace t of Cs is concretisable on P and violates ¢.

m Set of predicates Pr includes those in ¢.

m Symbolic trace concretisable on P, if it makes correct predicate guesses
about the induced variable valuation in P: if for each step i val; E Pr;.

m Undecidable in general.
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= {target : N =0, floor : N = 0}

= {env_inc, door_open}

C = {up, down}

Assumptions:

Al. GFdoor_open

A2. GF—door_open

Guarantees:

G1l. GFfloor = target

G2. G(door.open = (up <= down))

\4
E

Figure 1: LTL objective.

Running Example - Elevator

env_inc A\ door_open

— target++ .
—env_inc/\
door_open
— target——

door_open A

floor = target door-open

up N\ ~down
— floor++

down N\ —up
— floor——

up <= down

Figure 2: Symbolic arena.
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Our Approach

Program P ] X counterexample | Safety/Liveness
Abstraction Synthesis [ gounter-strategy Model checking Refinement
I of
Specification y.|0d(P) > @ ————————> realisable unrealisable
> controller
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(Predicate) Abstraction

V = {target : N =0, floor : N = 0}

E = {env_inc, door_open}

C = {up, down}

Assumptions:

Al. GFdoor-open

A2. GF—door_open

Guarantees:

G1. GFfloor = target

G2. G(door.open = (up <= down))

ag(P, {floor < target, target < floor}) =

floor = target

env_inc A\ door_open
— target++

—env_incA
door_open
— target——

door_open N\ — door_open
floor = target -op
up A ~down
+— floor++

down N —up
— floor——

up <= down

Figure 3: Program P

A G((so A floor = target A env_inc A door_open)

= X(so A\ floor < target))

A G((s1 A floor < target A up A —down)

= X(s1 A (floor < target V floor = target))

A e
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Abstract Synthesis Problem

| Y
counterexample | Safety/Liveness

Program P X a(P), X
Abstraction Synthesis m Model checking Refinement

o of
Specification ¢@ »|a(P)— ¢ prm—— > realisabl unrealisable

m Note «(P) always soundly abstracts the concrete behaviour of P.
m Abstraction refined incrementally when new predicates added.

m Each predicate p is replaced by a fresh Boolean variable v,, controlled by the
environment; we denote this set of variables by Vp,.

Theorem (Reduction to Boolean LTL realisability)

For ¢ in LTL(EU C U Pr) and an abstraction a(P) of P in LTL(EU C U Vp,), if
a(P) = ¢ is realisable over inputs E U Vp, and outputs C, then ¢ is realisable
modulo P.

m What about when the abstract problem is unrealisable?
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Model Checking for Unconcretisability Checking

m Given:
® an abstract counterstrategy as a Moore Machine Cs, and
m a program/arena P.

m We define a simulation relation that allows to ask whether Cs simulates P,

i.e. Cs guesses predicates correctly for every execution it induces in P.

m Practically encoded as the invariant checking problem Cs||P &= G(invar)
m Cs chooses the original environment inputs, driving program P.
w invar® A\

pepr Vo = P checks correctness of Cs' predicate guesses.

m If Cs||P E G(invar) then the abstract counterstrategy works also for the
concrete problem (but checking it is undecidable).

m Otherwise we are guaranteed to find a finite counterexample which we can
use to refine the abstraction.
Theorem (Semi-Decision Procedure for Unconcretisability Checking)

This is a semi-decision procedure for determining unconcretisability of the
counterstrategy, and a decision procedure when the program is finite.
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Two kinds of refinements:
m Safety refinement (interpolation of counterexample)
m Adds state predicates to abstraction.
m Liveness refinements:

m Structural loop refinement (find terminating loops in counterstrategy,
encode their termination in LTL)
Adds:
m State predicates,
m Transition predicates,
m Boolean variables marking points in loop body execution, and
B LTL constraints.

m Ranking refinement (find well-founded relations relevant to the program,
encode their well-foundedness in LTL)
Adds:
m State predicates,
m Transition predicates, and
m LTL constraints.
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Safety Refinement

= {target : N =0, floor : N = 0}

= {env_inc, door_open}

C = {up, down}

Assumptions:

Al. GFdoor_open

A2. GF—door_open

Guarantees:

G1l. GFfloor = target

G2. G(door.open =—> (up <= down))

v
E

env_inc A\ door_open
— target++

—env_inc/A
door_open
— target——

door_open N\ door_open
floor = target -op
up A\ —~down
+— floor++

down A\ —up
— floor——

up <= down

m Safety refinement applies interpolation to the counterexample.

m Initial counterexample:

m sp A env_inc A door_open A floor = 0 A target = 0 A Vfoor< target /\ Viarget<floor
m so A\ ~door_open A floor = 0 A target = 1 A Vfioor<target /\ —'Vtarget<floor
m s1 A up A ~down A floor = 0 A target = 1 A VAoor<target /\ "'Viarget< floor

m s1 A floor =1 A target = 1 A Vfoor<target \

m Interpolation: gives us floor — target < 1 and floor — target > 1, add to

abstraction and retry.

m More safety refinement — enumeration — non-termination
m Our liveness refinements come to the rescue!
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Liveness refinements - Structural Loop Refinement

m Counterexample exposes failed execution of a lasso in counterstrategy? Yes!
floor = 0; target = 0; target := target + 1; while(—target < floor)floor := floor + 1

m Heuristically generalise precondition (maintaining termination), true suffices:

‘while(—'target < floor)floor := floor + 1 ‘
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Liveness refinements - Structural Loop Refinement

m Counterexample exposes failed execution of a lasso in counterstrategy? Yes!
floor = 0; target = 0; target := target + 1; while(—target < floor)floor := floor + 1

m Heuristically generalise precondition (maintaining termination), true suffices:

‘while(—'target < floor)floor := floor + 1 ‘

m Create an LTL monitor that detects when loop entered and exited:
m Initially not in loop: —in_loop

= In loop iff (loop iteration or (in loop and stutter)):
—target < floor A floor := floor + 1 A target := target
G \Y <= X in_loop
in_loop A floor := floor N target := target

m And enforce its termination, or eventual non-progress:
(GF—in_loop) V FG(floor := floor A target := target A in_loop)

m Next counterexample: gives us dual loop (while cond —floor < target)

m These refinements suffice to show the problem realisable.

m Can also handle more complicated loops, e.g., with multiple steps.
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Liveness refinements - Ranking Refinement

m For a well-founded term w.r.t an invariant, add assumptions of the form
GF(term_decreases) —> GF(term_increases V —invariant).

m Find ranking functions corresponding to terminating loops in counterexample.
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Liveness refinements - Ranking Refinement

m For a well-founded term w.r.t an invariant, add assumptions of the form
GF(term_decreases) —> GF(term_increases V —invariant).

m Find ranking functions corresponding to terminating loops in counterexample.
or

m Acceleration:

m Before any synthesis attempts, identify predicates in synthesis problem: e.g.,
floor < target.

Massage: floor < target = 0 < target — floor

m If term is well-founded w.r.t. predicate (always true for LIA), add assumption:
B GF|target — floorlgee =—> GF([target — floor]inc V —(floor < target))

target — floor|gec = targetprey — floorye, > target — floor
8 8€lp P g
[target — floor]inc = targetpre, — floorpe, < target — floor

m Doing the same for target < floor allows us to determine realisability
immediately.
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Theorem (Correctness of Refinements)

The predicates, boolean variables, and LTL formulas added by each refinement
maintain abstraction soundness.

Theorem (Progress of Refinements)

Given a counterexample, there is always a refinement that can be performed, and
performing a refinement based on a counterexample ensures the same
counterexample and refinement is not re-encountered in subsequent iterations.

Theorem (Sound and complete for finite programs)

The CEGAR algorithm terminates on finite programs.
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Evaluation - Tools compared against

m Criteria for comparison:
m Ability to handle (counter)strategy synthesis, not just realisability checking.
m Handling at least Biichi objectives.

1 Raboniel (R)
Maderbacher+Bloem FMCAD22

m Problem as LTL modulo theory (TSL)
B CEGAR approach, safety refinements

3 rpgSolve (RPG)
Heim+Dimitrova POPL24

m Problem as deterministic game,

2 tergos'(T). . . with at most Biichi objectives
Choi+Finbkeiner+Piskac+Santolucito PLDI22 B Relies on computing attractors
m Problem as LTL modulo theory (TSL) ®m Queries termination of loops
® One-shot approach (only realisabilility) ® No synthesis of counterstrategies

m Safety and limited liveness refinements (SyGuS)

m Other tools:
m Raboniel and rpgSolve claim similar results to safety/reachability approaches.
m Other safety-refinement-based approaches for Temporal Stream Logic (TSL)
not publicly available or superseded by Raboniel and temos.
m rpgSolve claims better results than other realisability checking tools.
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Evaluation - Our prototype implementation sweap

m Handles LIA problems.

m Strix for LTL synthesis, nuXmv for model /invariant checking, CPAChecker for
termination checking, MathSat for SMT solving.

m Two configurations:

m S..c — initially applies acceleration, i.e. performs ranking refinements based
on predicates in problems, and

m S — does not perform acceleration.

m Differences from other approaches:

m sweap more initially aggressive abstraction-wise than others; e.g., Raboniel
learns relevant transition constraints on-the-fly.

m Other approaches allow the environment to directly control the value of some
numeric variables; for LIA we can encode this with extra states allowing
arbitrary inc/decrements.

m The other approaches rely on quantifier elimination.
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Evaluation - Benchmarks

m Only LIA problems (our tool, sweap only handles these currently).

m We collect infinite-state benchmarks from literature (19), and contribute our
own (9).

m We cast these benchmarks to finite-state domain, to measure scaling against
domain size.

m We follow Raboniel and rpgSolve, and ignore benchmarks from literature
where the LTL objective is immediately realisable (no knowledge of the
underlying theory needed).
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Evaluation

m — timeout (10 mins)
m Column W indicates winner.
® n/a: unsupported goal
m unk: inconclusive result m Best times are set in bold
: thesis ti t ted *: solvable with only saf fi
m x: synthesis timeout or unsupported, m 7. solvable with only safety refinements
correct verdict in x sec
(a) Infinite-state experiment results. (b) Finite-state experiment results.
[E1 Name W[ K | T [RPG[Sace] 5 ] [ Name [[W] range ]| K | T [RPG[Sacc] S ]
box™ ST[ 1.1 [unk| 0.5 | 7.7 | 2.9 evator 0.5 90| — | 71] 4037
N box-limited* sl 27| - | 0.7 |22.2] 5.0 ‘,““‘l_“‘ s| o0.10 |[164.2| - [32.8( 5.3 | 4.4
£ diagonal® s|| 9.8 |unk| 0.5 | 47.7| 3.9 stmple 0..50 - -1 - - -
K evasion* sf s8|-|o08| - |154 5 5250
@ follow sl = | - 11| - |2200] |elevator ||| ¢ 70 N I S Prore B
square™® S [[186.9] — | 0.7 | 83.3 | 48.9 signal 0..50 unk | — ~ |eo| -
Tobot-cat-r-1d ST - | - [#95[41.3] - obrid 0.5 3.3 |unk| 1.5 | 3.3 | 5.7
el robot-cat-u-1d* Ef - | - |#55|48.6| 4.7 oA ||s| o010 ~ |unk| 2.3 | 3.3 | 5.8
= robot-cat-r-2d s - - - - - reach- 0..50 ~ |unk[10.9]| 3.3 | 5.8
9 robot-cat-u-2d* E|l - |- | - ~ | 22.6 R 5X5 — |- | 38|67 |145
£ | robot-grid-reach-1d || S|| - |unk| 1.4 | 2.9 | 8.6 reaetind || 8] tox10 - | - |136]|65|151
g | robot-grid-reach-2d s unk| 68 | 7.0 |146.1| [Fe*°™ 50 %50 7.0 | 14.8
- heim-double-x* S unk| -3 unk 28 [ 3.6 | 6.7
xyloop s unk 3.0 baé_cth' B unk 3.9 |3.8| 6.6
arbiter-u
Tobot-grid-commute-1d[] S| _ |unk| 2.6 [12.8] _ unk 20-8| 3.8 6.7
Z |robot-grid-commute-2d|| S - — |a2x| - - batel n/a | 3.5
= robot-resource-1d E unk|25-0 | 48.8 [ 122.0 atch- s n/a | 3.4
@A| robot-resourc E 48 arbiter-r n/a | 8.5
° heim-bue S unk 4.1 |437.7 n/a [19.8
a heim-fig7* E||l 1.5 |unk 3.3 | 2.7 | [reversiblell o n/a |20.6
batch-arbiter-u* E || unk 67 | 3.7 | 4.0 | |laner n/a |20.9
reversible-lane-r § n/a] 95 ] 485 | |reversible n/a|31.3
| reversible-lane-u* E n/a [ 30.9| 5.7 | |Llane-u E n/a | 54.8
g batch-arbite s n/a| 3.2 | 9.5 ~ | — [n/a|60.6
- elevator-w-door s n/a| 4.2 | 47.8 | [elevator - | -~ [»na]78
Z| rep-reach-obst.-1d S || unk [unk| n/a| 3.2 | 9.5 | |, door ||S - |~ |n/a| 77
& rep-reach-obst.-2d S || unk |unk| n/a |16.8| 74.5 . - — |n/a| 7.8
taxi-service S - — |n/a| — |228.1] [num. solved (out of 27)] 3 | 0 | 9 [ 26 | 23 ]

num. solved (out of 28)

G [0 ] 8 [ 20 [ 20 |
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Evaluation - Infinite-state results/summary

m Verdict (Synt) column indicates number of problems on which correct verdict
(counter/strategy) given. Columns joined when the number is the same.

Tool HSolved Realisable“ Solved Unrealisable HUnencodabIeH Total
HVerdict[ Synt HVerdict[ Synt H “Verdict[Synt
Raboniel 5 1 0 6
temos 0 (unsupported) 0 0
rpgSolve|| 13 [ 8 4 [(unsupported) 7 17 | 8
sacc 15 5 0 20
S 14 6 0 20

B sweap outstrips others in LIA synthesis:
m overkill for the small and simple safety benchmarks.
B Sacc can solve 18 problems immediately, mostly faster than S.
m only 4 problems not solved by a portfolio approach Sacc||S .
m timeout cause:
m sweap — LTL becomes too big.
m other approaches — real timeout, or non-termination (e.g., xyloop for
rpgSolve, and problems not marked by * for Raboniel).
m rpgSolve is the only other competitor:
m solves as many as Sacc||S in realisability if we focus on det. Biichi or simpler;
m when it succeeds in synthesis, it wins in time taken.
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Evaluation - Finite-state results

m sweap performance mostly independent of the benchmarks' domain size:

m A class of problems has the property that:
if the problem is cast into different finite or infinite domains essentially the
same set of safety and liveness properties suffice to decide each variant
problem.

m sweap is well-behaved for this class of problems, unlike other approaches.

m The other approaches are too sensitive to the finite domain size, even when it
is irrelevant:

m time-taken increases significantly with the finite domain size increase.

m Our approach, sweap, performs best on our finite-state benchmarks
m it only loses when the domain size is very small (between 0-10).
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m Turns out refinements based on ranking functions already used for a CEGAR
approach to model checking (Balaban, Pnueli, and Zuck, 2005):
m Predicate and ranking abstractions sound and complete for infinite-state
model checking (identification of rankings remains undecidable, of course).
m Gives hope for a similar relative completeness result for infinite-state synthesis
and game solving.
m Game-theoretic view:
m Liveness refinements rely on finding loops in the abstract game graph winning
for the environment.
m Missing: controller-winning loops (a simple extension, but reduces
compositionality of LTL formula, may affect Strix optimisations).
m We are working on applying this approach directly for infinite-state game
solving.

Extend for Linear Real Arithmetic, and other theories.

Numeric variables set directly by environment and controller.

Khalimov and Ehlers, TACAS 24, present a symbolic approach for (finite)
synthesis: safety (GR[1]-like) arena with LTL objectives.

m Can be faster than Strix, but no synthesis of strategies yet..
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