Symbolic Finite- and Infinite-state Synthesis A CEGAR Approach with Liveness Refinements

Shaun Azzopardi, Nir Piterman, Luca di Stefano, Gerardo Schneider

University of Gothenburg, TU Wien

July 2024

European Research Council

Established by the European Commission

Reactive Synthesis from LTL Specifications

We have seen:

- 2EXPTIME-complete.
- LTL \implies DPW \implies parity Game.
- Competition!
- Arena + LTL?
 - GR[1].
 - Early work in robotics.
 - Work by Maoz, Somenzi, Holzmann, ...
 - Synthesis in SE (Uchitel, Braberman, ...)
- What if the Arena is infinite?
 - Decidable classes: Pushdown and beyond (e.g. [Wal'01]).
 - Undecidable classes: Finkbeiner, Piskac, Farzan, Dimitrova, ...

Problem - Infinite-state Arenas with LTL objectives

- Arena/Program over infinite-state variables \mathbb{V} : $P = \langle V, \mathbb{E}, \mathbb{C}, val_0, \delta \rangle$
 - V is a finite set of variables, possibly with an infinite domain (e.g., integers),
 - $\blacksquare\ \mathbb{E}$ is a finite set of Boolean variables controlled by the environment,
 - $\hfill\blacksquare\ensuremath{\mathbb C}$ is a finite set of Boolean variables controlled by the controller,
 - $val_0 \in Val(V)$ is initial valuation of \mathbb{V} ,
 - $\delta: Val(V) \times 2^{\mathbb{E} \cup \mathbb{C}} \mapsto Val(V)$ is the transition function.
- We focus on finitely representable arenas, using a finite set of predicates and updates (more in a couple slides).
- Game = $\langle P, \phi \rangle$, where ϕ is an LTL objective over $\mathbb{E} \cup \mathbb{C} \cup \mathcal{PR}$, and \mathcal{PR} is the set of predicates over V.
- In each move: environment (*E*) moves first, then controller (*C*), and finally the arena/program transition updates the variable valuation.

$$\begin{array}{c|c} \text{Arena P} & E_i & C_i \\ \text{val}_i & & & \\ \end{array} \xrightarrow{} & \bullet & & \\ \delta(val_i, E_i \cup C_i) \end{array}$$

• Trace: $(val_0, E_0 \cup C_0), (\delta(val_0, E_0 \cup C_0), E_1 \cup C_1), ...$

Problem - Realisability and Unrealisability

Game = $\langle P, \phi \rangle$, where ϕ is an LTL objective over $\mathbb{E} \cup \mathbb{C} \cup \mathcal{PR}$, and \mathcal{PR} is the set of predicates over V.

• ϕ is realisable modulo P iff: there is a Mealy Machine C with input $\Sigma_{in} = 2^{\mathbb{E} \cup Pr}$ and output $\Sigma_{out} = 2^{\mathbb{C}}$ s.t. every trace t of C that is concretisable on P also satisfies ϕ .

- ϕ is unrealisable modulo P iff: there is a Moore Machine Cs with output $\Sigma_{out} = 2^{\mathbb{E} \cup Pr}$ and input $\Sigma_{in} = 2^{\mathbb{C}}$ s.t. every trace t of Cs is concretisable on P and violates ϕ .
- Set of predicates Pr includes those in ϕ .
- Symbolic trace **concretisable** on *P*, **if** it makes **correct predicate guesses** about the induced variable valuation in *P*: if for each step *i* val_i ⊨ **P**r_i.
- Undecidable in general.

$$\begin{split} \mathbb{V} &= \{ \textit{target} : \mathbb{N} = 0, \textit{floor} : \mathbb{N} = 0 \} \\ \mathbb{E} &= \{ \textit{env_inc}, \textit{door_open} \} \\ \mathbb{C} &= \{ \textit{up}, \textit{down} \} \end{split}$$

Assumptions:

- A1. GFdoor_open
- A2. GF¬door_open

Guarantees:

G1. GF floor = target G2. $G(door_open \implies (up \iff down))$

Figure 1: LTL objective.

Figure 2: Symbolic arena.

(Predicate) Abstraction

$$\begin{split} \mathbb{V} &= \{ target : \mathbb{N} = 0, floor : \mathbb{N} = 0 \} \\ \mathbb{E} &= \{ env_inc, door_open \} \\ \mathbb{C} &= \{ up, down \} \\ \textbf{Assumptions:} \\ A1. \ GF door_open \\ A2. \ GF \neg door_open \\ \textbf{Guarantees:} \\ G1. \ GF floor = target \\ G2. \ G(door_open \implies (up \iff down)) \end{split}$$

Figure 3: Program P

$$\begin{array}{l} \alpha_0(P, \{ \textit{floor} \leq \textit{target}, \textit{target} \leq \textit{floor} \}) \stackrel{\text{def}}{=} \\ \textit{floor} = \textit{target} \\ \land \ \textit{G}((s_0 \land \textit{floor} = \textit{target} \land \textit{env_inc} \land \textit{door_open}) \\ \implies X(s_0 \land \textit{floor} < \textit{target})) \\ \land \ \textit{G}((s_1 \land \textit{floor} < \textit{target} \land \textit{up} \land \neg \textit{down}) \\ \implies X(s_1 \land (\textit{floor} < \textit{target} \lor \textit{floor} = \textit{target})) \\ \land \cdots \end{array}$$

Abstract Synthesis Problem

- Note $\alpha(P)$ always soundly abstracts the concrete behaviour of P.
- Abstraction refined incrementally when new predicates added.
- Each predicate p is replaced by a fresh Boolean variable v_p , controlled by the environment; we denote this set of variables by V_{Pr} .

Theorem (Reduction to Boolean LTL realisability)

For ϕ in $LTL(\mathbb{E} \cup \mathbb{C} \cup Pr)$ and an abstraction $\alpha(P)$ of P in $LTL(\mathbb{E} \cup \mathbb{C} \cup V_{Pr})$, if $\alpha(P) \implies \phi$ is realisable over inputs $\mathbb{E} \cup V_{Pr}$ and outputs \mathbb{C} , then ϕ is realisable modulo P.

What about when the abstract problem is unrealisable?

Model Checking for Unconcretisability Checking

- Given:
 - an abstract counterstrategy as a Moore Machine *Cs*, and
 - a program/arena P.
- We define a simulation relation that allows to ask whether *Cs* simulates *P*, i.e. *Cs* guesses predicates correctly for every execution it induces in *P*.
- Practically encoded as the invariant checking problem $Cs || P \vDash G(invar)$
 - Cs chooses the original environment inputs, driving program *P*.
 - invar $\stackrel{\text{def}}{=} \bigwedge_{p \in Pr} v_p \iff p$: checks correctness of Cs' predicate guesses.
- If Cs || P ⊨ G(invar) then the abstract counterstrategy works also for the concrete problem (but checking it is undecidable).
- Otherwise we are guaranteed to find a finite counterexample which we can use to refine the abstraction.

Theorem (Semi-Decision Procedure for Unconcretisability Checking)

This is a semi-decision procedure for determining unconcretisability of the counterstrategy, and a decision procedure when the program is finite.

Two kinds of refinements:

- Safety refinement (interpolation of counterexample)
 - Adds state predicates to abstraction.
- Liveness refinements:
 - Structural loop refinement (find terminating loops in counterstrategy, encode their termination in LTL) Adds:
 - State predicates,
 - Transition predicates,
 - Boolean variables marking points in loop body execution, and
 - LTL constraints.
 - Ranking refinement (find well-founded relations relevant to the program, encode their well-foundedness in LTL) Adds:
 - State predicates,
 - Transition predicates, and
 - LTL constraints.

Safety refinement applies interpolation to the counterexample.

Initial counterexample:

 $\bullet s_0 \land env_inc \land door_open \land floor = 0 \land target = 0 \land v_{floor \le target} \land v_{target \le floor}$

 $\bullet \ s_0 \land \neg \textit{door_open} \land \textit{floor} = 0 \land \textit{target} = 1 \land \textit{v}_{\textit{floor} \leq \textit{target}} \land \neg \textit{v}_{\textit{target} \leq \textit{floor}}$

- $\bullet \ s_1 \land up \land \neg down \land floor = 0 \land target = 1 \land v_{floor \leq target} \land \neg v_{target \leq floor}$
- $s_1 \land floor = 1 \land target = 1 \land v_{floor \leq target} \land \neg v_{target \leq floor}$
- Interpolation: gives us *floor* − *target* ≤ 1 and *floor* − *target* ≥ 1, add to abstraction and retry.

 \blacksquare More safety refinement \rightarrow enumeration \rightarrow non-termination

Our liveness refinements come to the rescue!

Liveness refinements - Structural Loop Refinement

- Counterexample exposes failed execution of a lasso in counterstrategy? Yes! *floor* = 0; *target* = 0; *target* := *target* + 1; *while*(¬*target* ≤ *floor*)*floor* := *floor* + 1
- Heuristically generalise precondition (maintaining termination), true suffices:

 $while(\neg target \leq floor) floor := floor + 1$

Liveness refinements - Structural Loop Refinement

- Counterexample exposes failed execution of a lasso in counterstrategy? Yes! floor = 0; target = 0; target := target + 1; while(¬target ≤ floor)floor := floor + 1
- Heuristically generalise precondition (maintaining termination), *true* suffices:

 $while(\neg target \leq floor) floor := floor + 1$

Create an LTL monitor that detects when loop entered and exited:

■ Initially not in loop: ¬in_loop

In loop iff (loop iteration or (in loop and stutter)):
G (¬target ≤ floor ∧ floor := floor + 1 ∧ target := target ∨ ↔ X in_loop / floor := floor ∧ target := target)

■ And enforce its termination, or eventual non-progress: (GF¬in_loop) ∨ FG(floor := floor ∧ target := target ∧ in_loop)

• Next counterexample: gives us dual loop (while cond \neg floor \leq target)

- These refinements suffice to show the problem realisable.
- Can also handle more complicated loops, e.g., with multiple steps.

Liveness refinements - Ranking Refinement

- For a well-founded term w.r.t an invariant, add assumptions of the form $GF(\text{term}_\text{decreases}) \implies GF(\text{term}_\text{increases} \lor \neg \text{invariant}).$
- Find ranking functions corresponding to terminating loops in counterexample.

Liveness refinements - Ranking Refinement

- For a well-founded term w.r.t an invariant, add assumptions of the form $GF(\text{term_decreases}) \implies GF(\text{term_increases} \lor \neg \text{invariant}).$
- Find ranking functions corresponding to terminating loops in counterexample.

or

Acceleration:

- Before any synthesis attempts, identify predicates in synthesis problem: e.g., floor \leq target.
- Massage: $floor \leq target \equiv 0 \leq target floor$
- If term is well-founded w.r.t. predicate (always true for LIA), add assumption:
 GF[target floor]_{dec} ⇒ GF([target floor]_{inc} ∨ ¬(floor ≤ target))
- [target floor]_{dec} = target_{prev} floor_{prev} > target floor
- [target floor]_{inc} = target_{prev} floor_{prev} < target floor
- Doing the same for *target* ≤ *floor* allows us to determine realisability immediately.

Theorem (Correctness of Refinements)

The predicates, boolean variables, and LTL formulas added by each refinement maintain abstraction soundness.

Theorem (Progress of Refinements)

Given a counterexample, there is always a refinement that can be performed, and performing a refinement based on a counterexample ensures the same counterexample and refinement is not re-encountered in subsequent iterations.

Theorem (Sound and complete for finite programs)

The CEGAR algorithm terminates on finite programs.

Evaluation - Tools compared against

- Criteria for comparison:
 - Ability to handle (counter)strategy synthesis, not just realisability checking.
 - Handling at least Büchi objectives.
- 1 Raboniel (R) Maderbacher+Bloem FMCAD22
 - Problem as LTL modulo theory (TSL)
 - CEGAR approach, safety refinements
- 2 temos (T) Choi+Finbkeiner+Piskac+Santolucito PLDI22
 - Problem as LTL modulo theory (TSL)
 - One-shot approach (only realisabilility)
 - Safety and limited liveness refinements (SyGuS)

- 3 rpgSolve (RPG) Heim+Dimitrova POPL24
 - Problem as deterministic game, with at most Büchi objectives
 - Relies on computing attractors
 - Queries termination of loops
 - No synthesis of counterstrategies

- Other tools:
 - Raboniel and rpgSolve claim similar results to safety/reachability approaches.
 - Other safety-refinement-based approaches for Temporal Stream Logic (TSL) not publicly available or superseded by Raboniel and temos.
 - rpgSolve claims better results than other realisability checking tools.

Evaluation - Our prototype implementation sweap

- Handles LIA problems.
- <u>Strix</u> for LTL synthesis, <u>nuXmv</u> for model/invariant checking, <u>CPAChecker</u> for termination checking, <u>MathSat</u> for SMT solving.
- Two configurations:
 - $S_{acc} \rightarrow$ initially applies acceleration, i.e. performs ranking refinements based on predicates in problems, and
 - $S \rightarrow$ does not perform acceleration.
- Differences from other approaches:
 - sweap more initially aggressive abstraction-wise than others; e.g., Raboniel learns relevant transition constraints on-the-fly.
 - Other approaches allow the environment to directly control the value of some numeric variables; for LIA we can encode this with extra states allowing arbitrary inc/decrements.
 - The other approaches rely on quantifier elimination.

- Only LIA problems (our tool, sweap only handles these currently).
- We collect infinite-state benchmarks from literature (19), and contribute our own (9).
- We cast these benchmarks to finite-state domain, to measure scaling against domain size.
- We follow Raboniel and rpgSolve, and ignore benchmarks from literature where the LTL objective is immediately realisable (no knowledge of the underlying theory needed).

Evaluation

- -: timeout (10 mins)
- n/a: unsupported goal
- unk: inconclusive result
- *: synthesis timeout or unsupported, correct verdict in x sec
 - (a) Infinite-state experiment results.

- Column W indicates winner.
- Best times are set in bold
- *: solvable with only safety refinements

(b) Finite-state experiment results.

G.	Name	W	R	т	RPG	Sacc	S	Name	W	range	R	Т	RPG	S_{acc}	S
Safety	box* box-limited* diagonal*	s s s	1.1 2.7 9.8	unk – unk	0.5 0.7 0.5	7.7 22.2 47.7	$2.9 \\ 5.0 \\ 3.9$	elevator simple	s	$05 \\ 010 \\ 050$	$9.0 \\ 164.2 \\ -$	-	7.1 32.8 -	4.0 5.3 -	3.7 4.4 -
	evasion* follow* square*	s s	5.8 - 136.9	-	$0.8 \\ 1.1 \\ 0.7$	- - 83.3	$15.4 \\ 229.0 \\ 48.9$	elevator signal	s	05 010 050	 	-	5.4 11.0	9.9 10.3 9.9	-
Reachability	robot-cat-r-1d robot-cat-u-1d* robot-cat-r-2d	S E S	-	_	79.5 75.5 -	41.3 48.6 -	4.7 -	rob-grid reach-1d	s	$05 \\ 010 \\ 050$	3.3 - -	unk unk unk	1.5 2.3 10.9	3.3 3.3 3.3	5.7 5.8 5.8
	robot-cat-u-2d* robot-grid-reach-1d robot-grid-reach-2d	E S S		– unk unk	- 1.4 0.8	2.9 7.0	22.6 8.6 146.1	rob-grid reach-2d	s	5×5 10 × 10 50 × 50	-	-	3.8 13.6 -	6.7 6.5 7.0	$ \begin{array}{r} 14.5 \\ 15.1 \\ 14.8 \end{array} $
	heim-double-x* xyloop	s s	_	unk unk	1.1 -	3.0	-	batch- arbiter-u	Е	05 010 050	unk unk unk	-	$\frac{2.8}{3.9}$ $\frac{20.8}{20.8}$	3.6 3.8 3.8	6.7 6.6 6.7
Det.Büchi	robot-grid-commute-1d robot-grid-commute-2d robot-resource-1d robot-resource-2d	SSEE	-	unk – unk –	$\frac{2.0}{12.1}$ $\frac{25.0}{4.8}$	12.8 - 48.8 -	$^{-}_{-}$ 122.0	batch- arbiter-r	s	05 010 050	-	-	n/a n/a n/a	3.5 3.4 3.5	6.5 6.2 6.3
	heim-buechi heim-fig7* batch-arbiter-u*	S E E	unk 1.5 unk	unk –	4.1 - 6.7	437.7 3.3 3.7	$\begin{array}{c} - \\ 2.7 \\ 4.0 \end{array}$	reversible -lane-r	s	$05 \\ 010 \\ 050$		-	n/a n/a n/a	$19.8 \\ 20.6 \\ 20.9$	$59.2 \\ 59.1 \\ 58.7$
Full LTL	reversible-lane-r reversible-lane-u* batch-arbiter-r	S E S		_	n/a n/a n/a	9.5 30.9 3.2	48.5 5.7 9.5	reversible -lane-u	Е	$05 \\ 010 \\ 050$	-	-	n/a n/a n/a	$31.3 \\ 54.8 \\ 60.6$	$ \begin{array}{r} 6.7 \\ 6.4 \\ 6.3 \end{array} $
	elevator-w-door rep-reach-obst1d rep-reach-obst2d	S S S	unk unk	– unk unk	n/a n/a n/a	$4.2 \\ 3.2 \\ 16.8$	$47.8 \\ 9.5 \\ 74.5$	elevator w. door	s	$05 \\ 010 \\ 050$	-	-	n/a n/a n/a	7.6 7.7 7.8	$111.2 \\ 148.5 \\ 138.4$
	taxi-service S - - n/a - 228.1 num. solved (out of 28) 6 0 8 20 20							num. solved (out of 27) 3 0 9 26 23							

Shaun Azzopardi, Nir Piterman, Luca di Stefano, Ge

Evaluation - Infinite-state results/summary

 Verdict (Synt) column indicates number of problems on which correct verdict (counter/strategy) given. Columns joined when the number is the same.

Tool	Solved F	Realisable	Solvec	I Unrealisable	Unencodable	Total		
	Verdict Synt		Verdict	Synt		Verdict Synt		
Raboniel	!	5		1	0	6		
temos		0	(un	supported)	0	0		
rpgSolve	13	8	4	(unsupported)	7	17	8	
Sacc	1	.5		5	0	20		
S	1	.4		6	0	20		

sweap outstrips others in LIA synthesis:

- overkill for the small and simple safety benchmarks.
- \blacksquare S_{acc} can solve 18 problems immediately, mostly faster than S.
- \blacksquare only 4 problems not solved by a portfolio approach $S_{acc} \| S$.

timeout cause:

- sweap \rightarrow LTL becomes too big.
- other approaches → real timeout, or non-termination (e.g., xyloop for rpgSolve, and problems not marked by * for Raboniel).
- rpgSolve is the only other competitor:
 - solves as many as $S_{acc} \| S$ in realisability if we focus on det. Büchi or simpler;
 - when it succeeds in synthesis, it wins in time taken.

Evaluation - Finite-state results

- sweap performance mostly independent of the benchmarks' domain size:
 - A class of problems has the property that: if the problem is cast into different finite or infinite domains essentially the same set of safety and liveness properties suffice to decide each variant problem.
 - sweap is well-behaved for this class of problems, unlike other approaches.
- The other approaches are too sensitive to the finite domain size, even when it is irrelevant:
 - time-taken increases significantly with the finite domain size increase.
- Our approach, sweap, performs best on our finite-state benchmarks
 - it only loses when the domain size is very small (between 0-10).

Future Work

- Turns out refinements based on ranking functions already used for a CEGAR approach to model checking (Balaban, Pnueli, and Zuck, 2005):
 - Predicate and ranking abstractions sound and complete for infinite-state model checking (identification of rankings remains undecidable, of course).
 - Gives hope for a similar relative completeness result for infinite-state synthesis and game solving.
- Game-theoretic view:
 - Liveness refinements rely on finding loops in the abstract game graph winning for the environment.
 - Missing: controller-winning loops (a simple extension, but reduces compositionality of LTL formula, may affect Strix optimisations).
 - We are working on applying this approach directly for infinite-state game solving.
- Extend for Linear Real Arithmetic, and other theories.
- Numeric variables set directly by environment and controller.
- Khalimov and Ehlers, TACAS 24, present a symbolic approach for (finite) synthesis: safety (GR[1]-like) arena with LTL objectives.
 - Can be faster than Strix, but no synthesis of strategies yet..