
Symbolic Finite- and Infinite-state Synthesis
A CEGAR Approach with Liveness Refinements

Shaun Azzopardi, Nir Piterman, Luca di Stefano, Gerardo Schneider

University of Gothenburg, TU Wien

July 2024



Reactive Synthesis from LTL Specifications

We have seen:

2EXPTIME-complete.
LTL =⇒ DPW =⇒ parity Game.
Competition!

Arena + LTL?

GR[1].
Early work in robotics.
Work by Maoz, Somenzi, Holzmann, ...
Synthesis in SE (Uchitel, Braberman, ...)

What if the Arena is infinite?

Decidable classes: Pushdown and beyond (e.g. [Wal’01]).
Undecidable classes: Finkbeiner, Piskac, Farzan, Dimitrova, ...
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Problem - Infinite-state Arenas with LTL objectives

Arena/Program over infinite-state variables V: P = ⟨V ,E,C, val0, δ⟩
V is a finite set of variables, possibly with an infinite domain (e.g., integers),
E is a finite set of Boolean variables controlled by the environment,
C is a finite set of Boolean variables controlled by the controller,
val0 ∈ Val(V ) is initial valuation of V,
δ : Val(V )× 2E∪C 7→ Val(V ) is the transition function.

We focus on finitely representable arenas, using a finite set of predicates and
updates (more in a couple slides).

Game = ⟨P, ϕ⟩, where ϕ is an LTL objective over E ∪ C ∪ PR, and PR is
the set of predicates over V .

In each move: environment (E ) moves first, then controller (C ), and finally
the arena/program transition updates the variable valuation.

Arena P
vali

Arena P
δ(vali ,Ei ∪ Ci )

Ei Ci

Trace: (val0,E0 ∪ C0), (δ(val0,E0 ∪ C0),E1 ∪ C1), ...
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Problem - Realisability and Unrealisability

Game = ⟨P, ϕ⟩, where ϕ is an LTL objective over E ∪ C ∪ PR, and PR is
the set of predicates over V .

Arena P
vali

Arena P
δ(vali ,Ei ∪ Ci )

Ei Ci

ϕ is realisable modulo P iff:
there is a Mealy Machine C with input Σin = 2E∪Pr and output Σout = 2C

s.t. every trace t of C that is concretisable on P also satisfies ϕ.

ϕ is unrealisable modulo P iff:
there is a Moore Machine Cs with output Σout = 2E∪Pr and input Σin = 2C

s.t. every trace t of Cs is concretisable on P and violates ϕ.

Set of predicates Pr includes those in ϕ.

Symbolic trace concretisable on P, if it makes correct predicate guesses
about the induced variable valuation in P: if for each step i vali ⊨ Pri.

Undecidable in general.
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Running Example - Elevator

V = {target : N = 0, floor : N = 0}
E = {env inc, door open}
C = {up, down}
Assumptions:
A1. GFdoor open
A2. GF¬door open

Guarantees:
G1. GFfloor = target
G2. G(door open =⇒ (up ⇐⇒ down))

Figure 1: LTL objective.

s0

s1

env inc ∧ door open
7→ target++

¬env inc∧
door open
7→ target−−

¬door open

up ∧ ¬down
7→ floor++

down ∧ ¬up
7→ floor−−

up ⇐⇒ down

door open ∧
floor = target

Figure 2: Symbolic arena.
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Our Approach

Abstraction

controller

Synthesis
of 

α(P) → φ

Safety/Liveness
Refinement

Program P α(P)

Specification φ

counterexample
Model checkingcounter-strategy

realisable unrealisable
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(Predicate) Abstraction

V = {target : N = 0, floor : N = 0}
E = {env inc, door open}
C = {up, down}
Assumptions:
A1. GFdoor open
A2. GF¬door open

Guarantees:
G1. GFfloor = target
G2. G(door open =⇒ (up ⇐⇒ down))

s0

s1

env inc ∧ door open
7→ target++

¬env inc∧
door open
7→ target−−

¬door open

up ∧ ¬down
7→ floor++

down ∧ ¬up
7→ floor−−

up ⇐⇒ down

door open ∧
floor = target

Figure 3: Program P

α0(P, {floor ≤ target, target ≤ floor}) def
=

floor = target

∧ G((s0 ∧ floor = target ∧ env inc ∧ door open)

=⇒ X (s0 ∧ floor < target))

∧ G((s1 ∧ floor < target ∧ up ∧ ¬down)
=⇒ X (s1 ∧ (floor < target ∨ floor = target))

∧ · · ·
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Abstract Synthesis Problem

Abstraction

controller

Synthesis
of 

α(P) → φ

Safety/Liveness
Refinement

Program P α(P)

Specification φ

counterexample
Model checkingcounter-strategy

realisable unrealisable

Note α(P) always soundly abstracts the concrete behaviour of P.

Abstraction refined incrementally when new predicates added.

Each predicate p is replaced by a fresh Boolean variable vp, controlled by the
environment; we denote this set of variables by VPr .

Theorem (Reduction to Boolean LTL realisability)

For ϕ in LTL(E ∪ C ∪ Pr) and an abstraction α(P) of P in LTL(E ∪ C ∪ VPr ), if
α(P) =⇒ ϕ is realisable over inputs E ∪ VPr and outputs C, then ϕ is realisable
modulo P.

What about when the abstract problem is unrealisable?
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Model Checking for Unconcretisability Checking

Given:

an abstract counterstrategy as a Moore Machine Cs, and
a program/arena P.

We define a simulation relation that allows to ask whether Cs simulates P,
i.e. Cs guesses predicates correctly for every execution it induces in P.

Practically encoded as the invariant checking problem Cs∥P ⊨ G (invar)

Cs chooses the original environment inputs, driving program P.

invar
def
=

∧
p∈Pr vp ⇐⇒ p: checks correctness of Cs’ predicate guesses.

If Cs∥P ⊨ G (invar) then the abstract counterstrategy works also for the
concrete problem (but checking it is undecidable).

Otherwise we are guaranteed to find a finite counterexample which we can
use to refine the abstraction.

Theorem (Semi-Decision Procedure for Unconcretisability Checking)

This is a semi-decision procedure for determining unconcretisability of the
counterstrategy, and a decision procedure when the program is finite.
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Refinements

Two kinds of refinements:

Safety refinement (interpolation of counterexample)

Adds state predicates to abstraction.

Liveness refinements:

Structural loop refinement (find terminating loops in counterstrategy,
encode their termination in LTL)
Adds:

State predicates,
Transition predicates,
Boolean variables marking points in loop body execution, and
LTL constraints.

Ranking refinement (find well-founded relations relevant to the program,
encode their well-foundedness in LTL)
Adds:

State predicates,
Transition predicates, and
LTL constraints.
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Safety Refinement

V = {target : N = 0, floor : N = 0}
E = {env inc, door open}
C = {up, down}
Assumptions:
A1. GFdoor open
A2. GF¬door open

Guarantees:
G1. GFfloor = target
G2. G(door open =⇒ (up ⇐⇒ down))

s0

s1

env inc ∧ door open
7→ target++

¬env inc∧
door open
7→ target−−

¬door open

up ∧ ¬down
7→ floor++

down ∧ ¬up
7→ floor−−

up ⇐⇒ down

door open ∧
floor = target

Safety refinement applies interpolation to the counterexample.

Initial counterexample:
s0 ∧ env inc ∧ door open ∧ floor = 0 ∧ target = 0 ∧ vfloor≤target ∧ vtarget≤floor

s0 ∧ ¬door open ∧ floor = 0 ∧ target = 1 ∧ vfloor≤target ∧ ¬vtarget≤floor

s1 ∧ up ∧ ¬down ∧ floor = 0 ∧ target = 1 ∧ vfloor≤target ∧ ¬vtarget≤floor

s1 ∧ floor = 1 ∧ target = 1 ∧ vfloor≤target ∧ ¬vtarget≤floor

Interpolation: gives us floor − target ≤ 1 and floor − target ≥ 1, add to
abstraction and retry.

More safety refinement → enumeration → non-termination

Our liveness refinements come to the rescue!
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Liveness refinements - Structural Loop Refinement

Counterexample exposes failed execution of a lasso in counterstrategy? Yes!
floor = 0; target = 0; target := target + 1;while(¬target ≤ floor)floor := floor + 1

Heuristically generalise precondition (maintaining termination), true suffices:

while(¬target ≤ floor)floor := floor + 1

Create an LTL monitor that detects when loop entered and exited:

Initially not in loop: ¬in loop

In loop iff (loop iteration or (in loop and stutter)):

G

 ¬target ≤ floor ∧ floor := floor + 1 ∧ target := target
∨

in loop ∧ floor := floor ∧ target := target
⇐⇒ X in loop


And enforce its termination, or eventual non-progress:
(GF¬in loop) ∨ FG(floor := floor ∧ target := target ∧ in loop)

Next counterexample: gives us dual loop (while cond ¬floor ≤ target)

These refinements suffice to show the problem realisable.

Can also handle more complicated loops, e.g., with multiple steps.
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Liveness refinements - Ranking Refinement

For a well-founded term w.r.t an invariant, add assumptions of the form
GF (term decreases) =⇒ GF (term increases ∨ ¬invariant).
Find ranking functions corresponding to terminating loops in counterexample.

or

Acceleration:

Before any synthesis attempts, identify predicates in synthesis problem: e.g.,
floor ≤ target.

Massage: floor ≤ target ≡ 0 ≤ target − floor

If term is well-founded w.r.t. predicate (always true for LIA), add assumption:

GF [target − floor ]dec =⇒ GF ([target − floor ]inc ∨ ¬(floor ≤ target))

[target − floor ]dec = targetprev − floorprev > target − floor
[target − floor ]inc = targetprev − floorprev < target − floor

Doing the same for target ≤ floor allows us to determine realisability
immediately.
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Results

Theorem (Correctness of Refinements)

The predicates, boolean variables, and LTL formulas added by each refinement
maintain abstraction soundness.

Theorem (Progress of Refinements)

Given a counterexample, there is always a refinement that can be performed, and
performing a refinement based on a counterexample ensures the same
counterexample and refinement is not re-encountered in subsequent iterations.

Theorem (Sound and complete for finite programs)

The CEGAR algorithm terminates on finite programs.
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Evaluation - Tools compared against

Criteria for comparison:

Ability to handle (counter)strategy synthesis, not just realisability checking.
Handling at least Büchi objectives.

1 Raboniel (R)
Maderbacher+Bloem FMCAD22

Problem as LTL modulo theory (TSL)
CEGAR approach, safety refinements

2 temos (T)
Choi+Finbkeiner+Piskac+Santolucito PLDI22

Problem as LTL modulo theory (TSL)
One-shot approach (only realisabilility)
Safety and limited liveness refinements (SyGuS)

3 rpgSolve (RPG)
Heim+Dimitrova POPL24

Problem as deterministic game,
with at most Büchi objectives
Relies on computing attractors
Queries termination of loops
No synthesis of counterstrategies

Other tools:

Raboniel and rpgSolve claim similar results to safety/reachability approaches.
Other safety-refinement-based approaches for Temporal Stream Logic (TSL)
not publicly available or superseded by Raboniel and temos.
rpgSolve claims better results than other realisability checking tools.
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Evaluation - Our prototype implementation sweap

Handles LIA problems.

Strix for LTL synthesis, nuXmv for model/invariant checking, CPAChecker for
termination checking, MathSat for SMT solving.

Two configurations:

Sacc → initially applies acceleration, i.e. performs ranking refinements based
on predicates in problems, and
S → does not perform acceleration.

Differences from other approaches:

sweap more initially aggressive abstraction-wise than others; e.g., Raboniel
learns relevant transition constraints on-the-fly.
Other approaches allow the environment to directly control the value of some
numeric variables; for LIA we can encode this with extra states allowing
arbitrary inc/decrements.
The other approaches rely on quantifier elimination.
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Evaluation - Benchmarks

Only LIA problems (our tool, sweap only handles these currently).

We collect infinite-state benchmarks from literature (19), and contribute our
own (9).

We cast these benchmarks to finite-state domain, to measure scaling against
domain size.

We follow Raboniel and rpgSolve, and ignore benchmarks from literature
where the LTL objective is immediately realisable (no knowledge of the
underlying theory needed).

Shaun Azzopardi, Nir Piterman, Luca di Stefano, Gerardo Schneider (University of Gothenburg, TU Wien)Symbolic Finite- and Infinite-state Synthesis July 2024 17 / 21



Evaluation

–: timeout (10 mins)

n/a: unsupported goal

unk: inconclusive result

x: synthesis timeout or unsupported,
correct verdict in x sec

Column W indicates winner.

Best times are set in bold

∗: solvable with only safety refinements
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Evaluation - Infinite-state results/summary

Verdict (Synt) column indicates number of problems on which correct verdict
(counter/strategy) given. Columns joined when the number is the same.

Tool Solved Realisable Solved Unrealisable Unencodable Total

Verdict Synt Verdict Synt Verdict Synt

Raboniel 5 1 0 6
temos 0 (unsupported) 0 0

rpgSolve 13 8 4 (unsupported) 7 17 8

Sacc 15 5 0 20
S 14 6 0 20

sweap outstrips others in LIA synthesis:
overkill for the small and simple safety benchmarks.
Sacc can solve 18 problems immediately, mostly faster than S.
only 4 problems not solved by a portfolio approach Sacc∥S .

timeout cause:
sweap → LTL becomes too big.
other approaches → real timeout, or non-termination (e.g., xyloop for
rpgSolve, and problems not marked by ∗ for Raboniel).

rpgSolve is the only other competitor:
solves as many as Sacc∥S in realisability if we focus on det. Büchi or simpler;
when it succeeds in synthesis, it wins in time taken.
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Evaluation - Finite-state results

sweap performance mostly independent of the benchmarks’ domain size:

A class of problems has the property that:
if the problem is cast into different finite or infinite domains essentially the
same set of safety and liveness properties suffice to decide each variant
problem.
sweap is well-behaved for this class of problems, unlike other approaches.

The other approaches are too sensitive to the finite domain size, even when it
is irrelevant:

time-taken increases significantly with the finite domain size increase.

Our approach, sweap, performs best on our finite-state benchmarks

it only loses when the domain size is very small (between 0-10).
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Future Work

Turns out refinements based on ranking functions already used for a CEGAR
approach to model checking (Balaban, Pnueli, and Zuck, 2005):

Predicate and ranking abstractions sound and complete for infinite-state
model checking (identification of rankings remains undecidable, of course).
Gives hope for a similar relative completeness result for infinite-state synthesis
and game solving.

Game-theoretic view:

Liveness refinements rely on finding loops in the abstract game graph winning
for the environment.
Missing: controller-winning loops (a simple extension, but reduces
compositionality of LTL formula, may affect Strix optimisations).
We are working on applying this approach directly for infinite-state game
solving.

Extend for Linear Real Arithmetic, and other theories.

Numeric variables set directly by environment and controller.

Khalimov and Ehlers, TACAS 24, present a symbolic approach for (finite)
synthesis: safety (GR[1]-like) arena with LTL objectives.

Can be faster than Strix, but no synthesis of strategies yet..
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