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Objectives of the talk

- Subgame Perfect Equilibrium to model rationality in sequential games

» Expose new algorithmic ideas for SPE for N-player graph games with:
 Parity objectives

- Mean-payoff objectives






N player turn-based graph games

Game setting

« Set of vertices partitioned according to players

- Players move a token. A play p is an infinite path in the graph
(travel of the token)

. States annotated with vectors of colors (N for parity) or rewards (Q
for mean-payoff), one dimension per player

- Each play p gives a payoff ;.. to each player:
» Parity: 1,(p) = min{colory(v) | v € inf(p)} is even ‘

SumReward.(p(0..j
. Mean-payoff: 1.(p) = lim inf . (p(0..))) \/
J—+o0 ]

- Rationality: players want to maximize their own payoft



How do players play ?

Strategies, profiles, outcomes

» Players play strategies:
o; V*. V.- £

R

/%/\

2., = set of strategies of Player i

w@is| AN

 Profiles of strategies:
(61,05, ...0y) € Ly X 2y X =+- 2y
Notation: (o, a_i)

/\J/\ O,

;e

Outcome,(o0{, 05, ...,0,) = VgVy...V, ... = p such that
v—vo/\‘v’]>0 v, eV, — ]+1—0(p(0 J)).



Why to model rational agents/players ?

Assume turned based arena modeling a protocol to be used by rational agents, each having
their own objectives.

Relevant questions:

. if agents resolve nondeterminism left in the protocol rationally, is it the case that some
good property emerges ? do all rational executions satisfy y ?

. is there a rational behavior of the participants in which all participants gain at least ¢ ?

. |s there at least one rational execution of the protocol ?
Are all the possible executions of the protocol rational ?

+ elcC.



How to model rational agents/players ?

Different solution concepts used to predict how a game will be played:
- optimality (1-player/agent, e.g. shortest path)
- Pareto optimality (1-player/agent with several objectives)

- NE, Admissible strategies, Dominent strategies, SPE (when several
agents are involved)



Rationality



When are players playing rationally?

Nash equilibrium

- A profile of strategies (64, 65, ..., oy) is a Nash Equilibrium (NE) in v if
Vie [l,N]- Vo €2 :,ul-(OutcomevO(m, ey Oy ey ON)) < ,ul-(OutcomeVO(q, cees Oy ey ON))

I.e. no player has an incentive to deviate unitarily.
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When are players playing rationally?

Nash equilibrium

- A profile of strategies (64, 65, ..., oy) is a Nash Equilibrium (NE) in v if
Viel[l,N]- Vo € 2, ://ti(OutcomeVO(m, ey Oy ey ON)) < ﬂi(OutcomeVO(01, cees Oy ey ON))

I.e. no player has an incentive to deviate unitarily.




When are players playing rationally?

Avoid non-credible threats: Subgame perfect equilibrium

(4 ,4) (5,0\ (0,2) (45)

Subaene
Gy

Subgame G, = game induced by history h
Players must be rational in all subgames!



When are players playing rationally?

Subgame perfect equilibrium

. A profile of strategies (o0¢, 05, ..., 0,) is a Subgame Perfect Equilibrium (SPE) in v if

Vi€ [I,N] - V histories h - Vo] € 2. :
pu.(Outcome(oy, ..., 0}, ..., 0y)) < p,(Outcomey(oy, ..., 0; ..., 0p))

I.e. no player has an incentive to deviate unitarily in any subgame.
Players are rational in all subgames (no non-credible threats.)



When are players playing rationally?

Subgame perfect equilibrium

. A profile of strategies (o0¢, 05, ..., 0,) is a Subgame Perfect Equilibrium (SPE) in v if

Vi€ [I,N] - V histories h - Vo] € 2. :
pu.(Outcome(oy, ..., 0}, ..., 0y)) < p,(Outcomey(oy, ..., 0; ..., 0p))

l.e. in all subgames, we have NEs (no non-credible threats.)

() (5 (=) (45) (a,4) (5% () (4,5)
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Outcomes supported by equilibria

NE - SPE
~ OutNE(G) = U Outcome,, ()
GENE
_ OutSPE(G) = U Outcome,, () OJNE
6ESPE

« How to compute effective representations for those sets ?
e Why?
. Existence problem: OutSPE(G) =’ @&

- Rational verification:
(d) dp € OutSPE(G) : p Fy? (V) Vp € OutSPE(G) : p F iy ?

. Cooperative rational synthesis [Kuperfman et al.]: 3p € OutSPE(G) : p F p,?  (parity obj. of Player O is true)



Algorithms



How to reason algorithmically on SPE?

Easy case: finite trees

« For finite trees: backward induction
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How to reason algorithmically on SPE?

Easy case: finite trees

« For finite trees: backward induction

(5, 40)

(.4‘0 )L) (4_,1_\ [S,Q (40,2,) (_4,53 (4_,1_\ (5,405 (49,2,) (4'5)

‘\ SPE s
(h.4) (59 (02 (45)

. Infinite trees: backward induction does not generalize...



Better starting point:
Characterization of outcomes of NE



Characterizing outcomes of NE

Use adversarial values

if p € NE if p & NE
\ !
g € PP
Y .\V 4 "Ny \[a.q;’ L‘) 7C
‘fnfl.'(uﬂ e 00
4- devdhS can
A E—l’. Nl(-) 'hy
be. ﬂo{c.‘swo.
and p(p) = ¢ and pp) = c
then then
inf - y(Outcome(os;, 6_))) > ¢

¢ > 1nf - sup - u(Outcome(o;, 6_;)) = Val,(v) Val;(v) = sup -

O

0,

Player i has no incentive to deviate Player i has an incentive to deviate



Characterizing outcomes of NE

Use adversarial values

if p € NE if p & NE
664:. Lol
Y 'y E X! \[a-e;’ (N") 7C
‘(aﬂa(«ﬂ e rPno aB%

ADF, Y
be salionl.

and p(p) = ¢
then

inf - y(Outcome(os;, 6_))) > ¢

0]

¢ > 1nf - sup - u(Outcome(o;, c Val;(v) = sup -

—i O; O;

Player i has no incentive to ¢ Player i has an incentive to deviate



Characterizing outcomes of NE

Use adversarial values

. Aplay p =vyvy...v,... is supported by aNEif Vi € [I,N]-V; >0 V; € Vo-u(p) > VaI,-(v]-)
Vali(v) = int - sup - y,(Outcome(s;, 6_)))

O_; o,

. If u( - ) is prefixindependent (like parity or mean-payoff), this is equivalent to
Vie[l,N]-u(p) 2 max Val(v)

vEvisit(p)NV,

. So it is sufficient to compute for all i € [1,N] and vertex v € V., the worst-case value Val,(v) — this is
equivalent to solving a two-player zero-sum game

. LetA: V — D, whereD = BorD =R, such that A(v) = Val(v) forv € V,
p = VgV|...V,... is A — consistent iff Vi € [1LN]-Vj >0 pp) > A(v)

. Such a function 41 : V — D is called a requirement




Set of outcomes supported by NE

Example Mean-payoff

11@—@£ b H——»

4 4 3, 9, $>\—l
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Set of outcomes supported by NE

Example Mean-payoff

11Q‘@—<¢bi b ——> d [ )22
A4 4 3, S, 2> >\—l
W - ode
Voluan

. the set of A — consistent paths in G are:

{a—>ca’}UU(a—>(b—>a)k—>b—>d6‘)}
keN



Set of outcomes supported by NE

Example Mean-payoff

A 4 3 V) ?x—l

S¥
N
N

. the set of A — consistent paths in G are:

{a—c}ul Ja— - a)f > b—a”
keN

. Theorem [Brihaye et al. 13]: p = vyv,...v, ... € OutNE(G) iff p is A — consistent.



Automaton for OutNE

Applications

. Corollary (effectivity): the set of A — consistent paths is recognized, for MP by a multi-MP

automaton (this language is not necessarily w — regular), and for Parity by a Streett-
automaton. In both cases, we can solve

. Existence problem: OutNE(G) =’ @&

- Rational verification :

(d) dp € OutNE(G) : p Fy? (V) Vp € OutNE(G) : p Fy?
« Cooperative rational synthesis [Kuperfman et al.]:

dp € OutNE(G) : p F py?  (parity obj. of Player O is true)

dp € OutNE(G) : valy(p) > ¢



Generalization to SPE

Relative worst-case value

- Question: given the requirement 4, defined by the worst-case values and
a vertex v € V;, does player 1 have a strategy to improve the value that

she can obtain from v if the other players are not willing to give up their
worst-case value (as required by 4,) ?

« Can we compute a4 — relative worst-case value ?



Generalization to SPE

Relative worst-case value - The negotiation function

. Nego : [A > DU {+00}] >[4 > DU {+00}]

where Nego(4)(v) = 1nf - sup u(outcome(s;,G_,))
o_;E/ARat 6,EY.

i.e. it computes the worst-case value against ARat strategies, i.e. against
players that do not want to trade off the value promised by A.

« This can be reduced to a zero sum game (Prover/Challenger).



How to compute Nego(.)

The abstract negotiation game between Prover and Challenger

. Letv € V,, P ~ — i want to prove that Nego(4)(v) £ ato C ~ |
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How to compute Nego(.)

The abstract negotiation game between Prover and Challenger

. Letv € V,, P ~ — i want to prove that Nego(4)(v) £ ato C ~ |
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How to compute Nego(.)

The abstract negotiation game between Prover and Challenger

. Letv € V,, P ~ — i want to prove that Nego(4)(v) £ ato C ~ |

P (s
f):-. g Y %-MWTQ%
C (~2)

deviation f‘j’_@% M- M\QJ/TQ:%



How to compute Nego(.)

The abstract negotiation game between Prover and Challenger

. Letv € V,, P ~ — i want to prove that Nego(4)(v) £ ato C ~ |

P (a0
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. Letv € V,, P ~ — i want to prove that Nego(4)(v) £ ato C ~ |




How to compute Nego(.)

The abstract negotiation game between Prover and Challenger

- Theorem [Concur'21]: Nego(4)(v) is equal to the value of the abstract
negotiation game.

- Theorem [Concur'21]: The abstract negotiation game for MP can be
transformed into a finite state multi-mean payoff parity game.

- Theorem [CSL'22]: The abstract negotiation game for Parity can be
transformed into a Streett game.



How to compute Nego(.)

... an example

(=

1 i 2 ) > A\

-
geao*(),j LOA 3 )L?

SH

« P:a — ¢” (this path is A, — consistent)

. C:deviationa = b

. [P: from b, the only 4, — consistent paths are in (b = a)* - d®

« AsMP((b — a)* = d®) =2, Nego(1,)(a) = 2.



How to compute Nego(.)

... an example
11@@——@&» b | d [LD22
4 4 % V3 > A\

» Pilb~d)” L&TOL\(QQ ?

. C: deviationb — a

. P:a— (b= d)”

. C: deviationb — a

. if we repeat the last two steps for w rounds, wegetp = (b —» a — )”
and so Nego(4,)(b) = MP,(p) = 3.



How to compute Nego(.)

... an example

11(‘_‘,@—4@& b —| d [L)22

A y'd 3, 9 >\

. P: (b — d)” L‘r&ﬂo(&\(\ﬂéi !

. C:deviationb — a

. C: deviationb — a

e P:a— (b — d)”
When should we stop ?

, Iterate up to (least) fixed point !
. if we repeat the last two ster

and so Nego(4,)(b) = MP(

The least fixed point characterizes all the outcomes of SPEs !



Least fixed point characterizes all SPEs

... an example

11C@< é& b - d [L)22
A &
2

£ 2 > My
S

. There is no A3 — consistent path from a, nor from b !

A x

2 &

No SPE starting fromaor b!




Least fixed point characterization

Prefix independent objectives

- Theorem [Concur’'21]: For prefix independent (including MP and parity)
objectives, the set of all outcomes of SPEs is characterized by the least fixed

point A* of Nego( -), i.e.:

OutSPE, (G) = | | Outcome,(5) = {p | pis A* — consistent}
cESPE

. For Parity objectives, 1* is reached within | V| steps

. For MP objectives, reaching A* may require transfinite number of iterations



Complexity
CSL"22

- Theorem [CSL'22]: Given a N-player parity game G:

» Constrained existence problem:

given two vectors u, v €
NP — Complete.

N deciding if there exists a SPE & such that u < u(outcome(6) < v is

 Least fixed point checking problem:
given a vector A € BY, deciding if A = A* is BH, — complete.

« LTL verification problem:

given a LTL formula y, deciding if for all SPE &, we have that outcome(o) F v, ie. checking if
OutSPE(G) F v, is PSpace — Complete.



Complexity
Mean-Payoff (ICALP'22)

- Theorem [ICALP’22]: Given a N-player mean-payoff game G:

. Constrained SPE existence problem: given u, v € Q", deciding if there exists
a SPE 6 s.t. u < u(outcome(o) < vis NP — Complete.

« The “plain” existence problem is also NP — Complete.



Summary - Conclusion

- SPE is a natural solution concept to model rationality in multi-player graph
games, and SPE is better suited than NE for sequential games (non-credible

threats)

- We have described new algorithmic ideas to compute an effective
representation of the set of outcomes supported by a SPE of a N-player non-
zero game graph (for parity and mean-payoff). This is relevant to solve
rational verification problems and cooperative rational synthesis problems

- We have characterized the complexity of the (constrained) existence
problems for SPE in N-player non-zero sum games played on graphs with
mean-payoff and parity objectives (both are NP-complete problems)



