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Non-deterministic Algorithms

Robert W. Floyd in 1967:

“Nondeterministic algorithms resemble conventional algorithms
. . . except that:
(1) One may use a multiple-valued function Choice(X)

(2) All points of termination are labelled as successes or failures.”

“All the time life is a fork. If you are straight up with yourself you
don’t have to decide which road to take. Your karma will look after
that.”

– George Harrison
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Are non-deterministic algorithms strictly more efficient than
deterministic ones?

In 1975, Ladner proved that if P6=NP then there are infinitely
many complexity classes between them

All examples of such intermediate problems are very artificial
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A “clean” class of problems within NP was suggested in a seminal
work of Feder and Vardi [Feder,Vardi’93,98]

Their goal: find a large subclass of NP which exhibits a dichotomy

They studied Uniform Constraint Satisfaction Problem (CSP)

CSP is identified with the Homomorphism Problem:

Given: two relational structures A and B
Question: is there a homomorphism h : A→ B?

B is called a template

Non-Uniform CSP: the template B is fixed
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[Feder,Vardi’93] conjectured a dichotomy:

Non-Uniform CSP is either in P-time or NP-complete

[Bulatov:2017, Zhuk:2017] closed the conjecture positively

The CSP development relied on the techniques of Universal Algebra
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Setting: Computational Decision Problems

3-Colourability, s-t-Reachability, Size Four, EVEN, . . .

Queries A |= ϕ ask:

I Is graph A 3-colourable?

I Is the size of the domain of A EVEN?

Data complexity [Vardi:1982]:

query ϕ is fixed and structures A vary
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Goals

Develop an algebraic language for reasoning about
non-deterministic computations in a “deterministic” way

in particular, for reasoning about

the set of certificates of a computational decision problem,

as a mathematical object
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We will see a mechanism for constructing such an algebra

In particular,

I how to tame the non-determinism of classical connectives

I how to view the algebra as a logic, a query language

I how to quantify over certificates, algebraically

I how to reason about the existence of a certificate

I how to capture complexity classes with an algebra
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I Start from FO(LFP), the logic used in [Immerman-Vardi] theorem

I Inspired by two-variable fragments [Vardi:1995],
partition variables of atomic symbols into inputs and outputs

I Produce algebra of (functional) binary relations
on finite strings of structures over the same relational vocabulary

t ::= id | q(X̄, Y )︸ ︷︷ ︸
unary CQ

|

analogous to ¬,∧,∨,∗︷ ︸︸ ︷
∼t | t ; t | t t t | t↑ | BG(P 6= Q) | (P = Q)

τ := τEDB ] τreg

atomic binary relations (CQs) specify a transition system TrJ·K
States of TrJ·K are relational τ -structures
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Operations, Intuitively

t ::= εa |

function-preserving︷ ︸︸ ︷
id | ∼t | t ; t | t t t | t↑ | BG(P 6= Q) | (P = Q)

Unary Negation (Anti-Domain): ∼ t – there is no outgoing
t-transition

Composition: t ; g – function composition (execute sequentially)

Preferential Union: t t g – perform t if it’s defined, o.w. perform g

Maximum Iterate: t↑ – output the longest transition of t∗

Back Globally: BG(Pnow 6= Q) – compare the “content” of
“register” P now with “registers” Q before, must be different

Equality Check : (P = Q) – compare the “content” of “registers”
P and Q τ := τEDB ] τreg
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Maximum Iterate vs the Kleene Star

A1 A2 A3 B

Maximum Iterate:

t↑0 := ∼t, t↑n+1 := t↑n ; t,
t↑ :=

⋃
n∈N t

↑
n.

deterministic operator

(a partial function).

A1 B1 B2 B3

The Kleene Star:

t∗0 := id, t∗n+1 := t ; t∗n,
t∗ :=

⋃
n∈N t

∗
n.

non-deterministic opera-
tor

(not a function).

10 / 23



Choice Functions
A unary CQ returns a set

A history-dependent Choice function picks one element

E.g.:
Reach′(y) : − Reach(x),E(x, y)︸ ︷︷ ︸

CQ

use free Choice function variable ε (at most one per expression)

t ::= id | q[ε](X̄, Y )︸ ︷︷ ︸
CQ with Choice

| ∼t | t ; t | t t t | t↑ | BG(P 6= Q) | (P = Q)

Notation:

ε
{

Reach′(y)� Reach(x), E(x, y)
}
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Choice Functions Give Semantic to Atomic Transductions

U is the set of all τ -structures over the same finite domain
(τ := τEDB ] τreg)

M is the set of atomic action symbols (macros) that refer to CQs

h :M→ (U+ ⇀ U+)︸ ︷︷ ︸
partial function

h : returns functional binary relation

pick one possible transition from TrJaK ⊆ U×U

E.g. (vA, vAB) ∈ h(εa) if (A,B) ∈ TrJaK was selected
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Extend h to All Terms

h̄ : Terms→ (U+ ⇀ U+)

1. h̄(εa) := h(εa)

2. h̄(id) := {(v, v)}

3. h̄(∼t) := {(v, v) | ¬
(
∃h′∃w ((v, w) ∈ h̄′(t)

)
}

4. h̄(t ; g) := {(v, w) | ∃ u
(
(v, u) ∈ h̄(t) ∧ (u,w) ∈ h̄(g)

)
}.

5. h̄(t t g) :=

{
h̄(t) if h̄(t) 6= ∅,
h̄(g) if h̄(t) = ∅.

6. h̄(t↑) := {(v, w) | (v, v) ∈ h̄(∼t) ∧ v = w
∨ ∃u

(
v v u v w ∧ (v, u) ∈ h̄(t) ∧ (u,w) ∈ h̄(t↑)

)
}.

7. h̄(P = Q) := {(v, v) | Qv(last) = P v(last)}.

8. h̄( BG(P 6= Q)) := {(v, v) | ¬∃w
(
w v v ∧ P v(last) = Qw(last)

)
}.
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Origins of the Constructs

Epsilon Operator [Hilbert, Bernays: 1939]

Soviet logicians in the 70’s and 80’s, and the study is still ongoing

[Arvind and Biswas’87], [Gire and Hoang’98], [Blass and Gurevich’00],
[Otto’00], [Richerby and Dawar’03]

Unary Negation (Anti-Domain): ∼ t

[Groenendijk and Stokhof: 1991]

[Hollenberg, Visser: 1999]

. . .

Maximum Iterate: t↑, Preferential Union: t t g
[Jackson, Stokes: 2011]

[McLean: 2017], . . .
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The Algebra is Equivalent to a Linear-Time Dynamic Logic
via a standard embedding:

t ::= εa | id | ∼t | t ; t | t t t | t↑ | BG(P 6= Q) | (P = Q) | ϕ?
ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | |t〉ϕ

ϕ? := ∼∼ϕ = Dom(ϕ) (test action)
|α〉 ϕ := Dom(α ; ϕ)

Satisfaction relation: v |= ϕ(h/ε) iff (v, v) ∈ h̄(ϕ)

Programming constructs are definable

if ϕ then α else β := (ϕ? ; α) t β
while ϕ do α := (ϕ? ; α)↑ ; (∼ϕ?)
repeat α until ϕ := α ; ((∼ϕ?) ; α)↑ ; ϕ?
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Implicit Quantification over ε

Recall: h̄(∼t) := {(v, v) | ¬
(
∃h′∃w ((v, w) ∈ h̄′(t)

)
}

∼∼t (domain) − implicitly, ∃ε

there is a Choice function witnessing a successful execution of t

∼t (anti-domain) − implicitly, ∀ε

there is no Choice function witnessing a successful execution of t

These “quantifiers” can alternate

This allows us to formalize problems at all levels of the PTH
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Main Computational Task

Problem: Main Task (Decision Version)
Given: Relational τ - structure A and term t
Question:

∃h A |= |t〉>(h/ε) ? (1)

e.g., A is a graph, t describes 3-Colourability, and h is a witness

A computational problem specified by t is an isomorphism-closed
class Pt of structures A such that (1) holds

(i.e., there is a successful execution of t on input A)

One-player Game: Arena: transition system TrJ·K,

Given t and A, is there a winning strategy h from A?
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Problem: Size Four α4 (Counting)

Given: A structure A with an empty vocabulary.
Question: Is |dom(A)| equal to 4?

α4 := (GuessNewP )4 ;∼GuessNewP

εGuessP := ε
{
P (x)�

}
εCopyPQ := ε

{
Q(x)� P (x)

}
GuessNewP :=

(
GuessP ; BG(P 6= Q)

)
; CopyPQ

A |=T |α4〉> (i.e., there is an h) iff the input domain is of
size 4
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Problem: s-t Connectivity α(E, S, T ) (Reachability)

Given: Binary edge relation E, two constants s and t represented
as singleton-set relations S and T .
Question: Is t reachable from s by following the edges?

αST(E,S, T ) := Mbase case ; repeat
(
Mind case;

BG(Reach′ 6= Reach)
)

; Copy until Reach = T .

εMbase case := ε
{

Reach(x)� S(x)
}
,

εMind case := ε
{

Reach′(y)� Reach(x), E(x, y)
}
,

εCopy := ε
{

Reach(x)� Reach′(x)
}
.

the answer to A |= |αST〉> is true

iff t is reachable from s by following the edges of the input graph
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Complexity of Query Evaluation

Restricted fragment: ∼ applies to atomic expressions or
equalities only. All Choice functions are of polynomial length
length(h) ∈ O(nk) where n = |A|

Theorem:The data complexity of checking A |= |α〉>, for α in the
restricted fragment, is in NP

Proof: Guess h. Check atomic actions (CQs) and the fixed term in
poly-time using rules of Structural Operational Semantics

Thus, we return “yes” in poly-time if the witness h proves that the
answer to A |= |α〉> is “yes”; or “no” in polynomial time
otherwise.
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Theorem: For every NP-recognizable class K of structures, there is
a sentence in the restricted fragment, whose models are exactly K
Proof: Design term αTM, focus on query

A |= |αTM〉 >

Start by guessing an order:

αTM(A) := ORDER ; START ; repeat STEP until END.

Note: the structures in class K are not ordered

Corollary: The restricted fragment of the logic captures NP
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Summary

I algebra/logic on strings of relational structures

I operations are function-preserving

I can specify reachability, cardinality and “mixed propagations”
examples
e.g., EVEN is not in Datalog, not in MSO but is in our logic

I a fragment of the logic captures exactly NP

I in general, problems at any level af the PTH can be specified
(if Choice functions are of polynomial length)

I We believe it’s the first algebraic approach to capturing
complexity classes
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Open Problems & Current Research

1. Under what conditions on the algebraic terms, a naive
winning strategy h for A |= |t〉> exists?

(at each step, make any possible choice, and you will succeed)

“All the time life is a fork. If you are straight up with yourself
you don’t have to decide which road to take. Your karma will
look after that.”

– George Harrison

2. Connections to other logics/algebras, & automata

3. Proof system, formal proofs vs Choice functions as certificates

4. Does Interpolation theorem hold? (e.g., for a fragment)
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Thank you!
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