Promise Algebra: An Algebraic Model of Non-Deterministic Computations

Eugenia Ternovska

Simon Fraser University, Canada

July 19, 2024

Non-deterministic Algorithms

Robert W. Floyd in 1967:

"Nondeterministic algorithms resemble conventional algorithms . . . except that:

(1) One may use a multiple-valued function $Choice(X)$

(2) All points of termination are labelled as successes or failures."

"All the time life is a fork. If you are straight up with yourself you don't have to decide which road to take. Your karma will look after that."

– George Harrison

Are non-deterministic algorithms strictly more efficient than deterministic ones?

In 1975, Ladner proved that if $P\neq NP$ then there are infinitely many complexity classes between them

All examples of such intermediate problems are very artificial

A "clean" class of problems within NP was suggested in a seminal work of Feder and Vardi [Feder, Vardi'93,98]

Their goal: find a large subclass of NP which exhibits a dichotomy

They studied Uniform Constraint Satisfaction Problem (CSP)

CSP is identified with the **Homomorphism Problem:**

Given: two relational structures $\mathfrak A$ and $\mathfrak B$ Question: is there a homomorphism $h : \mathfrak{A} \to \mathfrak{B}$?

 \mathfrak{B} is called a template

Non-Uniform CSP: the template $\mathfrak B$ is fixed

[Feder,Vardi'93] conjectured a dichotomy:

Non-Uniform CSP is either in P-time or NP-complete

[Bulatov:2017, Zhuk:2017] closed the conjecture positively

The CSP development relied on the techniques of Universal Algebra

Setting: Computational Decision Problems

3-Colourability, s-t-Reachability, Size Four, EVEN, . . .

Queries $\mathfrak{A} \models \varphi$ ask:

 \blacktriangleright Is graph $\mathfrak A$ 3-colourable?

In Its the size of the domain of $\mathfrak A$ EVEN?

Data complexity [Vardi:1982]:

query φ is fixed and structures $\mathfrak A$ vary

Goals

Develop an **algebraic** language for reasoning about non-deterministic computations in a "deterministic" way

in particular, for reasoning about

the set of certificates of a computational decision problem,

as a mathematical object

We will see a mechanism for constructing such an algebra

In particular,

- \triangleright how to tame the non-determinism of classical connectives
- \triangleright how to view the algebra as a logic, a query language
- \blacktriangleright how to quantify over certificates, algebraically
- \blacktriangleright how to reason about the existence of a certificate
- \triangleright how to capture complexity classes with an algebra

 \triangleright Start from FO(LFP), the logic used in [Immerman-Vardi] theorem

- \blacktriangleright Inspired by two-variable fragments [Vardi:1995]. partition variables of atomic symbols into inputs and outputs
- \triangleright Produce algebra of (functional) binary relations on finite strings of structures over the same relational vocabulary

t ::= id | q(X, Y ¯) | {z } unary CQ | analogous to ¬,∧,∨,∗ z }| { ∼t | t ; t | t t t | t ↑ | BG(P 6= Q) | (P = Q)

$$
\tau \ := \ \tau_{\rm EDB} \uplus \tau_{\rm reg}
$$

atomic binary relations (CQs) specify a transition system $Tr\llbracket \cdot \rrbracket$ States of $Tr\llbracket \cdot \rrbracket$ are relational τ -structures

Operations, Intuitively

 $t ::= \varepsilon a \mid \overline{\operatorname{id}^+ \mid \sim t \mid t}$; $t \mid t \sqcup t \mid t^\uparrow \mid^-$ bg $(P \ne Q) \mid (P = Q)$ function-preserving

Unary Negation (Anti-Domain): $\sim t$ – there is no outgoing t-transition

Composition: t ; g – function composition (execute sequentially) Preferential Union: $t \sqcup q$ – perform t if it's defined, o.w. perform q Maximum Iterate: t^{\uparrow} – output the longest transition of t^*

Back Globally: $\mathsf{Bg}(P_{now} \neq Q)$ – compare the "content" of "register" P now with "registers" Q before, must be different

Equality Check : $(P = Q)$ – compare the "content" of "registers" **P** and Q τ := $\tau_{\text{EDB}} \uplus \tau_{\text{res}}$

Maximum Iterate vs the Kleene Star

Maximum Iterate:

$$
\begin{array}{rcl} t_0^\uparrow &:=\ \sim\! t, \quad t_{n+1}^\uparrow \ := \ t_n^\uparrow \ ; \ t, \\ t^\uparrow &:= \bigcup_{n\in\mathbb{N}} t_n^\uparrow. \end{array}
$$

deterministic operator

(a partial function).

$$
t_0^* := \text{id}, \quad t_{n+1}^* := t \; ; t_n^*
$$

$$
t^* := \bigcup_{n \in \mathbb{N}} t_n^*.
$$

non-deterministic operator

,

(not a function).

The Kleene Star:

Choice Functions

A unary CQ returns a set

A history-dependent Choice function picks one element

E.g.:

$$
Reach'(y) \quad : - \quad \underbrace{Reach(x), \mathbf{E}(x, y)}_{\text{CQ}}
$$

use free Choice function variable ε (at most one per expression)

 $t ::= id \mid q[\varepsilon](\bar{X}, Y) \mid \neg t \mid t; t \mid t \sqcup t \mid t^{\uparrow} \mid \text{bs}(P \neq Q) \mid (P = Q)$ CQ with Choice

Notation:

$$
\varepsilon\left\{\begin{array}{l}{\rm \textit{Reach}'}(y)\leftarrow{\rm \textit{Reach}}(x),E(x,y)\end{array}\right\}
$$

Choice Functions Give Semantic to Atomic Transductions

U is the set of all τ -structures over the same finite domain $(\tau := \tau_{\text{EDB}} \oplus \tau_{\text{reg}})$

 M is the set of atomic action symbols (macros) that refer to CQs

$$
h:\mathcal{M}\rightarrow \underbrace{(\mathbf{U}^{+}\rightharpoonup \mathbf{U}^{+})}_{\text{partial function}}
$$

 h : returns functional binary relation

pick one possible transition from $\textbf{Tr}\llbracket a \rrbracket \subseteq \textbf{U} \times \textbf{U}$

E.g. $(v\mathfrak{A}, v\mathfrak{A}\mathfrak{B}) \in h(\varepsilon a)$ if $(\mathfrak{A}, \mathfrak{B}) \in \mathbf{Tr}\llbracket a \rrbracket$ was selected

Extend h to All Terms

 $\bar{h}: Terms \rightarrow (\mathbf{U}^+ \rightarrow \mathbf{U}^+)$

1.
$$
\bar{h}(\varepsilon a) := h(\varepsilon a)
$$

\n2. $\bar{h}(\mathrm{id}) := \{(v, v)\}$
\n3. $\bar{h}(\sim t) := \{(v, v) \mid \neg(\exists h' \exists w \ ((v, w) \in \bar{h}'(t))\}$
\n4. $\bar{h}(t; g) := \{(v, w) \mid \exists u \ ((v, u) \in \bar{h}(t) \land (u, w) \in \bar{h}(g))\}.$
\n5. $\bar{h}(t \sqcup g) := \begin{cases} \bar{h}(t) & \text{if } \bar{h}(t) \neq \emptyset, \\ \bar{h}(g) & \text{if } \bar{h}(t) = \emptyset. \end{cases}$
\n6. $\bar{h}(t^{\uparrow}) := \{(v, w) \mid (v, v) \in \bar{h}(\sim t) \land v = w \lor \exists u \ (v \sqsubseteq u \sqsubseteq w \land (v, u) \in \bar{h}(t) \land (u, w) \in \bar{h}(t^{\uparrow}))\}.$
\n7. $\bar{h}(P = Q) := \{(v, v) \mid Q^{v(last)} = P^{v(last)}\}.$
\n8. $\bar{h}(\mathbf{sc}(P \neq Q)) := \{(v, v) \mid \neg \exists w \ (w \sqsubseteq v \land P^{v(last)} = Q^{w(last)})\}.$

Origins of the Constructs

. . .

Epsilon Operator [Hilbert, Bernays: 1939]

Soviet logicians in the 70's and 80's, and the study is still ongoing

```
[Arvind and Biswas'87], [Gire and Hoang'98], [Blass and Gurevich'00],
[Otto'00], [Richerby and Dawar'03]
```

```
Unary Negation (Anti-Domain): \sim t[Groenendijk and Stokhof: 1991]
[Hollenberg, Visser: 1999]
```

```
Maximum Iterate: t^\uparrow, Preferential Union: t\sqcup g[Jackson, Stokes: 2011]
[McLean: 2017], . . .
```
The Algebra is Equivalent to a Linear-Time Dynamic Logic via a standard embedding:

$$
t ::= \varepsilon a \mid \mathrm{id} \mid \mathop{\sim} t \mid t ; t \mid t \sqcup t \mid t^{\uparrow} \mid \mathop{\rm sg}(P \neq Q) \mid (P = Q) \mid \varphi?
$$

$$
\varphi ::= \top \mid \neg \varphi \mid \varphi \land \varphi \mid \vert t \rangle \varphi
$$

$$
\varphi? := \sim \sim \varphi \qquad = \text{Dom}(\varphi) \qquad \qquad \text{(test action)}
$$

$$
|\alpha\rangle \varphi := \text{Dom}(\alpha \, ; \varphi)
$$

Satisfaction relation: $v \models \varphi(h/\varepsilon)$ iff $(v, v) \in \bar{h}(\varphi)$

Programming constructs are definable

if φ then α else $\beta := (\varphi? : \alpha) \sqcup \beta$ while φ do $\alpha := (\varphi? ; \alpha)^{\uparrow} ; (\sim \varphi?)$ $\textbf{repeat} \; \alpha \; \textbf{until} \; \varphi := \alpha \; ; ((\sim\!\varphi?)\, ; \alpha)^\dagger \; ; \varphi?$

Implicit Quantification over ε

Recall:
$$
\bar{h}(\sim t) := \{(v, v) \mid \neg (\exists h' \exists w \ ((v, w) \in \bar{h}'(t))\}
$$

$\sim t$ (domain) – implicitly, $\exists \varepsilon$

there is a Choice function witnessing a successful execution of t

 $\sim t$ (anti-domain) – implicitly, $\forall \varepsilon$

there is no Choice function witnessing a successful execution of t

These "quantifiers" can alternate

This allows us to formalize problems at all levels of the PTH

Main Computational Task

Problem: Main Task (Decision Version) Given: Relational τ - structure $\mathfrak A$ and term t Question:

 $\exists h \ \mathfrak{A} \models |t\rangle \top (h/\varepsilon)$? (1)

e.g., $\mathfrak A$ is a graph, t describes 3-Colourability, and h is a witness

A computational problem specified by t is an isomorphism-closed class P_t of structures $\mathfrak A$ such that [\(1\)](#page-17-0) holds

(i.e., there is a successful execution of t on input \mathfrak{A})

One-player Game: Arena: transition system $Tr[\cdot]$, Given t and \mathfrak{A} , is there a winning strategy h from \mathfrak{A} ?

Problem: Size Four α_4 (Counting)

Given: A structure $\mathfrak A$ with an empty vocabulary. Question: Is $|dom(\mathfrak{A})|$ equal to 4?

$$
\alpha_4 := (GuessNewP)^4 \ ; \sim GuessNewP
$$

 $\varepsilon GuessP \quad := \quad \varepsilon \left\{ \begin{array}{ccc} P(x) \leftarrow \end{array} \right\}$ $\varepsilon \text{Copy} PQ \quad := \quad \varepsilon \left\{ \begin{array}{l} Q(x) \leftarrow P(x) \end{array} \right\}$ $GuessNewP := (GuessP \; ; \; \mathsf{bc}(P \neq Q)) \; ; \; CopyPQ$

 $\mathfrak{A} \models_{T} \alpha_{4}$) T (i.e., there is an h) iff the input domain is of size 4

Problem: s-t Connectivity $\alpha(E, S, T)$ (Reachability)

Given: Binary edge relation E , two constants s and t represented as singleton-set relations S and T .

Question: Is t reachable from s by following the edges?

 $\alpha_{\textsf{ST}}(E,S,T) := -M_{base_case} \,; \textbf{repeat} \, \left({M_{ind_case}} \right)$ вс $(Reach' \neq Reach))$; $Copy$ until $Reach = T$.

$$
\varepsilon M_{base_case} := \varepsilon \left\{ \begin{array}{l} \textit{Reach}(x) \leftarrow S(x) \end{array} \right\}, \\ \varepsilon M_{ind_case} := \varepsilon \left\{ \begin{array}{l} \textit{Reach}'(y) \leftarrow \textit{Reach}(x), E(x, y) \end{array} \right\}, \\ \varepsilon \textit{Copy} := \varepsilon \left\{ \begin{array}{l} \textit{Reach}(x) \leftarrow \textit{Reach}'(x) \end{array} \right\}.
$$

the answer to $\mathfrak{A} \models |\alpha_{\sf ST}\rangle$ is true iff t is reachable from s by following the edges of the input graph

Complexity of Query Evaluation

Restricted fragment: \sim applies to atomic expressions or equalities only. All Choice functions are of polynomial length $length(h) \in O(n^k)$ where $n = |\mathfrak{A}|$

Theorem: The data complexity of checking $\mathfrak{A} \models |\alpha\rangle$ T, for α in the restricted fragment, is in NP

Proof: Guess h . Check atomic actions (CQs) and the fixed term in poly-time using rules of Structural Operational Semantics

Thus, we return "yes" in poly-time if the witness h proves that the answer to $\mathfrak{A} \models |\alpha\rangle$ is "yes"; or "no" in polynomial time otherwise.

Theorem: For every NP-recognizable class K of structures, there is a sentence in the restricted fragment, whose models are exactly K

Proof: Design term α_{TM} , focus on query

 $\mathfrak{A} \models |\alpha_{\text{TM}}\rangle$ T

Start by guessing an order:

 $\alpha_{\text{TM}}(\mathfrak{A}) := \text{ORDER}$; START; repeat STEP until END.

Note: the structures in class K are not ordered

Corollary: The restricted fragment of the logic captures NP

Summary

- \blacktriangleright algebra/logic on strings of relational structures
- \triangleright operations are function-preserving
- \triangleright can specify reachability, cardinality and "mixed propagations" examples e.g., EVEN is not in Datalog, not in MSO but is in our logic
- \triangleright a fragment of the logic captures exactly NP
- \triangleright in general, problems at any level af the PTH can be specified (if Choice functions are of polynomial length)
- \triangleright We believe it's the first algebraic approach to capturing complexity classes

1. Under what conditions on the algebraic terms, a naive winning strategy h for $\mathfrak{A} \models |t\rangle \top$ exists?

1. Under what conditions on the algebraic terms, a naive winning strategy h for $\mathfrak{A} \models |t\rangle \top$ exists? (at each step, make any possible choice, and you will succeed)

1. Under what conditions on the algebraic terms, a naive winning strategy h for $\mathfrak{A} \models |t\rangle \top$ exists? (at each step, make any possible choice, and you will succeed)

"All the time life is a fork. If you are straight up with yourself you don't have to decide which road to take. Your karma will look after that."

– George Harrison

1. Under what conditions on the algebraic terms, a naive winning strategy h for $\mathfrak{A} \models |t\rangle \top$ exists? (at each step, make any possible choice, and you will succeed)

"All the time life is a fork. If you are straight up with yourself you don't have to decide which road to take. Your karma will look after that."

– George Harrison

- 2. Connections to other logics/algebras, & automata
- 3. Proof system, formal proofs vs Choice functions as certificates
- 4. Does Interpolation theorem hold? (e.g., for a fragment)

Thank you!