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Focus of This Talk

• EMD and Probabilistic Tree Embeddings
• Will not define LSH in this talk

• “Data-Dependent” Probabilistic Trees [Chen-J-Levi-Waingarten 
STOC ’22]
• Suited for one EMD comparison. 

• (New) Extension Lemma: controlling distortion over entire space.
• Suited for *many* comparisons (NNS)



Earth Mover’s Distance
Metric	space:
Multisets:

• Min cost perfect bipartite matching (/w triangle inequality)

	



Approximate Nearest Neighbor Search (ANN)
Fix a Metric Space 𝑋, approximation 𝑐 ≥ 1
• Preprocess: a dataset 𝐷 ⊂ 𝑋 of 𝑛 points.
• Query: Given 𝑞 ∈ 𝑋, output any 𝑝 ∈ 𝐷 such that

 
𝑑! 𝑞, 𝑝 ≤ 𝑐 ⋅ min
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ANN for EMD
Reminder: A “point” in EMD is a size-𝑠 subset 𝐴 ⊂ ℝ%

≔ 𝐴

≔ 𝐵

≔ 𝐶

Dataset 
𝐷 = {𝐴,𝐵, 𝐶}



ANN for EMD

≔ 𝐴

≔ 𝐵

≔ 𝐶

:=Query set

Dataset 
𝐷 = {𝐴,𝐵, 𝐶}

Reminder: A “point” in EMD is a size-𝑠 subset 𝐴 ⊂ ℝ%



Parameterization

EMD!(ℝ", ℓ#) ≔ EMD over size 𝑠	subsets of (ℝ", ℓ#) 

Two Key Parameters
• 𝑛 ≔ size of dataset
• 𝑠 ≔ subset size

From now on:
• WLOG: Δ, 𝑑 = poly 𝑠 , (Δ:= Aspect Ratio)
Think of 𝑛 ≫ 𝑠, since 𝑛 is the size of the dataset, 𝑠 is description size of single point 



Ideal Trade-offs: Case of ℓ!
Theorem (Indyk-Motwani STOC’98): For any 𝜖 > 0, there is an ANN data 
structure for 𝑛 points in ℝ", ⋅ #  which obtains:

• Approximation: 𝑂 #
$

• Space & pre-processing time: 𝑂 𝑑	 ⋅ 𝑛#%$

• Query time: 𝑂 𝑑 ⋅ 𝑛$	



Ideal Trade-offs: Case of ℓ!
Theorem (Indyk-Motwani STOC’98): For any 𝜖 > 0, there is an ANN data 
structure for 𝑛 points in ℝ", ⋅ #  which obtains:

• Approximation: 𝑂 #
$

• Space & pre-processing time: 𝑂 𝑑	 ⋅ 𝑛#%$

• Query time: 𝑂 𝑑 ⋅ 𝑛$	

Gold standard trade-off 
• Optimal for ℓ#

• (Andoni, Laarhoven, Razenshteyn and Waingarten SODA’17)

But EMD more complex than ℓ#…



EMD ANN: Prior Work + Main Result
Theorem (Indyk STOC’04): For any 𝜖 > 0, there is an ANN data structure for 𝑠 
EMD! ℝ", ℓ#  which obtains:

• Approximation: 𝑂 #
$ ⋅ 𝑑 log 𝑠

• Space & pre-processing time: 𝑂 𝑑	 ⋅ 𝑛#%$

• Query time: 𝑂 𝑑 ⋅ 𝑛$	
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EMD ANN: Prior Work + Main Result
Theorem (Indyk STOC’04): For any 𝜖 > 0, there is an ANN data structure for 𝑠 
EMD! ℝ", ℓ#  which obtains:

• Approximation: 𝑂 #
$ ⋅ 𝑑 log 𝑠

• Space & pre-processing time: 𝑂 𝑑	 ⋅ 𝑛#%$

• Query time: 𝑂 𝑑 ⋅ 𝑛$	

Theorem (Andoni-Indyk-Krauthgamer SODA’08): 
• There is a data structure with approximation 𝑂 #

$ ⋅ log
& 𝑠

Theorem (J-Waingarten-Zhang STOC’24): 
• There is a data structure with approximation <𝑂 #

$
⋅ log 𝑠 ⋅



EMD = min-cost geometric bipartite matching 
• “Hungarian Algorithm”: 𝑂(𝑛') time
• Kuhn-Munkres, Edmonds-Karp 1950s, Jacobi 1850s.

• Fast min cost flow solvers: 𝑂(𝑛&%((#)) time
• [Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva FOCS '22] :

Greedy is bad (even in the line) --- 𝑛.,-./0 approx [Reingold-Tarjan ’81]

EMD is a complex metric



Probabilistic Tree Embeddings 
EMD is not a simple metric.

• Approach of all prior work: embed EMD! ℝ" , ℓ#  into a simpler metric.

• EMD over tree metrics (EMD! 𝑇, 𝑑$ ) is simpler! 
• Greedy is Optimal!
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Probabilistic Tree Embeddings 
EMD is not a simple metric.

• Approach of all prior work: embed EMD! ℝ" , ℓ#  into a simpler metric.

• EMD over tree metrics (EMD! 𝑇, 𝑑$ ) is simpler! 
• Greedy is Optimal!

Isometric embedding into ℓ#.

𝑓: EMD! 𝑇, 𝑑1 → ℝ2, ℓ#
such that

EMD 𝑥, 𝑦 = 𝑓 𝑥 − 𝑓 𝑦 #

Goal: Embed into a tree!



The Plan

Step 1 - Probabilistic Tree: 

Step 2 - Reduce to      : 

Small note:
 * Computationally efficient (and succinct).
 * Once in ℓ%, can use ANN for ℓ%

(isometric)?



Probabilistic Tree Embeddings
Theorem (Indyk ’04): There is an embedding                                       satisfying
• Non-contraction:
• Bounded expansion: 



Theorem (AIK ’08): There is an embedding                                       satisfying
for any subset                  of       points:
• Non-contraction:
• Bounded expansion: 
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Theorem (AIK ’08): There is an embedding                                       satisfying
for any subset                  of       points:
• Non-contraction:
• Bounded expansion: 

Probabilistic Tree Embeddings
Theorem (Indyk ’04): There is an embedding                                       satisfying
• Non-contraction:
• Bounded expansion: 

Theorem (CJLW ’22): For any subset                 , there is a (succinct and efficient) 
embedding                                       satisfying:
• Non-contraction:
• Bounded expansion: 



Quadtree Algorithm

1. Recursively subdivide ℝ", creating tree
2. Vertices of tree correspond to hypercubes in 𝑅"

3. Map point 𝑝 to the leaf containing it 

𝑎

𝑏

𝑎 𝑏

Embedding ℝ!  into a tree



Quadtree Algorithm
𝑎

𝑏

𝑎 𝑏

𝑤!

𝑤"

𝑑(𝑎, 𝑏)

ØSet edge weights so tree distances approximate original.

1. Recursively subdivide ℝ", creating tree
2. Vertices of tree correspond to hypercubes in 𝑅"

3. Map point 𝑝 to the leaf containing it 

Embedding ℝ!  into a tree
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The only change: edge weights
➢Impose randomly shifted grid at log 𝑑Δ-scales

➢At depth 𝑖 ≥ 0, hyper-grid has side length Δ/2%

➢𝑇 ≔ recursion tree
➢For Ω ⊂ ℝ",		let	Ω8 ⊂ Ω		be	subset	going	through	𝑣 ∈ 𝑇

I’04:

: Diameter
of grid cell

AIK ’08: CJLW ’22:

Δ log 𝑠
29

𝔼:~<!
=~<"

𝑥 − 𝑦 #

𝑦 𝑥

𝑣

𝑢

𝑢

v
u𝑣

𝑤(𝑢, 𝑣)



The only change: edge weights
➢Impose randomly shifted grid at log 𝑑Δ-scales

➢At depth 𝑖 ≥ 0, hyper-grid has side length Δ/2%

➢𝑇 ≔ recursion tree
➢For Ω ⊂ ℝ",		let	Ω8 ⊂ Ω		be	subset	going	through	𝑣 ∈ 𝑇

I’04:

: Diameter
of grid cell

AIK ’08: CJLW ’22:

Δ log 𝑠
29

𝔼:~<!
=~<"

𝑥 − 𝑦 #

𝑦 𝑥

𝑣

𝑢

Approximation 𝑂(𝑑 log 𝑠)	 O(log! 𝑠)	 8𝑂(log |Ω|)

Data-dependent weights give improved approximation!

𝑢

v
u𝑣

𝑤(𝑢, 𝑣)



Using CJLW for ANN?

➢ CLJW’22 Pros:
➢ Better distortion when Ω = 𝑂(poly	𝑠) 
➢ Still concise and efficient

➢ Cons:
➢ Only defined on Ω (what about query)?
➢Cannot define Ω ∶= all 𝑛 sets of size 𝑠

➢Otherwise log 𝑛𝑠 distortion!

I’04:

: Diameter
of parts

AIK ’08: CJLW ’22:

𝔼"~$!
%~$"

𝑥 − 𝑦 &Δ log 𝑠
29



SampleTree

Cannot afford to use DD-Quadtree on all points in dataset for ANN.
• Instead, use random sample Ω ⊂ 𝐷 of size	poly(𝑠).

𝑤" 𝑤!

𝑥" 𝑥! 𝑥#
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2. Ω ≔ random poly(𝑠) points from 𝐷
3. Define hybrid weights:

* If any 𝑥 ∈ Ω goes through (𝑢, 𝑣) use CJLW’22 weights:

𝑤 𝑢, 𝑣 = 𝔼 :~<!
=	~	<"

𝑥 − 𝑦 #

* Otherwise, use AIK’08 weights:   w u, v = @ ABC D
&#
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SampleTree

Cannot afford to use DD-Quadtree on all points in dataset for ANN.
• Instead, use random sample Ω ⊂ 𝐷 of size	poly(𝑠).
SampleTree:
1. Sample Quadtree 𝑇	partition	
2. Ω ≔ random poly(𝑠) points from 𝐷
3. Define hybrid weights:

* If any 𝑥 ∈ Ω goes through (𝑢, 𝑣) use CJLW’22 weights:

𝑤 𝑢, 𝑣 = 𝔼 :~<!
=	~	<"

𝑥 − 𝑦 #

* Otherwise, use AIK’08 weights:   w u, v = @ ABC D
&#

SampleTree now valid mapping:
ℝ6 → 𝑇7

𝑤" 𝑤!

𝑥" 𝑥! 𝑥#



Distortion Bounds
𝑇<, 𝑤< ≔ SampleTree.

ØIf 𝑥, 𝑦 ∈ Ω , then 𝑥 − 𝑦 #≤ 𝑑1$ 𝑥, 𝑦 ≤ <𝑂 log 𝑠 ⋅ 𝑥 − 𝑦 #
• 𝑑'# 𝑥, 𝑦  only uses data-dependent edge weights!
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What about x, y ∉ Ω?
ØIf 𝑥, 𝑦  far from Ω, then 𝑑1$ 𝑥, 𝑦  only uses data-independent weights

Ø 𝑂(log! 𝑠) approximation

ØSince Ω was randomly sampled, most points are “close” to Ω!



Distortion Bounds
𝑇<, 𝑤< ≔ SampleTree.

ØIf 𝑥, 𝑦 ∈ Ω , then 𝑥 − 𝑦 #≤ 𝑑1$ 𝑥, 𝑦 ≤ <𝑂 log 𝑠 ⋅ 𝑥 − 𝑦 #
• 𝑑'# 𝑥, 𝑦  only uses data-dependent edge weights!

What about x, y ∉ Ω?
ØIf 𝑥, 𝑦  far from Ω, then 𝑑1$ 𝑥, 𝑦  only uses data-independent weights

Ø 𝑂(log! 𝑠) approximation

ØSince Ω was randomly sampled, most points are “close” to Ω!

Hope: if 𝑥 ∉ Ω but is close to some 𝑧 ∈ Ω, can *extend* the DD-guarantees to 𝑥!

z

x

y



Extensions to Chamfer Neighborhood
Want to prove:

 “If 𝐴, 𝐵 ∈ 𝐸𝑀𝐷D(ℝ", ℓ#) are close to 𝛺, then  𝐸𝑀𝐷1%(𝐴, 𝐵) is a <𝑂(log 𝑠) approx. of 
𝐸𝑀𝐷ℝ&(𝐴, 𝐵)”

What does it mean for 𝐴 ⊂ ℝ" to be close to Ω ⊂ ℝ"?



Extensions to Chamfer Neighborhood
Want to prove:

 “If 𝐴, 𝐵 ∈ 𝐸𝑀𝐷D(ℝ", ℓ#) are close to 𝛺, then  𝐸𝑀𝐷1%(𝐴, 𝐵) is a <𝑂(log 𝑠) approx. of 
𝐸𝑀𝐷ℝ&(𝐴, 𝐵)”

What does it mean for 𝐴 ⊂ ℝ" to be close to Ω ⊂ ℝ"?

Chamfer Distance:

Chamfer 𝐴, Ω = m
F∈H

min
:∈<

𝑎 − 𝑥 #

“Cost of moving each point in 𝐴 to nearest point in 𝛺”



Extensions to Chamfer Neighborhood
Chamfer Extension Lemma: Let 𝐴, 𝐵 ∈ 𝐸𝑀𝐷D ℝ", ℓ#  then:

𝔼1$ 𝐸𝑀𝐷1% 𝐴, 𝐵 ≤ <𝑂 log 𝑠 ⋅ EMDℝ& 𝐴, 𝐵 ⋅ log
Chamferℝ& 𝐴, Ω
EMDℝ& 𝐴, 𝐵

“Extra” approximation factor is log-ratio:
•   (How far is 𝐴 from Ω) / (How far is 𝐴 from 𝐵)
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If ratio = 𝑂(poly log 𝑠), get a ;𝑂(log 𝑠)-approximation.



Extensions to Chamfer Neighborhood
Chamfer Extension Lemma: Let 𝐴, 𝐵 ∈ 𝐸𝑀𝐷D ℝ", ℓ#  then:

𝔼1$ 𝐸𝑀𝐷1% 𝐴, 𝐵 ≤ <𝑂 log 𝑠 ⋅ EMDℝ& 𝐴, 𝐵 ⋅ log
Chamferℝ& 𝐴, Ω
EMDℝ& 𝐴, 𝐵

“Extra” approximation factor is log-ratio:
•   (How far is 𝐴 from Ω) / (How far is 𝐴 from 𝐵)

If ratio = 𝑂(poly log 𝑠), get a ;𝑂(log 𝑠)-approximation.

Proof Steps: Three kinds of edges in 𝑇&
• (1) Before 𝑎, 𝑏 should meet – small distances
• (2) After 𝑎, 𝑏, 𝜔 all meet – DD edge weights à ;𝑂(log 𝑠) approx.
• Between (1),(2) – Each edge overpays?	𝑂 log 𝑠

• # such edges bounded by ratio ba 𝜔



Extensions to Chamfer Neighborhood
Chamfer Extension Lemma: Let 𝐴, 𝐵 ∈ 𝐸𝑀𝐷D ℝ", ℓ#  then:

𝔼1$ 𝐸𝑀𝐷1% 𝐴, 𝐵 ≤ <𝑂 log 𝑠 ⋅ EMDℝ& 𝐴, 𝐵 ⋅ log
Chamferℝ& 𝐴, Ω
EMDℝ& 𝐴, 𝐵

Case 1:

𝐴 is O(log?@ 𝑠) far from Ω,
then [AIK ’08] logA 𝑠	approx

 is good enough.

Case 2:
Otherwise, Chamfer extension 

   gives extra log log 𝑠         
distortion, so new embedding

handles it.



Summary:

𝑂(log! 𝑠)-approx
Tree-Embedding

[AIK’08] 

O𝑂(log |D|)-
approx

Data-Dependent
Tree-Embedding

[CLJW’22] 
Maps dataset

 D ⊂ EMD$(ℝ% , ℓ") to a tree

O𝑂(log 𝑠)-approx 
DD TE for Ω

[JWZ’24] Sample Ω ⊂ D
Ω = poly(𝑠)

Neighborhood
Extension
 Lemma

O𝑂(log 𝑠)-approx. 
DD TE for 𝑂(log"& 𝑠)
N𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝐡𝐨𝐨𝐝(Ω) 

[JWZ’24] 

D → 𝑇 Ω → 𝑇 ℝ" → 𝑇

Split far points not in 
𝑂(log"& 𝑠)

N𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝐡𝐨𝐨𝐝(𝐃') 

8𝑂(log 𝑠)-approx. 
DD LSH

For all points in 𝐷Gluing



Open Problems

1. Can we get a 𝑂 1 -approx. for EMD ANN in sublinear 𝑂(𝑛@) time?
• We rule out a 𝑂 1 -approx. for any LSH where close points collide with Ω(1) 

probability
• Nearly all ANN approaches satisfy this

2. 𝑂(1)-approximate sketching algorithm?
• Best currently is 𝑂(log& 𝑠)



Complexity of Sublinear EMD

Sketching / 
Communication 
Complexity

Streaming Nearest 
Neighbor Search

Approximation 
Upper Bound 𝑂(log! 𝑠)

𝑂 log! 𝑠  - 1 pass

8𝑂(log 𝑠) -2 pass
8𝑂(log 𝑠) 

Lower Bound Ω(1)** Ω(1)** ---



Thank You!


