Data-Dependent LSH for the Earth Mover's Distance

Rajesh Jayaram Google Research NYC

Erik Waingarten Penn

Tian Zhang Penn

Focus of This Talk

- EMD and Probabilistic Tree Embeddings
 - Will not define LSH in this talk
- "Data-Dependent" Probabilistic Trees [Chen-J-Levi-Waingarten STOC '22]
 - Suited for one EMD comparison.

- (New) Extension Lemma: controlling distortion over entire space.
 - Suited for *many* comparisons (NNS)

Earth Mover's Distance

Metric space: (\mathbb{R}^d, ℓ_1) Multisets: $A = \{a_1, \dots, a_s\}, B = \{b_1, \dots, b_s\} \subset \mathbb{R}^d$

$$\operatorname{EMD}(A, B) = \min_{\substack{\pi : \ [s] \to [s] \\ \text{bijection}}} \sum_{i=1}^{s} \|a_i - b_{\pi(i)}\|_1$$

et parfact hipartita matching (/w triangle inequality)

• Min cost perfect bipartite matching (/w triangle inequality)

Approximate Nearest Neighbor Search (ANN)

Fix a Metric Space X, approximation $c \ge 1$

- **Preprocess**: a dataset $D \subset X$ of n points.
- Query: Given $q \in X$, output any $p \in D$ such that

$$d_X(q,p) \le c \cdot \min_{y \in D} d_X(q,y)$$

ANN for EMD

Reminder: A "point" in EMD is a size-s subset $A \subset \mathbb{R}^d$

ANN for EMD

Reminder: A "point" in EMD is a size-s subset $A \subset \mathbb{R}^d$

Parameterization

 $\mathrm{EMD}_{\mathrm{S}}(\mathbb{R}^{d}, \ell_{1}) \coloneqq \mathrm{EMD}$ over size *s* subsets of $(\mathbb{R}^{d}, \ell_{1})$

Two Key Parameters

- $n \coloneqq \text{size of dataset}$
- $s \coloneqq$ subset size

From now on:

• WLOG: Δ , d = poly(s), (Δ := Aspect Ratio)

Think of $n \gg s$, since n is the size of the dataset, s is description size of single point

Ideal Trade-offs: Case of ℓ_1

Theorem (Indyk-Motwani STOC'98): For any $\epsilon > 0$, there is an ANN data structure for *n* points in $(\mathbb{R}^d, \|\cdot\|_1)$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon}\right)$
- Space & pre-processing time: $O(d) \cdot n^{1+\epsilon}$
- Query time: $O(d) \cdot n^{\epsilon}$

Ideal Trade-offs: Case of ℓ_1

Theorem (Indyk-Motwani STOC'98): For any $\epsilon > 0$, there is an ANN data structure for *n* points in $(\mathbb{R}^d, \|\cdot\|_1)$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon}\right)$
- Space & pre-processing time: $O(d) \cdot n^{1+\epsilon}$
- Query time: $O(d) \cdot n^{\epsilon}$

Gold standard trade-off

- Optimal for ℓ_1
 - (Andoni, Laarhoven, Razenshteyn and Waingarten SODA'17)

But EMD more complex than $\ell_1 \dots$

EMD ANN: Prior Work + Main Result

Theorem (Indyk STOC'04): For any $\epsilon > 0$, there is an ANN data structure for $s \text{ EMD}_s(\mathbb{R}^d, \ell_1)$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon} \cdot d \log s\right)$
- Space & pre-processing time: $O(d \) \cdot n^{1+\epsilon}$
- Query time: $\mathit{O}(d) \cdot n^{\epsilon}$

EMD ANN: Prior Work + Main Result

Theorem (Indyk STOC'04): For any $\epsilon > 0$, there is an ANN data structure for $s \text{ EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon} \cdot d \log s\right)$
- Space & pre-processing time: $O(d \) \cdot n^{1+\epsilon}$
- Query time: $\mathit{O}(d) \cdot n^{\epsilon}$

Theorem (Andoni-Indyk-Krauthgamer SODA'08):

• There is a data structure with approximation $O\left(\frac{1}{\epsilon} \cdot \log^2 s\right)$

EMD ANN: Prior Work + Main Result

Theorem (Indyk STOC'04): For any $\epsilon > 0$, there is an ANN data structure for s $\text{EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon} \cdot d \log s\right)$
- Space & pre-processing time: $O(d) \cdot n^{1+\epsilon}$
- Query time: $O(d) \cdot n^{\epsilon}$

Theorem (Andoni-Indyk-Krauthgamer SODA'08):

There is a data structure with approximation $O\left(\frac{1}{\epsilon} \cdot \log^2 s\right)$ •

Theorem (J-Waingarten-Zhang STOC'24):

There is a data structure with approximation $\tilde{O}\left(\frac{1}{c} \cdot \log s\right)$. •

EMD is a complex metric

EMD = min-cost geometric bipartite matching

- "Hungarian Algorithm": $O(n^3)$ time
 - Kuhn-Munkres, Edmonds-Karp 1950s, Jacobi 1850s.
- Fast min cost flow solvers: $O(n^{2+o(1)})$ time
 - [Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva FOCS '22] :

Greedy is bad (even in the line) --- $n^{.58496}$ approx [Reingold-Tarjan '81]

FIG. 1. Examples in which the greedy heuristic produces matchings (shown in solid lines) costing $\frac{4}{3}n^{\log^2} - 1$ times as much as the minimal matching (shown in dotted lines) for $n = 2^t$. Comparable examples are easy to construct for N even but not a power of 2.

- Approach of all prior work: embed $\text{EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ into a simpler metric.
- EMD over tree metrics (EMD_s (T, d_T)) is simpler!
 - Greedy is Optimal!

- Approach of all prior work: embed $\text{EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ into a simpler metric.
- EMD over tree metrics (EMD_s (T, d_T)) is simpler!
 - Greedy is Optimal!

EMD is not a simple metric.

- Approach of all prior work: embed $\text{EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!
 - Greedy is Optimal!

2

EMD is not a simple metric.

- Approach of all prior work: embed $\text{EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!
 - Greedy is Optimal!

2

- Approach of all prior work: embed $\text{EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!
 - Greedy is Optimal!

- Approach of all prior work: embed $\text{EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ into a simpler metric.
- EMD over tree metrics (EMD_s(T, d_T)) is simpler!

- Approach of all prior work: embed $\text{EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ into a simpler metric.
- EMD over tree metrics (EMD_s (T, d_T)) is simpler!

EMD is not a simple metric.

- Approach of all prior work: embed $\text{EMD}_{s}(\mathbb{R}^{d}, \ell_{1})$ into a simpler metric.
- EMD over tree metrics (EMD_s(T, d_T)) is simpler!
 - Greedy is Optimal!

Isometric embedding into ℓ_1 .

$$f\colon \mathsf{EMD}_{\mathsf{s}}(T,d_T) \to \left(\mathbb{R}^k, \ell_1\right)$$

such that

$$EMD(x, y) = ||f(x) - f(y)||_1$$

Goal: Embed into a tree!

The Plan

Step 1 - Probabilistic Tree: $(\mathbb{R}^d, \ell_1) \longmapsto (\mathbf{T}, d_{\mathbf{T}})$

Step 2 - Reduce to $\ell_1: \operatorname{EMD}_s(\mathbb{R}^d, \ell_1) \xrightarrow{?} \operatorname{EMD}_s(\mathbf{T}, d_{\mathbf{T}}) \xrightarrow{(isometric)} \ell_1$

Small note:

- * Computationally efficient (and succinct).
- * Once in ℓ_1 , can use ANN for ℓ_1

Theorem (Indyk '04): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying

- Non-contraction: $||a b||_1 \le d_{\mathbf{T}}(a, b)$
- Bounded expansion: $\mathbb{E}_{\mathbf{T}}[d_{\mathbf{T}}(a,b)] \leq O(d\log s) \cdot \|a-b\|_1$

Theorem (Indyk '04): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying

- Non-contraction: $||a b||_1 \le d_{\mathbf{T}}(a, b)$
- Bounded expansion: $\mathbb{E}\left[d_{\mathbf{T}}(a,b)\right] \leq O(d\log s) \cdot \|a-b\|_1$

Theorem (AIK '08): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying for any subset $\Omega \subset \mathbb{R}^d$ of 2s points:

- Non-contraction: $||a b||_1 \le d_{\mathbf{T}}(a, b)$ w.h.p $\forall a, b \in \Omega$
- Bounded expansion: $\mathbb{E}_{\mathbf{T}}[d_{\mathbf{T}}(a,b)] \leq O(\log^2 s) \cdot ||a-b||_1$

Theorem (Indyk '04): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying

- Non-contraction: $||a b||_1 \le d_{\mathbf{T}}(a, b)$
- Bounded expansion: $\mathbb{E}\left[d_{\mathbf{T}}(a,b)\right] \leq O(d\log s) \cdot \|a-b\|_1$

Theorem (AIK '08): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying for any subset $\Omega \subset \mathbb{R}^d$ of 2s points:

- Non-contraction: $\|a b\|_1 \leq d_{\mathbf{T}}(a, b)$ w.h.p $\forall a, b \in \Omega$
- Bounded expansion: $\mathbb{E}_{\mathbf{T}}\left[d_{\mathbf{T}}(a,b)\right] \leq O(\log^2 s) \cdot \|a-b\|_1$

Theorem (CJLW '22): For any subset $\Omega \subset \mathbb{R}^d$, there is a (succinct and efficient) embedding $(\Omega, \ell_1) \mapsto (\mathbf{T}, d_{\mathbf{T}})$ satisfying:

- Non-contraction: $||a b||_1 \le d_{\mathbf{T}}(a, b)$ w.h.p $\forall a, b \in \Omega$
- Bounded expansion: $\mathbb{E}_{\mathbf{T}} \left[d_{\mathbf{T}}(a, b) \right] \leq \tilde{O}(\log |\Omega|) \cdot \|a b\|_1$ for all $a, b \in \Omega$

Quadtree Algorithm

Embedding \mathbb{R}^d into a tree

- 1. Recursively subdivide \mathbb{R}^d , creating tree
- 2. Vertices of tree correspond to hypercubes in R^d
- 3. Map point p to the leaf containing it

Quadtree Algorithm

Embedding \mathbb{R}^d into a tree

- 1. Recursively subdivide \mathbb{R}^d , creating tree
- 2. Vertices of tree correspond to hypercubes in R^d
- 3. Map point p to the leaf containing it

Set edge weights so tree distances approximate original.

The only change: edge weights

➤ Impose randomly shifted grid at log dΔ-scales
➤ At depth $i \ge 0$, hyper-grid has side length $\Delta/2^i$

 $\succ T \coloneqq$ recursion tree

≻ For $\Omega \subset \mathbb{R}^d$, let $\Omega_v \subset \Omega$ be subset going through $v \in T$

The only change: edge weights

➤Impose randomly shifted grid at log dΔ-scales
➤At depth $i \ge 0$, hyper-grid has side length $\Delta/2^i$

 $\succ T \coloneqq$ recursion tree

≻ For $\Omega \subset \mathbb{R}^d$, let $\Omega_v \subset \Omega$ be subset going through $v \in T$

Data-dependent weights give improved approximation!

Using CJLW for ANN?

- ➤ CLJW'22 Pros:
 - \succ Better distortion when $|\Omega| = O(\text{poly } s)$
 - ➤ Still concise and efficient
- ≻ Cons:
 - > Only defined on Ω (what about query)?
 - ≻Cannot define $\Omega :=$ all n sets of size s
 - \succ Otherwise log *ns* distortion!

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

• Instead, use random sample $\Omega \subset D$ of size poly(s).

SampleTree

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

• Instead, use random sample $\Omega \subset D$ of size poly(s).

SampleTree:

- 1. Sample Quadtree *T* partition
- 2. $\Omega \coloneqq random poly(s)$ points from *D*
- 3. Define hybrid weights:
- * If any $x \in \Omega$ goes through (u, v) use CJLW'22 weights:

$$w(u, v) = \mathbb{E}_{\substack{x \sim \Omega_u \\ y \sim \Omega_v}} [\|x - y\|_1]$$

 W_1

* Otherwise, use AIK'08 weights: $w(u, v) = \frac{\Delta \log s}{2^{i}}$

SampleTree

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

 W_1

• Instead, use random sample $\Omega \subset D$ of size poly(s).

SampleTree:

- 1. Sample Quadtree *T* partition
- 2. $\Omega \coloneqq random poly(s)$ points from *D*
- 3. Define hybrid weights:

* If any $x \in \Omega$ goes through (u, v) use CJLW'22 weights: $w(u, v) = \mathbb{E}_{\substack{x \sim \Omega_u \\ y \sim \Omega_v}} [\|x - y\|_1]$ * Otherwise, use AIK'08 weights: $w(u, v) = \frac{\Delta \log s}{2^i}$

SampleTree

SampleTree now valid mapping: $\mathbb{R}^d \to T_\Omega$

 W_1

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

• Instead, use random sample $\Omega \subset D$ of size poly(s).

SampleTree:

- 1. Sample Quadtree *T* partition
- 2. $\Omega \coloneqq random poly(s)$ points from *D*
- 3. Define hybrid weights:
- * If any $x \in \Omega$ goes through (u, v) use CJLW'22 weights:

$$w(u, v) = \mathbb{E}_{\substack{x \sim \Omega_u \\ y \sim \Omega_v}} [\|x - y\|_1]$$

* Otherwise, use AIK'08 weights: $w(u, v) = \frac{\Delta \log s}{2^{i}}$

Distortion Bounds

 $(T_{\Omega}, w_{\Omega}) \coloneqq$ SampleTree.

ightarrow If $x, y \in \Omega$, then $||x - y||_1 \le d_{T_\Omega}(x, y) \le \tilde{O}(\log s) \cdot ||x - y||_1$

• $d_{T_{\Omega}}(x, y)$ only uses data-dependent edge weights!

Distortion Bounds

 $(T_{\Omega}, w_{\Omega}) \coloneqq$ SampleTree.

 $\succ \text{If } x,y \in \Omega$, then $\|x-y\|_1 \le d_{T_\Omega}(x,y) \le \tilde{O}(\log s) \cdot \|x-y\|_1$

• $d_{T_{\Omega}}(x, y)$ only uses data-dependent edge weights!

What about x, $y \notin \Omega$?

> If x, y far from Ω , then $d_{T_{\Omega}}(x, y)$ only uses data-independent weights

 $\geq O(\log^2 s)$ approximation

Since Ω was randomly sampled, most points are "close" to Ω !

Distortion Bounds

 $(T_{\Omega}, w_{\Omega}) \coloneqq$ SampleTree.

 $\succ \text{If } x,y \in \Omega$, then $\|x-y\|_1 \leq d_{T_\Omega}(x,y) \leq \tilde{O}(\log s) \cdot \|x-y\|_1$

• $d_{T_{\Omega}}(x, y)$ only uses data-dependent edge weights!

What about x, $y \notin \Omega$?

- \succ If x, y far from Ω , then $d_{T_{\Omega}}(x, y)$ only uses data-independent weights
 - $\geq O(\log^2 s)$ approximation

Since Ω was randomly sampled, most points are "close" to Ω !

Hope: if $x \notin \Omega$ but is close to some $z \in \Omega$, can *extend* the DD-guarantees to x!

 \mathbf{V}

Want to prove:

"If $A, B \in EMD_s(\mathbb{R}^d, \ell_1)$ are close to Ω , then $EMD_{T_{\Omega}}(A, B)$ is a $\tilde{O}(\log s)$ approx. of $EMD_{\mathbb{R}^d}(A, B)$ "

What does it mean for $A \subset \mathbb{R}^d$ to be close to $\Omega \subset \mathbb{R}^d$?

Want to prove:

"If $A, B \in EMD_s(\mathbb{R}^d, \ell_1)$ are close to Ω , then $EMD_{T_\Omega}(A, B)$ is a $\tilde{O}(\log s)$ approx. of $EMD_{\mathbb{R}^d}(A, B)$ "

What does it mean for $A \subset \mathbb{R}^d$ to be close to $\Omega \subset \mathbb{R}^d$?

Chamfer Distance:

Chamfer(
$$A, \Omega$$
) = $\sum_{a \in A} \min_{x \in \Omega} ||a - x||_1$

"Cost of moving each point in A to nearest point in Ω "

Chamfer Extension Lemma: Let $A, B \in EMD_s(\mathbb{R}^d, \ell_1)$ then:

$$\mathbb{E}_{T_{\Omega}}\left[EMD_{T_{\Omega}}(A,B)\right] \leq \tilde{O}(\log s) \cdot EMD_{\mathbb{R}^{d}}(A,B) \cdot \log\left(\frac{Chamfer_{\mathbb{R}^{d}}(A,\Omega)}{EMD_{\mathbb{R}^{d}}(A,B)}\right)$$

"Extra" approximation factor is log-ratio:

• (How far is A from Ω) / (How far is A from B)

Chamfer Extension Lemma: Let $A, B \in EMD_s(\mathbb{R}^d, \ell_1)$ then:

$$\mathbb{E}_{T_{\Omega}}\left[EMD_{T_{\Omega}}(A,B)\right] \leq \tilde{O}(\log s) \cdot EMD_{\mathbb{R}^{d}}(A,B) \cdot \log\left(\frac{Chamfer_{\mathbb{R}^{d}}(A,\Omega)}{EMD_{\mathbb{R}^{d}}(A,B)}\right)$$

"Extra" approximation factor is log-ratio:

• (How far is A from Ω) / (How far is A from B)

If ratio = $O(\text{poly} \log s)$, get a $\tilde{O}(\log s)$ -approximation.

Chamfer Extension Lemma: Let $A, B \in EMD_s(\mathbb{R}^d, \ell_1)$ then:

$$\mathbb{E}_{T_{\Omega}}\left[EMD_{T_{\Omega}}(A,B)\right] \leq \tilde{O}(\log s) \cdot EMD_{\mathbb{R}^{d}}(A,B) \cdot \log\left(\frac{Chamfer_{\mathbb{R}^{d}}(A,\Omega)}{EMD_{\mathbb{R}^{d}}(A,B)}\right)$$

"Extra" approximation factor is log-ratio:

• (How far is A from Ω) / (How far is A from B)

If ratio = $O(\text{poly} \log s)$, get a $\tilde{O}(\log s)$ -approximation.

Proof Steps: Three kinds of edges in T_{Ω}

- (1) Before *a*, *b* should meet small distances
- (2) After a, b, ω all meet DD edge weights $\rightarrow \tilde{O}(\log s)$ approx.
- Between (1),(2) Each edge overpays $\tilde{O}(\log s)$
 - # such edges bounded by ratio

Chamfer Extension Lemma: Let $A, B \in EMD_s(\mathbb{R}^d, \ell_1)$ then:

$$\mathbb{E}_{T_{\Omega}}\left[EMD_{T_{\Omega}}(A,B)\right] \leq \tilde{O}(\log s) \cdot EMD_{\mathbb{R}^{d}}(A,B) \cdot \log\left(\frac{Chamfer_{\mathbb{R}^{d}}(A,\Omega)}{EMD_{\mathbb{R}^{d}}(A,B)}\right)$$

<u>Case 1:</u>

A is $O(\log^{10} s)$ far from Ω , then [AIK '08] $\log^2 s$ approx is good enough.

Case 2:

Otherwise, Chamfer extension gives extra log log s distortion, so new embedding handles it.

Maps dataset $D \subset EMD_s(\mathbb{R}^d, \ell_1)$ to a tree

Open Problems

- 1. Can we get a O(1)-approx. for EMD ANN in sublinear $O(n^{\epsilon})$ time?
 - We rule out a O(1)-approx. for any LSH where close points collide with $\Omega(1)$ probability
 - Nearly all ANN approaches satisfy this

- 2. O(1)-approximate sketching algorithm?
 - Best currently is $O(\log^2 s)$

Complexity of Sublinear EMD

	Sketching / Communication Complexity	Streaming	Nearest Neighbor Search
Approximation Upper Bound	$O(\log^2 s)$	$O(\log^2 s)$ - 1 pass $\tilde{O}(\log s)$ -2 pass	$\tilde{O}(\log s)$
Lower Bound	$\Omega(1)^{**}$	$\Omega(1)^{**}$	

