Data-Dependent LSH for the Earth Mover’s
Distance

Rajesh Jayaram Erik Waingarten Tian Zhang
Google Research NYC Penn Penn

" s L S P ¥
/ w%f;ﬂ’ 4 "‘ﬁ
okl PR R O]
@lﬁt o 7 Ny ﬁ;’f “ D
. 2 & ; - o
7 — & i
R L Y

SR ¥ ;
R T ol ~

Focus of This Talk

* EMD and Probabilistic Tree Embeddings
* Will not define LSH in this talk

* “Data-Dependent” Probabilistic Trees [Chen-J-Levi-Waingarten
STOC ’22]

* Suited for one EMD comparison.

* (New) Extension Lemma: controlling distortion over entire space.
 Suited for *many* comparisons (NNS)

Earth Mover’s Distance
Metric space: (R%, £;) - A\

Multisets: A = {a1,...,as},B = {b1,...,bs} C R?

EMD(A, B) min a; — b(;
(T [S]—>[S]ZH @l [

bijection *

e Min cost perfect bipartite matching (/w triangle inequality)

Approximate Nearest Neighbor Search (ANN)

Fix a Metric Space X, approximationc = 1
* Preprocess: a dataset D € X of n points.
* Query: Given g € X, output any p € D such that

dx(q,p) < c-mindy(q,y)
yeD

ANN tfor EMD

Reminder: A “point” in EMD is a size-s subset A ¢ R%

A Dataset

}== B = D={AB,C}

ANN tfor EMD

Reminder: A “point” in EMD is a size-s subset A ¢ R%

- A Dataset

{C}==B — D ={A,B,C}
’ o Ak
*~ 4

* :=Query set

Parameterization

EMD.(R%, ¢,) :== EMD over size s subsets of (R%, £;)

Two Key Parameters

e n = size of dataset
e 5 := subset size

From now on:
* WLOG: A,d = poly(s), (A:= Aspect Ratio)

Think of n > s, since n is the size of the dataset, s is description size of single point

|deal Trade-offs: Case of €4

Theorem (Indyk-Motwani STOC’98): For any € > 0, there is an ANN data
structure for n points in (R, ||-||;) which obtains:

* Approximation: O (1)

€
* Space & pre-processing time: 0(d) - n**€
e Query time: 0(d) - n®

|[deal Trade-offs: Case of €4

Theorem (Indyk-Motwani STOC’98): For any € > 0, there is an ANN data
structure for n points in (R, ||-||;) which obtains:

* Approximation: O (1)

€
* Space & pre-processing time: 0(d) - n**€
e Query time: 0(d) - n®

Gold standard trade-off
e Optimal for ¥4
* (Andoni, Laarhoven, Razenshteyn and Waingarten SODA’17)

But EMD more complex than £ ...

EMD ANN: Prior Work + Main Result

Theorem (Indyk STOC’04): For any € > 0, there is an ANN data structure for s
EMDg(R?, ¢,) which obtains:

* Approximation: O e - d log S)

* Space & pre-processing time: 0(d) - n**€
e Query time: 0(d) - n€

EMD ANN: Prior Work + Main Result

Theorem (Indyk STOC’04): For any € > 0, there is an ANN data structure for s
EMDg(R?, ¢,) which obtains:

* Approximation: O e - d log S)

* Space & pre-processing time: 0(d) - n**€
e Query time: 0(d) - n€

Theorem (Andoni-Indyk-Krauthgamer SODA’08):

: : L. 1
* There is a data structure with approximation O (Z . log? S)

EMD ANN: Prior Work + Main Result

Theorem (Indyk STOC’04): For any € > 0, there is an ANN data structure for s
EMDg(R?, ¢,) which obtains:

* Approximation: O e - d log S)

* Space & pre-processing time: 0(d) - n**€
e Query time: 0(d) - n€

Theorem (Andoni-Indyk-Krauthgamer SODA’08):

: : L. 1
* There is a data structure with approximation O (Z . log? S)

Theorem (J-Waingarten-Zhang STOC’24):

:] .. o= (1
* There is a data structure with approximation O (E - log S) -

EMD is a complex metric

EMD = min-cost geometric bipartite matching
e “Hungarian Algorithm”: 0(n3) time
 Kuhn-Munkres, Edmonds-Karp 1950s, Jacobi 1850s.

e Fast min cost flow solvers: O(n?*°M) time
* [Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva FOCS '22] :

.58496

Greedy is bad (even in the line) ---n approx [Reingold-Tarjan '81]

@ 0'"0—0\0].}.

B B IRt M B B 9 Eas 8 Al

, ' s) . : T ; . 4 gt
F1G. 1. Examples in which the greedy heuristic produces matchings (shown in solid lines) costing 3n'** —1
times as much as the minimal matching (shown in dotted lines) for n = 2°. Comparable examples are easy to
construct for N even but not a power of 2.

Probabilistic Tree Embeddings

EMD is not a simple metric.
* Approach of all prior work: embed EMDS(IRd,fl) into a simpler metric.

* EMD over tree metrics (EMD¢(T, dy)) is simpler!
* Greedy is Optimall

o o

Probabilistic Tree Embeddings

EMD is not a simple metric.
* Approach of all prior work: embed EMDS(IRd,fl) into a simpler metric.

* EMD over tree metrics (EMD¢(T, dy)) is simpler!
* Greedy is Optimall

Probabilistic Tree Embeddings

EMD is not a simple metric.
* Approach of all prior work: embed EMDS(IRd,fl) into a simpler metric.

* EMD over tree metrics (EMD¢(T, dy)) is simpler!
* Greedy is Optimall

Probabilistic Tree Embeddings

EMD is not a simple metric.
* Approach of all prior work: embed EMDS(IRd,fl) into a simpler metric.

* EMD over tree metrics (EMD¢(T, dy)) is simpler!
* Greedy is Optimall

Probabilistic Tree Embeddings

EMD is not a simple metric.
* Approach of all prior work: embed EMDS(IRd,fl) into a simpler metric.

* EMD over tree metrics (EMD¢(T, dy)) is simpler!
* Greedy is Optimall

Probabilistic Tree Embeddings

EMD is not a simple metric.
* Approach of all prior work: embed EMDS(IRd,fl) into a simpler metric.

* EMD over tree metrics (EMD¢(T, dy)) is simpler!
* Greedy is Optimall

/N

Probabilistic Tree Embeddings

EMD is not a simple metric.
* Approach of all prior work: embed EMDS(IRd,fl) into a simpler metric.

* EMD over tree metrics (EMD¢(T, dy)) is simpler!
* Greedy is Optimall

13l %

Probabilistic Tree Embeddings

EMD is not a simple metric.
* Approach of all prior work: embed EMDS([Rd, fl) into a simpler metric.

* EMD over tree metrics (EMD¢(T, dy)) is simpler!
* Greedy is Optimall

Isometric embedding into #;.

f+EMD4(T, d7) — (RK, ¢,)
such that

EMD(x,y) = llf (x) = f(»)ll1

Goal: Embed into a tree!

The Plan

Step 1 - Probabilistic Tree: (Rd, gl) — (T7 dT)

(isometric)

Step 2 - Reduce to £1: EMD,(R?, £1) = EMD, (T, dp) s £,

Small note:
* Computationally efficient (and succinct).
* Once in £1, can use ANN for #4

Probabilistic Tree Embeddings

Theorem (Indyk '04): There is an embedding (]Rd, ¢1) — (T, dr) satisfying
 Non-contraction: ||a — b||; < dr(a,b)
* Bounded expansion: I%[dT(a, b)] < O(dlogs) - ||la — b||1

Probabilistic Tree Embeddings

Theorem (Indyk '04): There is an embedding (Rd, ¢1) — (T, dr) satisfying
 Non-contraction: ||a — b||; < dr(a,b)
* Bounded expansion: I%[dT(a, b)] < O(dlogs) - ||la — b||1

Theorem (AIK’08): There is an embedding (Rd, 51) — (T, dT) satisfying
for any subset {2 C R? of 25 points:
e Non-contraction: ||a — b||1 < dt(a,b) w.h.p Va,b € Q

» Bounded expansion: E [dr(a,b)] < O(log®s) - ||a — b||1

Probabilistic Tree Embeddings

Theorem (Indyk '04): There is an embedding (Rd,fl) — (T, dr) satisfying
 Non-contraction: ||a — b||; < dr(a,b)
* Bounded expansion: ITE[dT(a, b)] < O(dlogs) - ||la — b||1

Theorem (AIK’08): There is an embedding (Rd, 51) — (T, dT) satisfying
for any subset {2 C R? of 25 points:
e Non-contraction: ||a — b||1 < dt(a,b) w.h.p Va,b € Q

» Bounded expansion: E [dr(a,b)] < O(log®s) - ||a — b||1

Theorem (CJLW ’22): For any subset {2 C R , there is a (succinct and efficient)
embedding (2, 41) — (T, dr) satisfying:

* Non-contraction: ||a — b||1 < dr(a,b) w.h.p Va,b €

» Bounded expansion: Er [dr(a,b)] < O(log|Q|) - ||a — b||; for all a,b € Q

Quadtree Algorithm

Embedding RY into a tree

1. Recursively subdivide R%, creating tree
2. Vertices of tree correspond to hypercubes in R%
3. Map point p to the leaf containing it

Quadtree Algorithm

Embedding RY into a tree

1. Recursively subdivide R%, creating tree

2. Vertices of tree correspond to hypercubes in R%
3. Map point p to the leaf containing it

d(a,b)

»Set edge weights so tree distances approximate original.

Root

Root

Root

Root

Lo

llllllllllllllillllllllllll-

The only change: edge weights

w(u, v)

>|mpose randomly shifted grid at log dA-scales

> At depth i = 0, hyper-grid has side length A/Zi @ O Q

>T = recursion tree
>For) c R%, let Q, c Q be subset going throughv € T

I’04: AIK '08: CILW "22:

w(u,v), Dlameter Alogs Ex-q,lllx — yll4]
" of grid cell i y~Q,

The only change: edge weights

w(u, v)

>|mpose randomly shifted grid at log dA-scales

> At depth i = 0, hyper-grid has side length A/Zi @ Q Q

>T = recursion tree
>For) c R%, let Q, c Q be subset going throughv € T

I’'04: AIK '08: CILW ’22:
w(u,v), Dlameter Alogs Ex-q,lllx — yll4]
of grid cell i y~Q,,
Approximation ((d logs) 0(log? s) O(log |9])

Data-dependent weights give improved approximation!

Using CJLW for ANN?

I’04: AIK ’08:
w(u,v): Diameter Alogs
P of parts i

> CLJW’22 Pros:
> Better distortion when |Q] = O(poly s)
> Still concise and efficient
> Cons:
> Only defined on () (what about query)?
>Cannot define () := all n sets of size s
> Qtherwise log ns distortion!

CILW "22:

Ex~a,[llx = yll1]
y~Qy

SampleTree

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

* Instead, use random sample 2 < D of size poly(s).

SampleTree

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

* Instead, use random sample) C D of size poly(s).

SampleTree:
1. Sample Quadtree T partition

2. Q :=random poly(s) points from D
3. Define ;

g
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.O
.

*1f any x € () goes through (u, v) use CJLW’22 weights: O O C)
w(u,v) = Ex~q, [llx — yll4]

Wy Wz
Y~y O O C) O
* Otherwise, use AIK'08 weights: w(u,v) = Al;gs (4
20® O0@ O OO

SampleTree

Cannot afford to use DD-Quadtree on all points in dataset for ANN.
* Instead, use random sample 2 < D of size poly(s).

SampleTree:
1. Sample Quadtree T partition

2. Q :=random poly(s) points from D
3. Define hybrid weights:

*1f any x € () goes through (u, v) use CJLW’22 weights:
o Ll = yll4]

g
.
.
.
0
.
.
.
.
.
.
.
.
.
.
0
.
.
.
.0
.

SampleTree SampleTree now valid mapping:
R - Tq
Cannot afford to use DD-Quadtree on all points in dataset for ANN.

* Instead, use random sample) € D of size poly(s).

SampleTree:
1. Sample Quadtree T partition

2. Q :=random poly(s) points from D
3. Define hybrid weights:

g
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.0
.

*1f any x € () goes through (u, v) use CJLW’22 weights:

w(w, v) = Ex~q, [llx = yll] o
Y~y é O
| | N :.::..
* Otherwise, use AIK'08 weights: w(u,v) = ;)igS é O

Distortion Bounds

(Tq,wq) = SampleTree.
»Ifx,y € Q, then |lx — y|l;< dr, (x,¥) < 0(ogs) - llx — yll;
* dr,(x,y) only uses data-dependent edge weights!

Distortion Bounds

(Tq,wq) = SampleTree.
»Ifx,y € Q, then |lx — y|l;< dr, (x,¥) < 0(ogs) - llx — yll;
* dr,(x,y) only uses data-dependent edge weights!

What about x,y € 7?

»>If x,y far from (), then dr_(x,y) only uses data-independent weights
> 0(log? s) approximation

»Since () was randomly sampled, most points are “close” to (}!

Distortion Bounds

(Tq,wq) = SampleTree.
»Ifx,y € Q, then |lx — y|l;< dr, (x,¥) < 0(ogs) - llx — yll;
* dr,(x,y) only uses data-dependent edge weights!

What about x,y € 7?

»>If x,y far from (), then dr_(x,y) only uses data-independent weights
> 0(log? s) approximation
»Since () was randomly sampled, most points are “close” to (}!

Hope: if x & () but is close to some z € (), can *extend* the DD-guarantees to x!

Extensions to Chamfer Neighborhood

Want to prove:
“If A,B € EMD,(R%, ¢,) are close to 0, then EMDr (A,B)isa O (log s) approx. of

EMD ga(A, B)”

What does it mean for A ¢ R? to be close to) c R%?

Extensions to Chamfer Neighborhood

Want to prove:
“If A,B € EMD,(R%, ¢,) are close to 0, then EMDr (A,B)isa O (log s) approx. of
EMD a(A,B)”
" @)
@)

What does it mean for A ¢ R? to be close to) c R%?

Chamfer Distance: />

Chamfer(4, Q) = z min||la — x||4
X€E()

] l .\2

“Cost of moving each point in A to nearest point in)”

Extensions to Chamfer Neighborhood

Chamfer Extension Lemma: Let A, B € EMDS(IRd, fl) then:

3 Chamferpa (4, Q)
< : '
Er,[EMDr, (4, B)| < O(logs) - EMDga(4, B) log(EMDRa(4, B))

“Extra” approximation factor is log-ratio:
(How faris A from Q) / (How far is A from B)

Extensions to Chamfer Neighborhood

Chamfer Extension Lemma: Let A, B € EMDS(IR{d, fl) then:

) Chamferga (4, Q
Er, [EMDr, (4, B)] < O(logs) - EMDga(4, B) - 1og(ge >>

EMDya (4, B)

“Extra” approximation factor is log-ratio:
* (Howfaris A from Q) / (How faris A from B)

If ratio = O (poly log s), get a O(log s)-approximation.

Extensions to Chamfer Neighborhood

Chamfer Extension Lemma: Let A, B € EMDS(IR{d, fl) then:

) Chamferga (4, Q
Er, [EMDr, (4, B)] < O(logs) - EMDga(4, B) - 1og(ge >>

EMDya (4, B)

“Extra” approximation factor is log-ratio:
* (Howfaris A from Q) / (How faris A from B)

If ratio = O (poly log s), get a O(log s)-approximation.

Proof Steps: Three kinds of edges in T
* (1) Before a, b should meet —small distances
 (2) After a, b, w all meet — DD edge weights = O(log s) approx.
« Between (1),(2) — Each edge overpays 0(log s)
* H#such edges bounded by ratio

Extensions to Chamfer Neighborhood

Chamfer Extension Lemma: Let A, B € EMDS(IR{d, fl) then:

) Chamferga (4, Q
Er, [EMDr, (4, B)] < O(logs) - EMDga(4, B) - 1og(e (>)

EMDya (4, B)

Case 1: Case 2:
%= Otherwise, Chamfer extension
Ais O(log!? s) far from Q, P gives extra loglog s

then [AIK ’08] log? s approx distortion, so new embedding
is good enough. handles it.

summary:

0(log? s)-approx Split far points not in 0 (log s)-approx.

Tree-Embedding 52 0(log'’s) DD LSH
[AIK'08] Neighborhood(D") For all points in D

G,
/(///')
§

D->T O=T RY > T

OSgrg)rl([)))l)- 0 (log s)-approx 0 (log s)-approx.

. 10
Data-Dependent || S e ‘ DNDe lTi lic:)rrﬁ (()133(9;)
Tree-Embedding Sample Q c D [JWZ24] Neighborhood 8

[CLJW’22] |Q| = poly(s) Extension [JWZ’24]
Lemma

Maps dataset
D c EMD4(RY, #,) to a tree

Open Problems

1. Can we get a O(1)-approx. for EMD ANN in sublinear O(n€) time?

* We rule out a 0O(1)-approx. for any LSH where close points collide with Q(1)
probability

* Nearly all ANN approaches satisfy this

2. 0(1)-approximate sketching algorithm?
* Best currently is O(log? s)

Complexity of Sublinear EMD

Sketching / Nearest
Communication Neighbor Search
Complexity

Approximation O0(log? s) - 1 pass

Upper Bound 0(log? s) O(logs)

O(logs) -2 pass

Lower Bound Q(1)** Q(1)** ---

. AN

—=A

Thank You!
[T

