Data-Dependent LSH for the Earth Mover's **Distance**

Rajesh Jayaram Google Research NYC

Erik Waingarten Penn

Tian Zhang Penn

Focus of This Talk

- EMD and Probabilistic Tree Embeddings
	- Will not define LSH in this talk
- "Data-Dependent" Probabilistic Trees [Chen-J-Levi-Waingarten STOC '22]
	- Suited for one EMD comparison.

- (New) Extension Lemma: controlling distortion over entire space.
	- Suited for *many* comparisons (NNS)

Earth Mover's Distance

Metric space: (\mathbb{R}^d, ℓ_1) Multisets: $A = \{a_1, \ldots, a_s\}, B = \{b_1, \ldots, b_s\} \subset \mathbb{R}^d$

$$
\text{EMD}(A, B) = \min_{\substack{\pi \colon [s] \to [s] \\ \text{bijection}}} \sum_{i=1}^{s} \|a_i - b_{\pi(i)}\|_1
$$

• Min cost perfect bipartite matching (/w triangle inequality)

Approximate Nearest Neighbor Search (ANN)

Fix a Metric Space X, approximation $c \geq 1$

- **Preprocess**: a dataset $D \subset X$ of n points.
- **Query:** Given $q \in X$, output any $p \in D$ such that

$$
d_X(q,p) \leq c \cdot \min_{y \in D} d_X(q,y)
$$

ANN for EMD

Reminder: A "point" in EMD is a size-s subset $A \subset \mathbb{R}^d$

ANN for EMD

Reminder: A "point" in EMD is a size-s subset $A \subset \mathbb{R}^d$

Parameterization

 $\text{EMD}_\text{s}(\mathbb{R}^d, \ell_1) \coloneqq \text{EMD}$ over size s subsets of (\mathbb{R}^d, ℓ_1)

Two Key Parameters

- $n \coloneqq$ size of dataset
- $s \coloneqq$ subset size

From now on:

• WLOG: Δ , $d = \text{poly}(s)$, (Δ := Aspect Ratio)

Think of $n \gg s$, since n is the size of the dataset, s is description size of single point

Ideal Trade-offs: Case of ℓ_1

Theorem (Indyk-Motwani STOC'98): For any $\epsilon > 0$, there is an ANN data structure for n points in $\left(\mathbb{R}^d,\left\|\cdot\right\|_1\right)$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon}\right)$ ϵ
- Space & pre-processing time: $O(d) \cdot n^{1+\epsilon}$
- Query time: $O(d) \cdot n^{\epsilon}$

Ideal Trade-offs: Case of ℓ_1

Theorem (Indyk-Motwani STOC'98): For any $\epsilon > 0$, there is an ANN data structure for n points in $\left(\mathbb{R}^d,\left\|\cdot\right\|_1\right)$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon}\right)$ ϵ
- Space & pre-processing time: $O(d) \cdot n^{1+\epsilon}$
- Query time: $O(d) \cdot n^{\epsilon}$

Gold standard trade-off

- Optimal for ℓ_1
	- (Andoni, Laarhoven, Razenshteyn and Waingarten SODA'17)

But EMD more complex than ℓ_1 ...

EMD ANN: Prior Work + Main Result

Theorem (Indyk STOC'04): For any $\epsilon > 0$, there is an ANN data structure for s $\text{EMD}_\text{s}(\mathbb{R}^d, \ell_1)$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon}\right)$ $\frac{1}{\epsilon} \cdot d \log s$
- Space & pre-processing time: $O(d) \cdot n^{1+\epsilon}$
- Query time: $O(d) \cdot n^{\epsilon}$

EMD ANN: Prior Work + Main Result

Theorem (Indyk STOC'04): For any $\epsilon > 0$, there is an ANN data structure for s $\text{EMD}_\text{s}(\mathbb{R}^d, \ell_1)$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon}\right)$ $\frac{1}{\epsilon} \cdot d \log s$
- Space & pre-processing time: $O(d) \cdot n^{1+\epsilon}$
- Query time: $O(d) \cdot n^{\epsilon}$

Theorem (Andoni-Indyk-Krauthgamer SODA'08):

• There is a data structure with approximation $O\left(\frac{1}{\epsilon}\cdot \log^2 s\right)$

EMD ANN: Prior Work + Main Result

Theorem (Indyk STOC'04): For any $\epsilon > 0$, there is an ANN data structure for s $\text{EMD}_\text{s}(\mathbb{R}^d, \ell_1)$ which obtains:

- Approximation: $O\left(\frac{1}{\epsilon}\right)$ $\frac{1}{\epsilon} \cdot d \log s$
- Space & pre-processing time: $O(d) \cdot n^{1+\epsilon}$
- Query time: $O(d) \cdot n^{\epsilon}$

Theorem (Andoni-Indyk-Krauthgamer SODA'08):

• There is a data structure with approximation $O\left(\frac{1}{\epsilon}\cdot \log^2 s\right)$

Theorem (J-Waingarten-Zhang STOC'24):

• There is a data structure with approximation \tilde{O} $\left(\frac{1}{\epsilon}\right)$ $\frac{1}{\epsilon} \cdot \log s$).

EMD is a complex metric

EMD = min-cost geometric bipartite matching

- "Hungarian Algorithm": $O(n^3)$ time
	- Kuhn-Munkres, Edmonds-Karp 1950s, Jacobi 1850s.
- Fast min cost flow solvers: $O(n^{2+o(1)})$ time
	- [Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva FOCS '22] :

Greedy is bad (even in the line) --- $n^{.58496}$ approx [Reingold-Tarjan '81]

FIG. 1. Examples in which the greedy heuristic produces matchings (shown in solid lines) costing $\frac{4}{3}n^{\lg 6} - 1$ times as much as the minimal matching (shown in dotted lines) for $n = 2^t$. Comparable examples are easy to construct for N even but not a power of 2.

- Approach of all prior work: embed $\mathrm{EMD}_{\mathrm{s}}\!\big(\mathbb{R}^d,\ell_1\big)$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!
	- Greedy is Optimal!

- Approach of all prior work: embed $\mathrm{EMD}_{\mathrm{s}}\!\big(\mathbb{R}^d,\ell_1\big)$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!
	- Greedy is Optimal!

EMD is not a simple metric.

- Approach of all prior work: embed $\mathrm{EMD}_{\mathrm{s}}\!\big(\mathbb{R}^d,\ell_1\big)$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!
	- Greedy is Optimal!

y

a

- Approach of all prior work: embed $\mathrm{EMD}_{\mathrm{s}}\!\big(\mathbb{R}^d,\ell_1\big)$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!
	- Greedy is Optimal!

- Approach of all prior work: embed $\mathrm{EMD}_{\mathrm{s}}\!\big(\mathbb{R}^d,\ell_1\big)$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!
	- Greedy is Optimal!

- Approach of all prior work: embed $\mathrm{EMD}_{\mathrm{s}}\!\big(\mathbb{R}^d,\ell_1\big)$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!

- Approach of all prior work: embed $\mathrm{EMD}_{\mathrm{s}}\!\big(\mathbb{R}^d,\ell_1\big)$ into a simpler metric.
- EMD over tree metrics $(EMD_s(T, d_T))$ is simpler!

EMD is not a simple metric.

- Approach of all prior work: embed $\mathrm{EMD}_{\mathrm{s}}\!\big(\mathbb{R}^d,\ell_1\big)$ into a simpler metric.
- EMD over tree metrics $(\text{EMD}_s(T, d_T))$ is simpler!
	- Greedy is Optimal!

Isometric embedding into ℓ_1 .

$$
f: \mathrm{EMD}_{\mathrm{s}}(T, d_T) \to \left(\mathbb{R}^k, \ell_1\right)
$$

such that

$$
EMD(x, y) = ||f(x) - f(y)||_1
$$

Goal: Embed into a tree!

The Plan

Step 1 - Probabilistic Tree: $(\mathbb{R}^d, \ell_1) \longmapsto (\mathbf{T}, d_{\mathbf{T}})$

Step 2 - Reduce to ℓ_1 : $?$ **FMD** $(\mathbf{T} d_{\mathbf{T}})^{(\text{isometric})}$

Small note:

- * Computationally efficient (and succinct).
- * Once in ℓ_1 , can use ANN for ℓ_1

Theorem (Indyk '04): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying

- Non-contraction: $||a-b||_1 \leq d_{\bf T}(a,b)$
- Bounded expansion: $\mathbb{E}\left[d_{\mathbf{T}}(a,b)\right] \leq O(d \log s) \cdot \|a-b\|_1$

Theorem (Indyk '04): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying

- Non-contraction: $||a-b||_1 \leq d_{\bf T}(a,b)$
- Bounded expansion: $\mathbb{E}\left[d_{\mathbf{T}}(a,b)\right] \leq O(d \log s) \cdot \|a-b\|_1$

Theorem (AIK '08): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying for any subset $\Omega \subset \mathbb{R}^d$ of 2s points:

- Non-contraction: $\|a-b\|_1 \leq d_{\bf T}(a,b)$ w.h.p $\forall a,b \in \Omega$
- Bounded expansion: $\mathbb{E}_{\mathbf{T}}[d_{\mathbf{T}}(a,b)] \leq O(\log^2 s) \cdot ||a-b||_1$

Theorem (Indyk '04): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying

- Non-contraction: $||a-b||_1 \leq d_{\bf T}(a,b)$
- Bounded expansion: $\mathbb{E}\left[d_{\mathbf{T}}(a,b)\right] \leq O(d \log s) \cdot \|a-b\|_1$

Theorem (AIK '08): There is an embedding $(\mathbb{R}^d, \ell_1) \to (\mathbf{T}, d_{\mathbf{T}})$ satisfying for any subset $\Omega \subset \mathbb{R}^d$ of 2s points:

- Non-contraction: $\|a-b\|_1 \leq d_{\bf T}(a,b)$ w.h.p $\forall a,b \in \Omega$
- Bounded expansion: $\mathbb{E}_{\mathbf{T}}[d_{\mathbf{T}}(a,b)] \leq O(\log^2 s) \cdot ||a-b||_1$

Theorem (CJLW '22): For any subset $\Omega \subset \mathbb{R}^d$, there is a (succinct and efficient) embedding $(\Omega, \ell_1) \longmapsto (\mathbf{T}, d_{\mathbf{T}})$ satisfying:

- Non-contraction: $\|a-b\|_1 \leq d_{\bf T}(a,b)$ w.h.p $\forall a,b \in \Omega$
- Bounded expansion: $\mathbb{E}_{\mathbf{T}}[d_{\mathbf{T}}(a,b)] \leq \tilde{O}(\log |\Omega|) \cdot ||a-b||_1$ for all $a,b \in \Omega$

Quadtree Algorithm

Embedding \mathbb{R}^d into a tree

- 1. Recursively subdivide \mathbb{R}^d , creating tree
- 2. Vertices of tree correspond to hypercubes in R^d
- 3. Map point p to the leaf containing it

Quadtree Algorithm

Embedding \mathbb{R}^d into a tree

- 1. Recursively subdivide \mathbb{R}^d , creating tree
- 2. Vertices of tree correspond to hypercubes in R^d
- 3. Map point p to the leaf containing it

 \triangleright Set edge weights so tree distances approximate original.

The only change: edge weights

 \triangleright Impose randomly shifted grid at $\log d\Delta$ -scales \triangleright At depth $i \geq 0$, hyper-grid has side length $\Delta/2^{i}$ $\triangleright T :=$ recursion tree

 \triangleright For $\Omega \subset \mathbb{R}^d$, let $\Omega_v \subset \Omega$ be subset going through $v \in T$

The only change: edge weights

 \triangleright Impose randomly shifted grid at $\log d\Delta$ -scales \triangleright At depth $i \geq 0$, hyper-grid has side length $\Delta/2^{i}$ $\triangleright T :=$ recursion tree

 \mathcal{U} <u>ุ</u>
ว $\overline{\mathcal{V}}$ $W(u, v)$

 $\boldsymbol{\mathcal{U}}$

 $y \rightarrow x$

 $\widetilde{\mathcal{V}}$

 \triangleright For $\Omega \subset \mathbb{R}^d$, let $\Omega_v \subset \Omega$ be subset going through $v \in T$

Data-dependent weights give improved approximation!

Using CJLW for ANN?

 \triangleright CLJW'22 Pros:

- \triangleright Better distortion when $|\Omega| = O(poly s)$
- \triangleright Still concise and efficient

 \triangleright Cons:

- \triangleright Only defined on Ω (what about query)?
- \triangleright Cannot define $\Omega := \text{all } n$ sets of size s
	- \triangleright Otherwise $\log ns$ distortion!

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

• Instead, use random sample $\Omega \subset D$ of size $\text{poly}(s)$.

SampleTree

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

• Instead, use random sample $\Omega \subset D$ of size $poly(s)$.

SampleTree:

- 1. Sample Quadtree T partition
- 2. Ω = random poly(s) points from D
- 3. Define hybrid weights:
- * If any $x \in \Omega$ goes through (u, v) use CJLW'22 weights:

$$
w(u, v) = \mathbb{E}_{x \sim \Omega_u} [\|x - y\|_1]
$$

$$
y \sim \Omega_v
$$

 w_1 w_2

 x_1 \vee x_2 \vee x_3

* Otherwise, use AIK'08 weights: $w(u, v) =$ Δ log s 2^{i}

SampleTree

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

 w_1 w_2

• Instead, use random sample $\Omega \subset D$ of size $\text{poly}(s)$.

SampleTree:

- Sample Quadtree T partition
- 2. Ω = random poly(s) points from D
- 3. Define hybrid weights:

 x_1 \vee x_2 \vee x_3 * If any $x \in \Omega$ goes through (u, v) use CJLW'22 weights: $w(u, v) = \mathbb{E}_{x \sim \Omega_u} [||x - y||_1]$ $y \sim \Omega_{\nu}$ * Otherwise, use AIK'08 weights: $w(u, v) =$ Δ log s 2^{i}

SampleTree

SampleTree now valid mapping: $\mathbb{R}^d \to T_{\Omega}$

 x_1 \vee x_2 \vee x_3

 w_1 w_2

Cannot afford to use DD-Quadtree on all points in dataset for ANN.

• Instead, use random sample $\Omega \subset D$ of size $\text{poly}(s)$.

SampleTree:

- Sample Quadtree T partition
- 2. Ω = random poly(s) points from D
- 3. Define hybrid weights:
- * If any $x \in \Omega$ goes through (u, v) use CJLW'22 weights:

$$
w(u, v) = \mathbb{E}_{x \sim \Omega_u} [\|x - y\|_1]
$$

$$
y \sim \Omega_v
$$

* Otherwise, use AIK'08 weights: $w(u, v) =$ Δ log s 2^{i}

Distortion Bounds

 $(T_{\Omega}, w_{\Omega}) \coloneqq$ SampleTree.

 \triangleright If $x, y \in \Omega$, then $||x - y||_1 \le d_{T_{\Omega}}(x, y) \le \tilde{O}(\log s) \cdot ||x - y||_1$

• $d_{T_0}(x, y)$ only uses data-dependent edge weights!

Distortion Bounds

 $(T_0, w_0) \coloneqq$ SampleTree.

 \forall If $x, y \in \Omega$, then $||x - y||_1 \le d_{T_{\Omega}}(x, y) \le \tilde{O}(\log s) \cdot ||x - y||_1$

• $d_{T_0}(x, y)$ only uses data-dependent edge weights!

What about x, $y \notin \Omega$?

 \triangleright If *x*, *y* far from Ω, then $d_{T_0}(x, y)$ only uses data-independent weights

 $\geq O(\log^2 s)$ approximation

 \triangleright Since Ω was randomly sampled, most points are "close" to Ω !

Distortion Bounds

 $(T_{\Omega}, w_{\Omega}) \coloneqq$ SampleTree.

 \forall If $x, y \in \Omega$, then $||x - y||_1 \le d_{T_{\Omega}}(x, y) \le \tilde{O}(\log s) \cdot ||x - y||_1$

• $d_{T_0}(x, y)$ only uses data-dependent edge weights!

What about x, $y \notin \Omega$?

- \triangleright If *x*, *y* far from Ω, then $d_{T_0}(x, y)$ only uses data-independent weights
	- $\geq O(\log^2 s)$ approximation
- \triangleright Since Ω was randomly sampled, most points are "close" to Ω !

Hope: if $x \notin \Omega$ but is close to some $z \in \Omega$, can *extend* the DD-guarantees to x!

 \mathbf{V}

Want to prove:

 $H A, B \in EMD_S(\mathbb{R}^d, \ell_1)$ are close to Ω , then $\mathit{EMD}_{T,\Omega}(A, B)$ is a $\tilde{O}(\log s)$ approx. of $EMD_{\mathbb{R}^d}(A, B)''$

What does it mean for $A \subset \mathbb{R}^d$ to be close to $\Omega \subset \mathbb{R}^d$?

Want to prove:

 $H A, B \in EMD_S(\mathbb{R}^d, \ell_1)$ are close to Ω , then $\mathit{EMD}_{T,\Omega}(A, B)$ is a $\tilde{O}(\log s)$ approx. of $EMD_{\mathbb{R}^d}(A, B)''$

What does it mean for $A \subset \mathbb{R}^d$ to be close to $\Omega \subset \mathbb{R}^d$?

Chamfer Distance:

$$
\text{Chamfer}(A, \Omega) = \sum_{a \in A} \min_{x \in \Omega} ||a - x||_1
$$

"Cost of moving each point in A to nearest point in Ω "

Chamfer Extension Lemma: Let $A, B \in EMD_S(\mathbb{R}^d, \ell_1)$ then:

$$
\mathbb{E}_{T_{\Omega}}\big[EMD_{T_{\Omega}}(A,B)\big] \le \tilde{O}(\log s) \cdot \text{EMD}_{\mathbb{R}^d}(A,B) \cdot \log \left(\frac{\text{Chamfer}_{\mathbb{R}^d}(A,\Omega)}{\text{EMD}_{\mathbb{R}^d}(A,B)}\right)
$$

"Extra" approximation factor is log-ratio:

• (How far is A from Ω) / (How far is A from B)

Chamfer Extension Lemma: Let $A, B \in EMD_S(\mathbb{R}^d, \ell_1)$ then:

$$
\mathbb{E}_{T_{\Omega}}\big[EMD_{T_{\Omega}}(A,B)\big] \le \tilde{O}(\log s) \cdot \text{EMD}_{\mathbb{R}^d}(A,B) \cdot \log \left(\frac{\text{Chamfer}_{\mathbb{R}^d}(A,\Omega)}{\text{EMD}_{\mathbb{R}^d}(A,B)} \right)
$$

"Extra" approximation factor is log-ratio:

• (How far is A from Ω) / (How far is A from B)

If ratio = $O(poly \log s)$, get a $\tilde{O}(\log s)$ -approximation.

Chamfer Extension Lemma: Let $A, B \in EMD_S(\mathbb{R}^d, \ell_1)$ then:

$$
\mathbb{E}_{T_{\Omega}}\big[EMD_{T_{\Omega}}(A,B)\big] \le \tilde{O}(\log s) \cdot \text{EMD}_{\mathbb{R}^d}(A,B) \cdot \log \left(\frac{\text{Chamfer}_{\mathbb{R}^d}(A,\Omega)}{\text{EMD}_{\mathbb{R}^d}(A,B)} \right)
$$

"Extra" approximation factor is log-ratio:

(How far is A from Ω) / (How far is A from B)

If ratio = $O(poly \log s)$, get a $\tilde{O}(\log s)$ -approximation.

Proof Steps: Three kinds of edges in T_{Ω}

- (1) Before a, b should meet small distances
- (2) After a, b, ω all meet DD edge weights $\rightarrow \tilde{O}(\log s)$ approx.
- Between (1), (2) Each edge overpays $\widetilde{O}(\log s)$
	- # such edges bounded by ratio

Chamfer Extension Lemma: Let $A, B \in EMD_S(\mathbb{R}^d, \ell_1)$ then:

$$
\mathbb{E}_{T_{\Omega}}\big[EMD_{T_{\Omega}}(A,B)\big] \le \tilde{O}(\log s) \cdot \text{EMD}_{\mathbb{R}^d}(A,B) \cdot \log \left(\frac{\text{Chamfer}_{\mathbb{R}^d}(A,\Omega)}{\text{EMD}_{\mathbb{R}^d}(A,B)} \right)
$$

Case 1:

A is $O(log^{10} s)$ far from Ω , then [AIK '08] $log²$ s approx is good enough.

Case 2:

Otherwise, Chamfer extension gives extra log log distortion, so new embedding handles it.

Maps dataset $D \subset \text{EMD}_s(\mathbb{R}^d, \ell_1)$ to a tree

Open Problems

- 1. Can we get a $O(1)$ -approx. for EMD ANN in sublinear $O(n^{\epsilon})$ time?
	- We rule out a $O(1)$ -approx. for any LSH where close points collide with $\Omega(1)$ probability
		- Nearly all ANN approaches satisfy this

- 2. $O(1)$ -approximate sketching algorithm?
	- Best currently is $O(\log^2 s)$

Complexity of Sublinear EMD

