Sublinear algorithms in large networks via core-periphery decomposition

Basu Joint works with:

Sabyasachi

Talya Eden

Dimitris Fotakis

Nadia

Kōshima

Joel Oren

Tim Rieder

Social & information

networks: properties

(approx) power-law degree distribution

vtxs of deg.
$$d \sim d^{-\gamma}$$

Interesting regime: $2 < \gamma < 3$

tps://**archive.nytimes.com**/krugman.blogs.nytimes.com/2012/02/08/the-power-law-of-twitter/

Paul Krugman | The Power (Law) of Twitter

The Power (Law) of Twitter

FEBRUARY 8, 2012 11:24 AM 🛛 🗮 150

I don't tweet, but I have a robot that does — all it does it tell followers that there's a new entry on this blog. For some marketing purposes I was told to check the number of followers, of which more in a moment; and this had me wasting some time on the math of Twitter followership.

What I knew is that many more or less hierarchical systems — the size of cities, the distribution of income in the upper tail — follow a power law, meaning that number 100 is to number 10 as number 10 is to number 1. Does Twitter?

Not exactly; the rank-followership gradient is relatively flat at the top (Lady Gaga and Justin Bieber have roughly the same number of followers), then steepens once you get past the mega-celebrities:

Paul Krugman @ NY Times, 2012

	Userna	ime	Tweets	weets Followers		
7		<u>elonmusk</u>	45,834	187,591,264	633	
	8	<u>BarackObama</u>	17,038	131,747,695	541,856	
		<u>Cristiano</u>	4,103	111,649,069	70	
		justinbieber	31,148	110,657,901	273,591	
	••	<u>rihanna</u>	10,744	107,966,010	969	
	(i.c.?)	<u>katyperry</u>	12,020	106,335,380	243	
	2	<u>narendramodi</u>	42,888	98,921,919	2,673	
	S	<u>taylorswift13</u>	855	95,242,147		
	T	<u>realDonaldTrump</u>	59,120	87,180,802	51	
		ArianaGrande	47,154	85,268,269	55,494	
	ladygag	<u>a</u>	9,965	83,203,487	112,207	
	NASA		71,976	80,963,365	175	
	YouTub	<u>e</u>	58,850	80,326,803	1,171	
	<u>KimKar</u>	dashian	36,740	75,157,368	129	
	EllenDe	Generes	24,641	74,163,372	25,002	
	X		15,331	67,769,279		

Most followed accounts, retrieved from socialblade.com, 2024

Social & information

networks: properties

 core-periphery structure [BE'99, LLDM '09, RPFM'14, ZMN'15, BK'19, ...]

(c) Network representation of the Internet in November 1997 at the autonomous system level [33]

Examples from [Polanco-Newman 2023]

(b) A network of associations among terrorists involved in the 2004 Madrid train bombing [32]

(d) A network of hyperlinks among a set of US political blogs [34]

Social & information

networks: properties

 "sublinear almost domination"
 [B., Eden, Oran, Fotakis '22]

Most nodes with out-deg ≥ 10 have neighbor in top 0.1% highest degrees.

Social & information networks: **properties**

- Power-law degree distribution
- Core-periphery structure
- "Sublinear almost domination" of core

<u>This talk</u>: core-periphery decomposition \Rightarrow sublinear algorithms

Part I: Sampling nodes

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Goal: generate many random nodes with as few queries as possible:

For $\epsilon > 0$ and $k \ll n$, return random $S \in {\binom{V}{k}}$ where $\Pr(S) \le \frac{1+\epsilon}{\binom{n}{k}}$ for all $S \in {\binom{V}{k}}$

|V| = n

Motivation

- Many algorithms (e.g., page rank) assume access to random nodes.
- Exploring many different "parts" of a large network with few queries.
- Queries supported in modern social network APIs.

• Uniform random walk + rejection sampling generates one node (k = 1) in $O(d_{avg}t_{mix} \cdot \log 1/\epsilon)$ queries [Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16]

average degree

mixing time of lazy random walk

• Uniform random walk + rejection sampling generates one node (k = 1) in $O(d_{avg}t_{mix} \cdot \log 1/\epsilon)$ queries [Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16]

average degree

mixing time of lazy random walk

- Uniform random walk + rejection sampling generates one node (k = 1) in $O(d_{avg}t_{mix} \cdot \log 1/\epsilon)$ queries [Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16]
- Essentially optimal: $\Omega(d_{avg}t_{mix})$ lower bound (for specific graph) [Chierichetti, Haddadan '18]

- Uniform random walk + rejection sampling generates one node (k = 1) in $O(d_{avg}t_{mix} \cdot \log 1/\epsilon)$ queries [Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16]
- Essentially optimal: $\Omega(d_{avg}t_{mix})$ lower bound (for specific graph) [Chierichetti, Haddadan '18]

Can we do better (amortized) as k grows? Mixing time can be several 100's or more [DR'09,MYK'10,QXZZ'20] Some theoretical models have $\Theta(\log^2 n)$ mixing time, e.g., Newman-Watts [Dur'10, AL'12, KRS'15]

Let's use core-periphery structure!

SampLayer: New node sampling algorithm

[B., Eden, Oren, Fotakis, WSDM'22]

- **Preprocessing**: Greedily search for "most influential" nodes in network, L_0 .
- Layering & Calibrating: implicitly partition network into three layers: L_0, L_1 , and the periphery $L_{\geq 2}$.
- Sampling by length 2 walks from L_0 to $L_{\geq 2}$ + local BFS in $L_{\geq 2}$ + rejection.

Phase 1: Greedy core construction

Starting from single node, construct L_0 by repeatedly adding node v with highest "perceived degree" and querying v.

Phase 2: Structural layering

 L_1 : all neighbors of L_0 $L_{\geq 2}$: all other nodes in network

Key observation: sublinear-sized L_0 can decompose $L_{\geq 2}$ into **tiny components**!

Phase 3: Sampling

- Sampling from $L_0 \cup L_1$ straightforward.
- Sampling from $L_{\geq 2}$ by length-2 walk + BFS + rejection

Empirical results: SampLayer vs. random walks

• Sina Weibo [ZYLX'14], social network with ≈ 60M nodes, 260M edges

Empirical results: SampLayer vs. random walks

Other social & information networks

Part II: Computing paths

The problem

Basic task: Given undirected G, build data structure to support shortest* path queries $SP(s, t)^{**}$

Motivation: centrality estimation, graph learning, ...

* allow for small additive error
** (s, t) pairs unknown during construction

Solution 1: BFS from s Running time: O(m)

Solution 1: BFS from s Running time: O(m)

Solution 1: BFS from s Running time: O(m)

<u>Solution 2</u>: **Bidirectional BFS from** *s* **and from** *t* Running time: **sublinear** under mild assumptions! [BN'19, BFFKMT'22, AGJL'23]

Solution 1: BFS from s Running time: O(m)

<u>Solution 2</u>: **Bidirectional BFS from** *s* **and from** *t* Running time: **sublinear** under mild assumptions! [BN'19, BFFKMT'22, AGJL'23]

LB: $n^{\Omega(1)}$ time per query on random models **without preprocessing** [Alon, Grønlund, Jørgensen, Larsen '23] + [Basu, Kōshima, Eden, B., Seshadhri '24] In practice, doesn't scale well with # queries

Case II: "^{OO}" queries

Landmark-based solutions: pre-compute distances^{*} from landmarks \mathcal{L} to accelerate real-time queries via 2-hop labeling

[Akiba, Iwata, Yoshida '13], [Zhang, Yu, Goel '19], [Li, Qiao, Qin, Zhang, Chang, Lin '20], [Zhang, Li, Yuan, Qin, Zhang, Chang' 22], [Wang, Wang, Koehler, Lin '22], ...

*paths can be reconstructed with extra effort

Example from PLL paper [Akiba, Iwata, Yoshida '13]

Case II: "^{OO}" queries

Landmark-based solutions: pre-compute distances* from landmarks \mathcal{L} to accelerate real-time queries via 2-hop labeling

[Akiba, Iwata, Yoshida '13], [Zhang, Yu, Goel '19], [Li, Qiao, Qin, Zhang, Chang, Lin '20], [Zhang, Li, Yuan, Qin, Zhang, Chang' 22], [Wang, Wang, Koehler, Lin '22], ...

*paths can be reconstructed with extra effort

Very fast query time (< 10^{-3} s for large graphs)

Costly preprocessing: space complexity up to $O(n^2)$, difficult to scale in practice

Open: Good query time **and** scalable preprocessing?

Case II: "∽" queries

Our algorithm: WormHole [Basu, Kōshima, Eden, B., Seshadhri '24]

• Preprocessing: construct

with greedy L_0

- **Per query:** run BiBFS from s and t until BFS trees reach L_0 or collide
 - If reached L_0 , find shortest path inside L_0

Some empirical results

	Network		E
graphs	epinions	$7.6 \cdot 10^4$	$5.1 \cdot 10^5$
0	slashdot	$7.9 \cdot 10^4$	$5.2 \cdot 10^{5}$
	dblp	$3.2 \cdot 10^5$	$1.0 \cdot 10^{6}$
	skitter	$1.7 \cdot 10^{6}$	$1.1 \cdot 10^{7}$
	large-dblp	$1.8 \cdot 10^{6}$	$2.9 \cdot 10^{7}$
	soc-pokec	$1.6 \cdot 10^{6}$	$3.1 \cdot 10^{7}$
	soc-live	$4.8 \cdot 10^{6}$	$6.8 \cdot 10^7$
	soc-orkut	$3.1 \cdot 10^{6}$	$1.2 \cdot 10^8$
	wikipedia	$1.4 \cdot 10^{7}$	$4.4 \cdot 10^8$
	soc-twitter	$4.2 \cdot 10^{7}$	$1.5 \cdot 10^{9}$

additive error (stretch)

	BiBFS	WormHole _E				WormHole _H					
Network	MIT	MIT	SU/I	+0(%)	≤+1 (%)	≤+2 (%)	MIT	SU/I	+0(%)	≤+1 (%)	\leq +2 (%)
epinions	144	41	4.5	98.06	99.99	100.00	20	24	66.97	99.54	100.00
slashdot	99	46	2.8	73.43	95.37	99.28	24	14	63.09	98.78	99.98
dblp	247	110	2.4	97.02	99.96	100.00	48	11	44.72	82.42	96.53
skitter	3004	1439	2.3	94.71	99.89	100.00	660	24	58.99	96.78	99.98
large-dblp	3041	1447	2.3	85.37	99.10	99.95	417	21	47.61	89.74	99.04
pokec	2142	1317	1.8	51.37	92.15	99.63	506	11	14.52	59.51	90.71
livejournal	8565	4318	2.1	71.98	97.95	99.86	1054	29	28.86	77.93	97.83
orkut	14k	3213	4.4	58.50	94.56	99.64	1030	35	20.66	68.11	93.93
wikipedia	35k	17k	2.4	94.94	99.92	100.00	3394	36	44.65	98.74	100.00
soc-twitter	204k	81k	3.4	93.30	99.98	100.00	12k	181	35.13	99.30	99.99

Main theoretical result

Theorem [Basu, Kōshima, Eden, B., Seshadhri '24]:

On Random Chung-Lu graph with power law parameter $2 < \beta < 3$, **WormHole** achieves whp:

- Preprocessing query complexity of o(n)
- Query complexity and time $n^{o(1)}$ for a single pair query (s, t)
- Additive error of $O(\log \log n)$ in worst case

Main theoretical result

Theorem [Basu, Kōshima, Eden, B., Seshadhri '24]:

On Random Chung-Lu graph with power law parameter $2 < \beta < 3$, **WormHole** achieves whp:

- Preprocessing query complexity of o(n)
- Query complexity and time $n^{o(1)}$ for a single pair query (s, t)
- Additive error of **O**(log log n) in worst case

Final remarks

as explicit sublinear decomposition.

More applications to come!

• Strength of

- Stronger theoretical foundations? Connections to highway dimension? [Abraham, Fiat, Goldberg, Werneck '10]
- Applications in distributed settings?

Thank you!

https://arxiv.org/abs/2110.13324 https://arxiv.org/abs/2406.08624