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Username Tweets Followers Following

S - 1 g - f t - elonmusk 45,834 187,591,264 633
BarackObama 17,038 131,747,695 541,856
[ 3
networks: properties ot S
[ ]
justinbieber 31,148 110,657,901 273,591
https://archive.nytimes.com/krugman.blogs.nytimes.com/2012/02/08/the-power-law-of-twitter/
Paul Krugman | The Power (Law) of Twitter - rihanna 10,744 107,966,010 969
The Power (Law) of Twitter
FEBRUARY 8, 2012 11:24 AM  ® 150 katyperry 12,020 106,335,380 243
I don’t tweet, but I have a robot that does — all it does it tell
e ( a p p rOX ) p O W e r- | a W followers that there’s a new entry on this blog. For some marketing ,
purposes I was told to check the number of followers, of which ‘:‘i narendramodi 42,888 98,921,919 2,673
M . . more in a moment; and this had me wasting some time on the math i
egree distribution frr
What I knew is that many more or less hierarchical systems — the taylorswift13 855 95,242,147
size of cities, the distribution of income in the upper tail — follow a

power law, meaning that number 100 is to number 10 as number 10

is to number 1. Does Twitter?
realDonaldTrump 59,120 87,180,802 51
Not exactly; the rank-followership gradient is relatively flat at the

top (Lady Gaga and Justin Bieber have roughly the same number of

_ y followers), then steepens once you get past the mega-celebrities: A ArianaGrande 47,154 85,268,269 55,494
#vtxsordeg.d ~ e
° Twitter power law
ladygaga 9,965 83,203,487 112,207
NASA 71,976 80,963,365 175
— YouTube 58,850 80,326,803 1,171
Interesting regime: | , KimKardashian 36740 75157368 129
| . : . ] EllenDeGeneres 24,641 74,163,372 25,002
S
2 < y < 3 inrank) X 15,331 67,769,279
Paul Krugman @ NY Times, 2012 Most followed accounts, retrieved

from socialblade.com, 2024



Examples from
[Polanco-Newman 2023]

Social & information

networks: properties

(a) Airline routes among European airports [31] (b) A network of associations among terrorists involved in
the 2004 Madrid train bombing [32]

e core-periphery

structure
[BE’99, LLDM '09, RPFM’14,
ZMN’15, BK'19, ...]

(¢) Network representation of the Internet in November 1997 (d) A network of hyperlinks among a set of US political
at the autonomous svstem level (33 blogs 34



Tumblr
247M nodes
14.5B edges

Social & information

10

networks: properties = wittervel |
53M node —

2.0B edge 0.8 -

0.6 -
fraction

] .
. sub!lnegra’!most ‘engaged”
domination covered 047
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Social & information networks: properties

* Power-law degree distribution

* Core-periphery structure

e “Sublinear almost domination” of core

b

This talk: core-periphery decomposition

"

= sublinear algorithms

\

dominating set of core



Part I: Sampling nodes



The problem: Sampling multiple nodes

Start at single random node
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Explore graph through query access:
guerying node reveals its neighbors
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The problem: Sampling multiple nodes

Goal: generate many random nodes
with as few queries as possible:

where Pr(S5) < <forallS €
N

(&)

()

/For € > 0and k < n, return random S € (Z)\

)

Vl=n



Motivation

* Many algorithms (e.g., page rank) assume access to random nodes.

* Exploring many different “parts” of a large network with few queries.

* Queries supported in modern social network APIs.

X APIv2
Fundamentals
Tweets
Users

Users lookup

Follows

Blocks

Mutes

Search
Usage

Trends

Spaces

Direct Messages
Lists

Compliance

GET /2/users/:id/followers

Returns a list of users who are followers of the specified user ID.

Endpoint URL

https://api.twitter.com/2/users/:id/followers
Authentication and rate limits

Authentication methods OAuth 2.0 Authorization Code with PKCE
supported by this

. OAuth 1.0a is also available for this endpoint.
endpoint

OAuth 2.0 App-only

Rate limit App rate limit (Application-only): 15 requests per 15-minute window shared among all
users of your app

User rate limit (User context): 15 requests per 15-minute window per each
authenticated user

Retrieved from Twitter API
(https://deveIoper.x.com/en/docs/twitte

r—api/users/folIows/api—reference),

June 2024



Existing solution: Random walks

* Uniform random walk + rejection sampling generates
one node (k = 1) in O(dgy4tmix - log1/€) queries

[Chierichetti, Dasgupta, KLim/;{ Lattanzi,a\sr\ms ’16]

average degree mixing time of
lazy random walk

1/3 1/3

1/3
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Existing solution: Random walks

* Uniform random walk + rejection sampling generates
one node (k = 1) in O(dgy4tmix - log1/€) queries
[Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16]

* Essentially optimal: (0(d;,,4tmix) lower bound (for
specific graph) [Chierichetti, Haddadan ‘18]

1/3

1/3
1/3



Existing solution: Random walks

* Uniform random walk + rejection sampling generates
one node (k = 1) in O(dgy4tmix - log1/€) queries

0.50 - ; , :
0.45 Bxissrrie Facebook A ——

Q
[Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16] § 040 Fiv o Eiedbodtly === |
= 035 r— : \; Youtube e -
. . . : b % o ~..LiveJournal B — === |
* Essentially optimal: (0(d;,,4tmix) lower bound (for g 030 N Tl e |
specific graph) [Chierichetti, Haddadan ‘18] g N T
F 010 i Do —
ﬁ 0.05 ‘\‘\Nwlslhul ..... e LR
Can we do better (amortized) as k grows? Y00 TS0 1000 1500 2000

Mixing time (walk length)

Vixing time can be several 100’s or more , |
[Mohaisen-Yun-Kim, ‘10]

[DR’09,MYK’10,QXZZ’20]
Some theoretical models have ©(log” 1) mixing
time, e.g., Newman-Watts [Dur’10, AL'12, KRS'15]



Let’s use core-periphery structure!

- -~~~

periphery




HEURISTICS
AHEAD



SampLayer: New node sampling algorithm
[B., Eden, Oren, Fotakis, WSDM’22]

* Preprocessing: Greedily search for
“most influential” nodes in network, L.

* Layering & Calibrating: implicitly
partition network into three layers:
Ly, L1, and the periphery L.

* Sampling by length 2 walks from L, to
Ls, +local BFSin L., + rejection.

dominating set of core



Phase 1: Greedy core construction ' s l

Starting from single node, construct L, by repeatedly adding node v
with highest “perceived degree” and querying v.



Phase 2: Structural layering

L, :all neighbors of L,
L, : all other nodes in network

&ey observation: sublinear-sized L czh

decompose L, into tiny components!
Forest Fire Real World Networks
= 3.5% 2107 ~ vree
o 3.0% o A
£ 25% &10° 8
52.0% | | | . ' g"lol
Ok 25k 50k 75k 100k 0 20k 10k GOk

\ graph size Ly size J




Phase 3: Sampling

* Sampling from L, U L straightforward.
* Sampling from L+, by length-2 walk + BFS + rejection

0
0 1
‘ 11/24
‘ < L /3

\

\

7

L>o



Empirical results: SampLayer vs. random walks

e Sina Weibo [ZYLX'14], social network with =~ 60M nodes, 260M edges

45 17—
145 .
'l e SL o 1 mh 104\ SL+ === mh+
)
= 125+ S
£ 105- 50 \\
w ~
CTJ 85‘ 25‘ \\\\
% 65_ 20_ “*\_~-—
S 25: |
51 7 ]

0 50k 150k 300k 450k 600k 0 50k 150k 300k 450k 600k
node samples node samples



Empirical results: SampLayer vs. random walks

e Other social & information networks
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Part II: Computing paths



The problem

Basic task: Given undirected G, build data structure
to support shortest* path queries SP(s,t)**

Motivation: centrality estimation, graph learning, ...

* allow for small additive error

** (s, t) pairs unknown during construction



Solution 1: BFS from s
Running time: O(m)

Case I: Single query
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Running time: O(m)

Solution 2: Bidirectional BFS from s and from ¢

Running time: sublinear under mild assumptions! 3 ,
S

[BN’19, BFFKMT’22, AGJL’23]



Case I: Single query

Solution 1: BFS from s
Running time: O(m)

Solution 2: Bidirectional BFS from s and from ¢

Running time: sublinear under mild assumptions! 3 ,
S

[BN’19, BFFKMT’22, AGJL’23]

LB: n2 (D time per query on random models without preprocessing
[Alon, Grgnlund, Jgrgensen, Larsen ‘23] + [Basu, Koshima, Eden, B., Seshadhri ‘24]

In practice, doesn’t scale well with # queries



Case II: “O0” queries

Landmark-based solutions: pre-compute distances™ from landmarks L

to accelerate real-time queries via 2-hop labeling
[Akiba, Ilwata, Yoshida ‘13], [Zhang, Yu, Goel ‘19], [Li, Qiao, Qin, Zhang, Chang, Lin ‘20], [Zhang, Li,
Yuan, Qin, Zhang, Chang’ 22], [Wang, Wang, Koehler, Lin 22], ...

*paths can be reconstructed with extra effort

(a) First BFS from ver- (b) Second BFS from (c) Third BFS from (d) Fourth BFS from (e) Fifth BFS from ver-

tex 1. We visited all the vertex 2. We did not vertex 3. We only vis- vertex 4. This time we tex 5. The search space

vertices. add labels to five ver- ited the lower half of only visited the higher was even smaller.
tices. the vertices. half.

Example from PLL paper [Akiba, Iwata, Yoshida ‘13]



Case II: “O0” queries

Landmark-based solutions: pre-compute distances™ from landmarks L

to accelerate real-time queries via 2-hop labeling
[Akiba, Ilwata, Yoshida ‘13], [Zhang, Yu, Goel ‘19], [Li, Qiao, Qin, Zhang, Chang, Lin ‘20], [Zhang, Li,
Yuan, Qin, Zhang, Chang’ 22], [Wang, Wang, Koehler, Lin 22], ...

*paths can be reconstructed with extra effort

4= Very fast query time (< 107 3s for large graphs)
== Costly preprocessing: space complexity up to 0(n?), difficult to scale in
practice
Open: Good query time and scalable preprocessing?



Case II: “O0” queries

La|7/ L \%s L

N
e QI?\—‘;?]\\}' to the rescue!
4= Ve \Qﬁ(’

= gg\ /Ie in

Open: Good query time and scalable preprocessing?




Our algorithm: WormHole [Basu, Koshima, Eden, B., Seshadhri ‘24]

R

* Per query: run BiBFS from s and t until BFS trees reach L or collide
* If reached L, find shortest path inside L,




Some empirical results

Disk Space (MB)

103 ;

102.

101.

109

10—1.

Network \4! |E|
graphs epinions 7.6-10* | 5.1-10°
slashdot || 7.9-10% | 5.2-10°
dblp 3.2-10° | 1.0-10°
skitter 1.7-10% | 1.1-107
large-dblp || 1.8-10° | 2.9-107
soc-pokec || 1.6-10° | 3.1-107
soc-live 4.8-10° | 6.8-107
soc-orkut || 3.1-10° | 1.2-108
wikipedia || 1.4-107 | 4.4-10%
soc-twitter || 4.2-107 | 1.5-10°

space cost
Il Input

I Wormhole

s MLL

epinions

I PLL

slashdot

dblp

skitter

large-dblp

guery time
m K O]
2107'{ mmm Worm-M  mEE MLL % R
S lo-2| ™ Worm-H  mmm PLL % o
] me Worm-E DNF 4 5
© 1073 mew BIBFS % s
£ X 5
=107 s i
£ % 5
§10-5 % o
%!
51079, %
9] 4 K
= wn - o — o (@) ey - m.v — "
5 § = 8 s ¢ e 2 3 8
r-] < o g 9 S 5 o) 4 =
= © @ o 2 < £
v n © _g E 3
—_— = w
additive error (stretch)
BiBFS WormHoleg WormHolepy
Network MIT || MIT | SU/L | +0(%) | <+1(%) | <+2(%) || MIT | SU/T | +0(%) | <+1(%) | <+2(%)
epinions 144 41 | 45 | 98.06 | 99.99 000 || 20 | 24 | 6697 | 99.54
slashdot 99 46 | 28 | 7343 | 95.37 24 | 14 | 63.09 | 98.78 99.98
dblp 247 || 110 | 24 | 97.02 | 99.96 48 | 11 | 4472 | 8242 96.53
skitter 3004 || 1439 | 23 | 9471 | 99.89 660 | 24 | 5899 | 96.78 99.98
large-dblp || 3041 || 1447 | 23 | 8537 | 99.10 417 | 21 | 4761 | 89.74 99.04
pokec 2142 || 1317 | 1.8 | 51.37 | 92.15 506 | 11 | 1452 | 59.51 90.71
livejournal || 8565 || 4318 | 2.1 | 71.98 | 97.95 1054 | 29 | 28.86 | 77.93 97.83
orkut 14k || 3213 | 44 | 5850 | 9456 1030 | 35 | 2066 | 68.11 93.93
wikipedia || 35k || 17k | 2.4 | 9494 | 99.92 3394 | 36 | 4465 @ 98.74
soc-twitter || 204k || 81k | 3.4 | 9330 | 99.98 3513 | 99.30 99.99



Main theoretical result

ﬁheorem [Basu, Koshima, Eden, B., Seshadhri ‘24].

On Random Chung-Lu graph with power law parameter 2 < f§ < 3,
WormHole achieves whp:

* Preprocessing query complexity of o(n)

« Query complexity and time n°™ for a single pair query (s,t)

\* Additive error of O(loglogn) in worst case




Main theoretical result

ﬁheorem [Basu, Koshima, Eden, B., Seshadhri ‘24].

On Random Chung-Lu graph with power law parameter 2 < f§ < 3,
WormHole achieves whp:

* Preprocessing query complexity of o(n)

« Query complexity and time n°(Y) for a single pair query (s,t)

\* Additive error of O(loglogn) in Wors§gase

¥ \
n@ for BiBFS Q(n) for landmark-
based solutions

not clear if tight



Final remarks

7= . . -
e Strength of U as explicit sublinear decomposition.

More applications to come!

 Stronger theoretical foundations? Connections to highway dimension?
[Abraham, Fiat, Goldberg, Werneck ‘10]

* Applications in distributed settings?

Thank you!

https://arxiv.org/abs/2110.13324
https://arxiv.org/abs/2406.08624
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