

Hypothesis selection with computational constraints

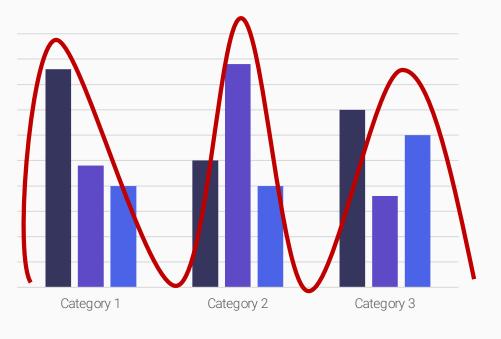
Maryam Aliakbarpour (Rice University + Simons)

Joint work with Mark Bun (BU) and Adam Smith (BU)

Extroverted sublinear algorithms (Summer 2024)

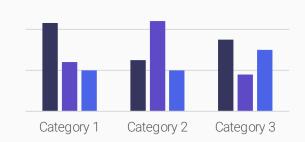
Density estimation

Dataset of samples from an unknown distribution Goal: find density

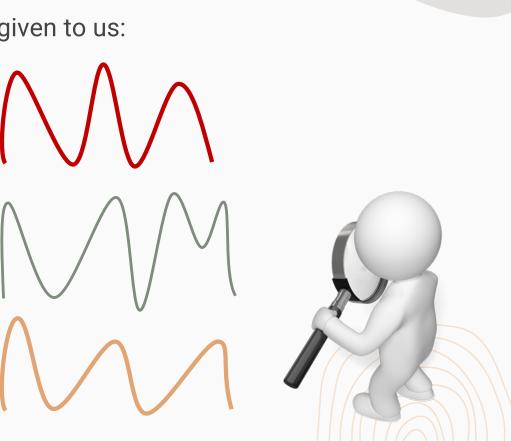


Hypothesis selection

Several candidate distributions are given to us:

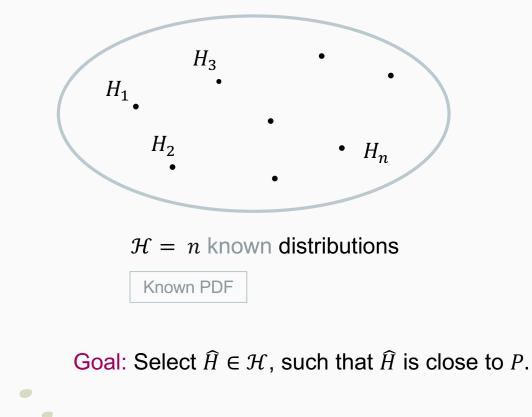


Applications: Cover methodDenoisingInterpretabilityDetermines strategies



Definitions

Hypothesis selection: learn P in $\mathcal H$

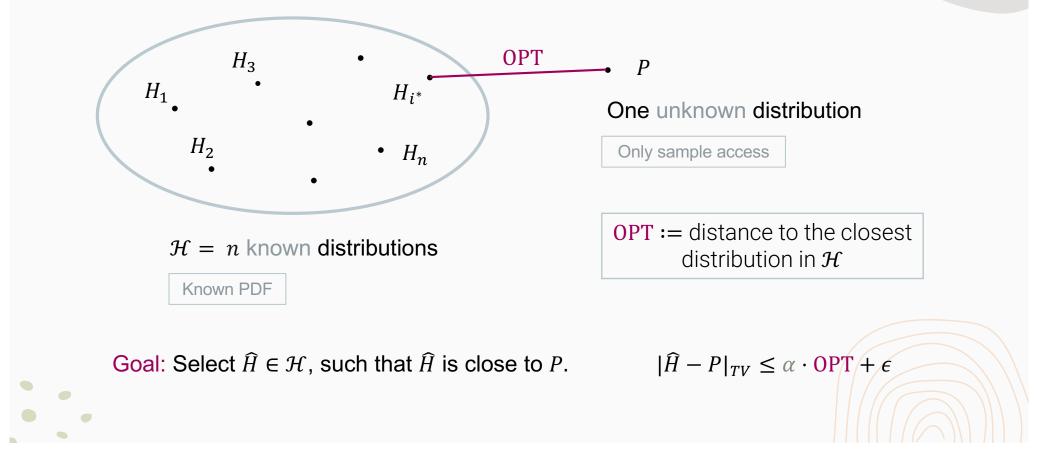


• *P*

One unknown distribution

Only sample access

Hypothesis selection: learn P in \mathcal{H}



Hypothesis selectin

Distribution learning

 $|\widehat{H} - P|_{TV} \le \alpha \cdot \mathbf{OPT} + \epsilon$

Proper: $\widehat{H} \in \mathcal{H}$

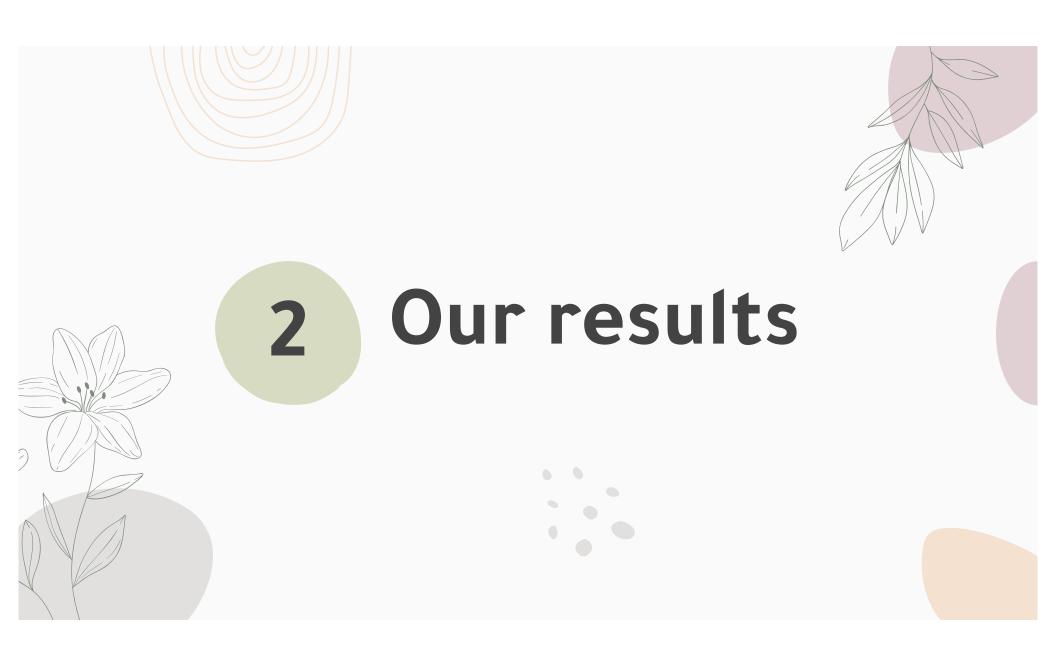
Sample complexity: $s \coloneqq \Theta\left(\frac{\log n}{\epsilon^2}\right)$

Arbitrary \hat{P}

 $|\hat{P} - P|_{TV} \le \epsilon$

Sample complexity: $\Theta\left(\frac{\text{doman size}}{\epsilon^2}\right)$

Yatracos '85, Devroye Lugosi '96 '97

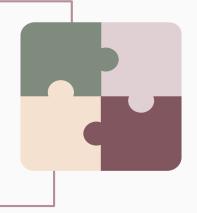


Classic goal: data efficiency

Use as few data points as possible

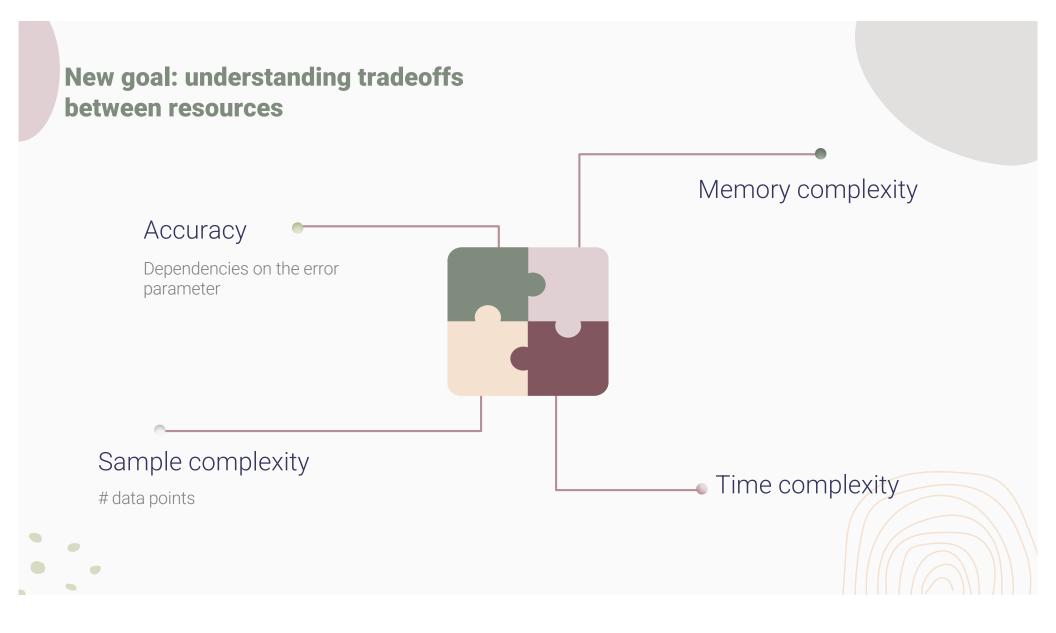
Accuracy

Dependencies on the error parameter



Sample complexity

data points



Our result

Theorem

There exists an algorithm that solves the hypothesis selection problem that runs in almost linear time in n, and obtains the following guarantee:

$$|\widehat{H} - P|_{TV} \le 3 \cdot \mathbf{OPT} + \epsilon.$$

• Bousquet, Kane, and Moran'19 $\alpha \ge 3$ is necessary.

Table 1: Summary of Past Results in Hypothesis Selection. A	All algorithms use $s = \Theta(\log n/\epsilon^2)$
samples.	

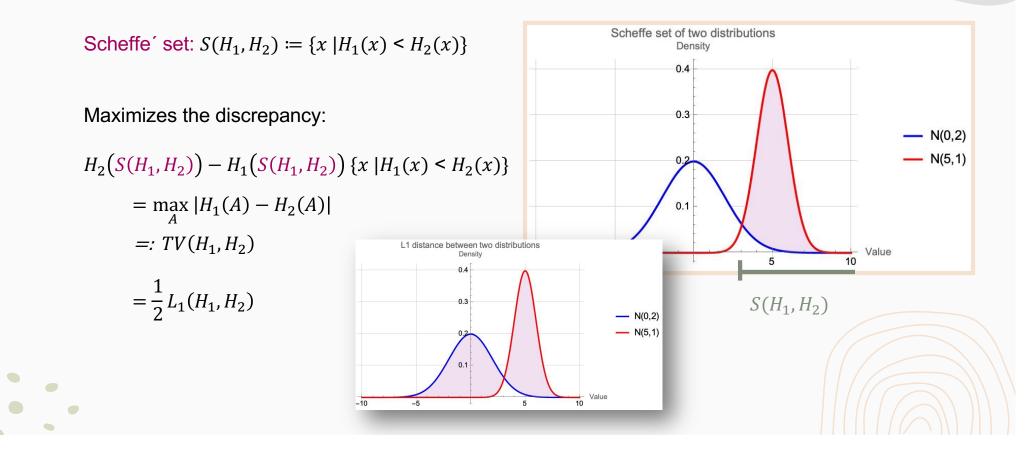
Result	α	Time Complexity	Additional requirement
Min distance estimate [DL01]	3	$O(n^3 \cdot s)$	
Scheffé tournament [DL01]	9	$O(n^2 \cdot s)$	
Min distance estimate [MS08]	3	$O(n^2 \cdot s)$	
[AJOS14, AFJ ⁺ 18]	9	$ ilde{O}(n \cdot s)$	
[ABS23]	5	$ ilde{O}(n \cdot s)$	
[MS08]	3	$O(n \cdot s)$	Exponential time preprocessing
[DK14, ABS23]	≥ 3	$ ilde{O}(n \cdot s)$	Assume knowledge of OPT
Lower bound [BKM19]	Achie	eving $\alpha < 3$ requires	$\operatorname{poly}(\mathcal{X})$ samples
This work:Algorithm 1	3	$ ilde{O}(n \cdot s \ / \ \epsilon)$	
This work: Algorithm 4	4	$ ilde{O}\left(n\cdot s ight)$	

Backgrounds

Scheffe' sets

Minimum distance estimate

Scheffe' set of two distributions

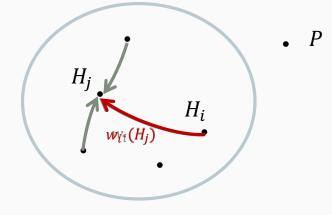


Semi-distances: a proxy for distance to **P**

$$TV(H_j, P) \coloneqq \max_A |H_j(A) - P(A)|$$

$$\geq |H_j(S(H_i, H_j)) - P(S(H_i, H_j))|$$

$$w_i(H_j) \coloneqq$$



Observation: if $|H_{i^*} - P| = OPT$, then $TV(H, P) \leq 2 OPT + w_{i^*}(H)$

$$IV(H_j, P) \leq 2 \text{ OP } I + W_{i^*}(H_j)$$

Find
$$H_j$$
 such that $w_{i^*}(H_j) \leq \text{OPT} \Rightarrow \text{TV}(H_j, P) \leq 3 \text{ OPT}$

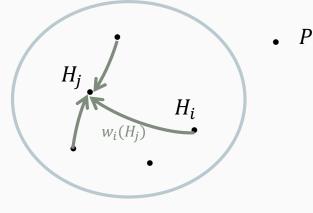
Minimum distance estimate (MDE) [Devroye, Lugosi 01]

Goal: Find H_j such that $TV(H_j, P) \leq 3 \text{ OPT} + \epsilon$

Output:
$$H_j$$
 with minimum $W(H_j) \coloneqq \max_i w_i(H_j)$

Score of H_j Proof: We show $w_{i^*}(H_j) \leq OPT$ $w_{i^*}(H_j) \leq W(H_{i^*}) \leq TV(H_{i^*}, P) = OPT$

Sample complexity: $s = O\left(\frac{\log(n)}{\epsilon^2}\right)$ Time complexity: $O(n^2 \cdot s)$



Our algorithm

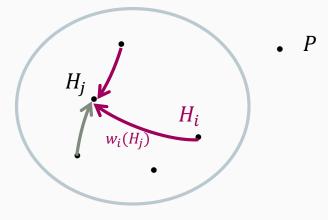
4

The beauty of good enough

- Not enough time to compute $W(H_j) \coloneqq \max_i w_i(H_j)$
- current scores $\widetilde{W}(H_j) \coloneqq \max_{\text{some } i's} w_i(H_j)$,
- Initially all zero
- Update H_j via H_i :

$$\widetilde{W}(H_j) \leftarrow \max\left(w_i(H_j), \widetilde{W}(H_j)\right)$$

• Output: H_j with small $\widetilde{W}(H_j)$



Bucketing

- $L = \Theta\left(\frac{1}{\epsilon}\right)$ buckets
- H_j belongs to B_ℓ iff $\widetilde{W}(H_j) \in [(\ell-1) \epsilon, \ell\epsilon)$

Bucketing

 H_i

0

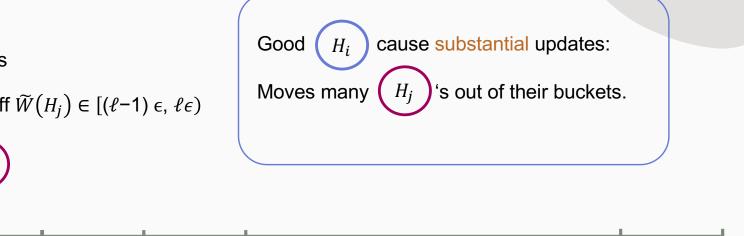
•
$$L = \Theta\left(\frac{1}{\epsilon}\right)$$
 buckets

update

 $w_i(H_j)$

 H_j belongs to B_ℓ iff $\widetilde{W}(H_j) \in [(\ell-1) \epsilon, \ell\epsilon)$ ٠

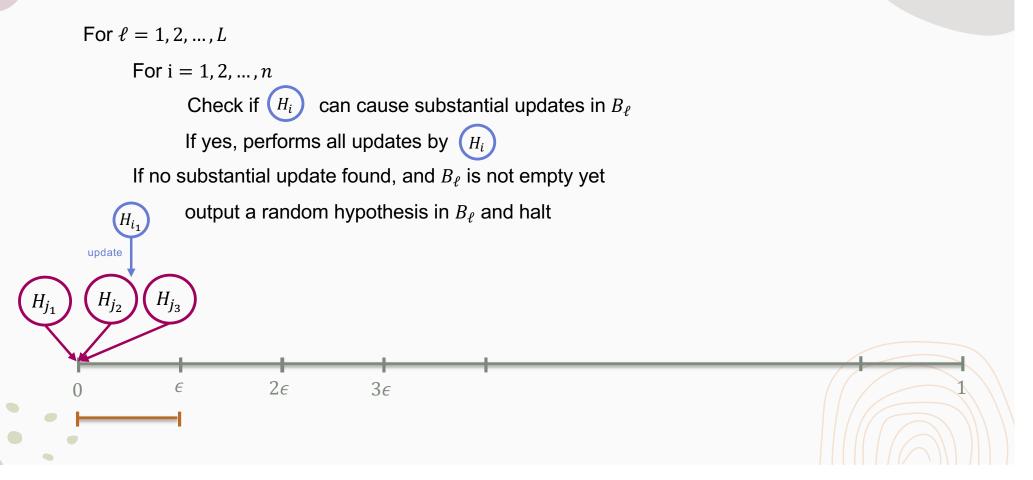
 H_{j}

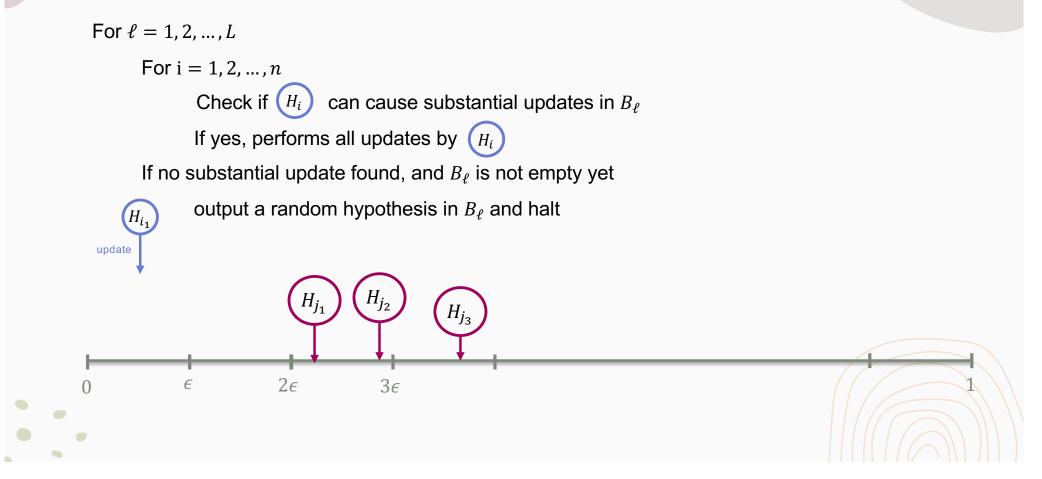


 2ϵ 36 ϵ $\widetilde{W}(H_j)$ Update via H_i

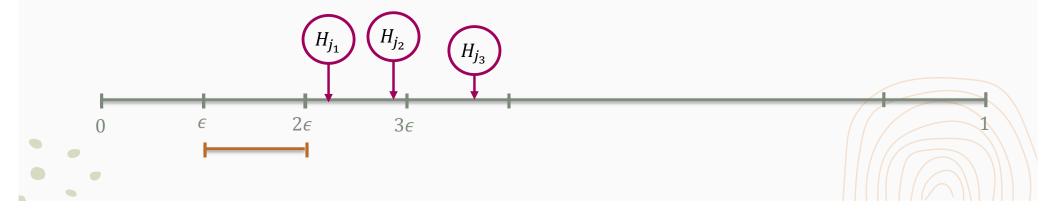
$$\widetilde{W}(H_j) \leftarrow \max\left(w_i(H_j), \widetilde{W}(H_j)\right)$$

For $\ell = 1, 2, ..., L$ For i = 1, 2, ..., nCheck if H_i can cause substantial updates in B_ℓ If yes, performs all updates by H_i If no substantial update found, and B_ℓ is not empty yet output a random hypothesis in B_ℓ and halt

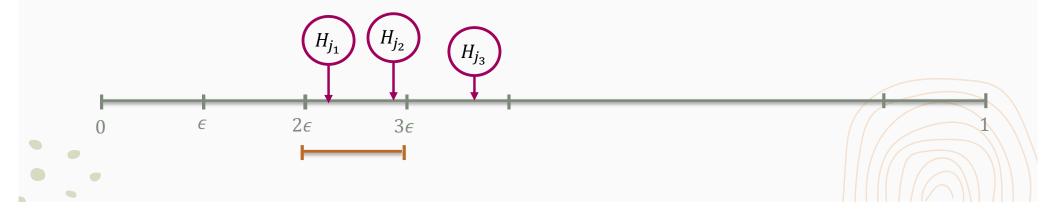




For $\ell = 1, 2, ..., L$ For i = 1, 2, ..., nCheck if H_i can cause substantial updates in B_ℓ If yes, performs all updates by H_i If no substantial update found, and B_ℓ is not empty yet output a random hypothesis in B_ℓ and halt



For $\ell = 1, 2, ..., L$ For i = 1, 2, ..., nCheck if H_i can cause substantial updates in B_ℓ If yes, performs all updates by H_i If no substantial update found, and B_ℓ is not empty yet output a random hypothesis in B_ℓ and halt



For $\ell = 1, 2, \dots, L$ For i = 1, 2, ..., nCheck if (H_i) can cause substantial updates in B_ℓ If yes, performs all updates by (H_i) If no substantial update found, and B_{ℓ} is not empty yet output a random hypothesis in B_{ℓ} and halt H_{j_2} H_{j_1} H_{j_3} 36 2ϵ Е n No good (H_{i_1}) found.

For $\ell = 1, 2, ..., n$ For i = 1, 2, ..., nCheck if H_i can cause substantial updates in B_ℓ If yes, performs all updates by H_i . If no substantial update found, and B_ℓ is not empty yet output a random hypothesis in B_ℓ and halt $H_{j_1} + H_{j_2} + H_{j_3}$ $0 \quad \epsilon \quad 2\epsilon \quad 3\epsilon$ No good H_{i_1} found.

Time complexity

For $\ell = 1, 2, ..., L$ For i = 1, 2, ..., nCheck if H_i can cause substantial updates in B_ℓ If yes, performs all updates by H_i If no substantial update found, and B_ℓ is not empty yet output a random hypothesis in B_ℓ and halt

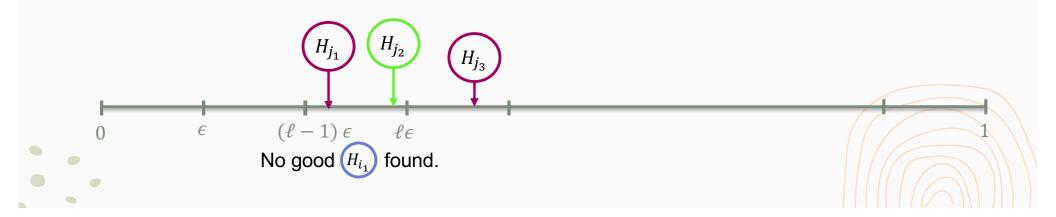
Time: $\Theta(n \cdot L \cdot s) = \Theta(n \cdot s/\epsilon)$

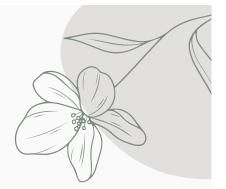
 $\widetilde{\Theta}(1)$ $\widetilde{\theta}(n)$

Why it works

When we get stuck, H_{i^*} could not substantially update the bucket Most H_j in the bucket are good!

Proof: We show $w_{i^*}(H_j) \leq 0$ PT + 2ϵ $(\ell - 1)\epsilon \leq \widetilde{W}(H_{i^*}) \leq TV(H_{i^*}, P) = 0$ PT For constant fraction of H_j 's $w_{i^*}(H_j) \leq \widetilde{W}(H_j) + \epsilon \leq \ell\epsilon + \epsilon$





Thanks!

Credits: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**