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Density estimation

Dataset of samples from an unknown distribution
Goal: find density

Category 1 Category 2 Category 3




Hypothesis selection

Several candidate distributions are given to us:

Category 1 Category 2 Category 3

Applications: Cover method
Denoising

Interpretability / | J
Determines strategies : «
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Hypothesis selection: learn P in H

One
Hz ° Hn

H=n distributions

Goal: Select H € H, such that H is close to P.

distribution



Hypothesis selection: learn P in H

H, . OPT . »
H, y Hy o
0 . One distribution
Hz ° Hn
L OPT := distance to the closest
H=n distributions

distribution in H

Goal: Select H € H, such that H is close to P. |H—P|ry < a-OPT+e¢



Hypothesis selectin
|H—P|lry < a-0PT+e€
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2 Our results




Classic goal: data efficiency

Use as few data points as possible

Accuracy

Dependencies on the error
parameter

Sample complexity
# data points



New goal: understanding tradeoffs
between resources

Memory complexity

PN

Accuracy

Dependencies on the error
parameter

Sample complexity

# data points « Time complexity




Our result

Theorem

There exists an algorithm that solves the hypothesis selection problem that runs in
almost linear time in n, and obtains the following guarantee:

|I:I\—P|Tvs3‘OPT+E

« Bousquet, Kane, and Moran’19 a = 3 is necessary.




Table 1: Summary of Past Results in Hypothesis Selection. All algorithms use s = ©(logn/e?)
samples.

Result a  Time Complexity Additional requirement

Min distance estimate [DLO1] 3 O(n3 - s)

Scheffé tournament [DL01] 9 O(n? - s)

Min distance estimate [MS08] 3 O(n? - s)

[AJOS14, AFJ*18] 9 O(n - s)

[ABS23] 5 O(n - s)

[MSO08] 3 O(n-s) Exponential time preprocessing
[DK14, ABS23] >3 O(n - s) Assume knowledge of OPT
Lower bound [BKM19] Achieving o < 3 requires poly(|X|) samples

This work:Algorithm 1 3 O(n-s/e

This work: Algorithm 4 4 O(n-s)




3 Backgrounds

Scheffe’ sets
Minimum distance estimate



Scheffe  set of two distributions

Scheffe” set: S(Hy, H,) = {x |H.(x) < Hy(x)}

Maximizes the discrepancy:

HZ(S(HL Hz)) - H1(S(H1» Hz)) {x |[Hy(x) < Hy(x)}

= max |Hy(4) — H(A)]
=: TV (Hy, H,)

1
= E Ll(le HZ)

L1 distance between two distributions
Density
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Semi-distances: a proxy for distance to P

. e« P
TV(H,,P) = max|H-(A)—P(A)| . /
j.
H.:
_‘|H S(Hy, H; S(HL ))| /‘W‘,
Wi(Hj) =

Observation: if |[H; — P| = OPT, then
TV(H;,P) < 2 OPT + w;+(H;)

Find H; such that | w;-(H;) < OPT |= TV(H;P) <3 OPT




Minimum distance estimate (MDE)
[Devroye, Lugosi 01]

Goal: Find H; such that TV(H;,P) <3 OPT +¢ H; /

o~
w;(Hj)

Output: H; with minimum W (H;) = max w;(H;)

( J
[

Score of H;
Proof: We show w;-(H;) < OPT

wi-(H;) < W(H;) < W(H+) < TV(H;+, P) = OPT

Sample complexity: s = 0 (lof—gn)) s/

Time complexity: 0(n? - s) X
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The beauty of good enough
* Not enough time to compute W (H;) := max w;(H;)

« current scores IW(H;) == max w;(H;), H, /

somei’s

« Initially all zero fwl'
* Update H; via H;: We(Hj)

W (Hy) = max (wi(H;), W (H;))

- Output: H; with small W (H;)



Bucketing

e L=20 G) buckets

H; belongs to B, iff W(H;) € [(¢-1) €, Y€)

(w)




Bucketing

e L=20 G) buckets

» H, belongs to B, iff W(H;,) € [(¢-1) €, 2¢€)

update
w; (H;)

A

y

-

Good @

Moves many

L

cause substantial updates:

@‘s out of their buckets.

~

/

|
0 € VT/(Hj) 2€ 3e

v

Update via H;

W (Hy) < max (wi(H;), W (H,))



Algorithm

For¢=1,2,..,L
Fori=1,2,..,n

Check if @ can cause substantial updates in B,

If yes, performs all updates by @
If no substantial update found, and B, is not empty yet

output a random hypothesis in B, and halt

2€ 3e
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Algorithm

For¢=1,2,..,L
Fori=1,2,..,n

Check if @ can cause substantial updates in B,

If yes, performs all updates by @
If no substantial update found, and B, is not empty yet

output a random hypothesis in B, and halt
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H:

]
ONO

‘7: \ 4

€ 2€ 3e



Algorithm

For¢=1,2,..,L
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Algorithm

For¢=1,2,..,L
Fori=1,2,..,n

Check if @ can cause substantial updates in B,

If yes, performs all updates by @
If no substantial update found, and B, is not empty yet

output a random hypothesis in B, and halt




Time complexity

For¢=1,2,..,L
Fori=1,2,..,n
Check if @ can cause substantial updates in B,

If yes, performs all updates by @
If no substantial update found, and B, is not empty yet

output a random hypothesis in B, and halt

Time: O(n-L-s)=0(n-s/e)

0(1)
6 (n)



Why it works

When we get stuck, @ could not substantially update the bucket

Most @ in the bucket are good!

Proof: We show w;-(H;) < OPT + 2¢
(£ —1)e <W(H#) < TV(H;, P) = OPT
For constant fraction of @‘s wi(H;) <W(H;))+e<te+e

J2 H:
]

3

'] \ 4

g f—1e€ Le
No good @ found.



Thanks!
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