
Linear and sublinear algorithms
for graphlet sampling

Marco Bressan Hubert Chan Qipeng Kuang Mauro Sozio
Univ. of Milan Hong Kong Univ. Hong Kong Univ. Télécom Paris

The Graphlet Sampling Problem

INPUT: a simple graph G and k ≥ 3

OUTPUT: a uniform random connected k-vertex subgraph of G (a k-graphlet)

Applications:
• estimating the graphlet frequency vector
• network analysis, bioinformatics, clustering, …

1 / 20

The Graphlet Sampling Problem

INPUT: a simple graph G and k ≥ 3

OUTPUT: a uniform random connected k-vertex subgraph of G (a k-graphlet)

Many methods proposed ...
Bhuiyan et al. ICDM’12
Ahmed et al. TKDD’13
Ahmed et al. VLDB’14
Wang et al. TKDD’14
Saha et al. CompleNet’15
Jha et al. WWW’15
Bressan et al. WSDM’16
Han et al. ICDM’16
Chen et al. VLDB’16
Pinar et al. WWW’17
Bressan et al. TKDD’18
Agostini et al. IPL’19
Matsuno et al. SDM’20
Paramonov et al. KDD’20
…

... all with limitations:

• only for k = 3, 4, 5
• or, nΘ(k) time per sample
• or, samples far from uniform
• …

2 / 20

Results

Theorem 1 (the linear algo). There exists a two-phase uniform graphlet
sampling algorithm with preprocessing time

O(n k2 log k + m)

O(n + m)

and expected sampling time per graphlet

kO(k) log n

O(log n)

Theorem 2 (the sublinear algo). There exists a two-phase ε-uniform graphlet
sampling algorithm with preprocessing time

O
(
ε−1k6 n log n

)

O(n log n)

and expected sampling time per graphlet

kO(k)ε−10 log ε−1

O(1)

Ongoing Work: streaming and MPC adaptations.

3 / 20

Results

Theorem 1 (the linear algo). There exists a two-phase uniform graphlet
sampling algorithm with preprocessing time

O(n k2 log k + m) O(n + m)

and expected sampling time per graphlet

kO(k) log n O(log n)

Theorem 2 (the sublinear algo). There exists a two-phase ε-uniform graphlet
sampling algorithm with preprocessing time

O
(
ε−1k6 n log n

)
O(n log n)

and expected sampling time per graphlet

kO(k)ε−10 log ε−1 O(1)

Ongoing Work: streaming and MPC adaptations.

3 / 20

Results

Theorem 1 (the linear algo). There exists a two-phase uniform graphlet
sampling algorithm with preprocessing time

O(n k2 log k + m) O(n + m)

and expected sampling time per graphlet

kO(k) log n O(log n)

Theorem 2 (the sublinear algo). There exists a two-phase ε-uniform graphlet
sampling algorithm with preprocessing time

O
(
ε−1k6 n log n

)
O(n log n)

and expected sampling time per graphlet

kO(k)ε−10 log ε−1 O(1)

Ongoing Work: streaming and MPC adaptations.

3 / 20

The Linear Algorithm

4 / 20

Starting Point: Rejection Sampling

1. pick some vertex v in G with some probability p(v)
2. starting with S = {v}, while |S| ≤ k do cut sampling :

pick an edge u.a.r. in δ(S) and add endpoint to S
compute the probability p(S|v) that cut sampling from v yields S
let p∗ = minv,S p(v) · p(S|v) > 0

3. with probability p∗

p(v) p(S|v) return S, else repeat from 1.

P[S returned] = p(v)·p(S|v)· p∗

p(v) · p(S|v) = p∗ samples are uniform :-)

P[S returned|S sampled] = p∗

p(v) · p(S|v) can be VERY small, like n−Θ(k) :-(

5 / 20

Starting Point: Rejection Sampling

1. pick some vertex v in G with some probability p(v)
2. starting with S = {v}, while |S| ≤ k do cut sampling :

pick an edge u.a.r. in δ(S) and add endpoint to S
compute the probability p(S|v) that cut sampling from v yields S
let p∗ = minv,S p(v) · p(S|v) > 0

3. with probability p∗

p(v) p(S|v) return S, else repeat from 1.

P[S returned] = p(v)·p(S|v)· p∗

p(v) · p(S|v) = p∗ samples are uniform :-)

P[S returned|S sampled] = p∗

p(v) · p(S|v) can be VERY small, like n−Θ(k) :-(

5 / 20

Starting Point: Rejection Sampling

1. pick some vertex v in G with some probability p(v)
2. starting with S = {v}, while |S| ≤ k do cut sampling :

pick an edge u.a.r. in δ(S) and add endpoint to S
compute the probability p(S|v) that cut sampling from v yields S
let p∗ = minv,S p(v) · p(S|v) > 0

3. with probability p∗

p(v) p(S|v) return S, else repeat from 1.

P[S returned] = p(v)·p(S|v)· p∗

p(v) · p(S|v) = p∗ samples are uniform :-)

P[S returned|S sampled] = p∗

p(v) · p(S|v) can be VERY small, like n−Θ(k) :-(

5 / 20

Starting Point: Rejection Sampling

1. pick some vertex v in G with some probability p(v)
2. starting with S = {v}, while |S| ≤ k do cut sampling :

pick an edge u.a.r. in δ(S) and add endpoint to S
compute the probability p(S|v) that cut sampling from v yields S
let p∗ = minv,S p(v) · p(S|v) > 0

3. with probability p∗

p(v) p(S|v) return S, else repeat from 1.

P[S returned] = p(v)·p(S|v)· p∗

p(v) · p(S|v) = p∗ samples are uniform :-)

P[S returned|S sampled] = p∗

p(v) · p(S|v) can be VERY small, like n−Θ(k) :-(

5 / 20

Starting Point: Rejection Sampling

1. pick some vertex v in G with some probability p(v)
2. starting with S = {v}, while |S| ≤ k do cut sampling :

pick an edge u.a.r. in δ(S) and add endpoint to S
compute the probability p(S|v) that cut sampling from v yields S
let p∗ = minv,S p(v) · p(S|v) > 0

3. with probability p∗

p(v) p(S|v) return S, else repeat from 1.

P[S returned] = p(v)·p(S|v)· p∗

p(v) · p(S|v) = p∗ samples are uniform :-)

P[S returned|S sampled] = p∗

p(v) · p(S|v) can be VERY small, like n−Θ(k) :-(

5 / 20

How to Fix It

P[S returned|S sampled] = p∗

p(v) · p(S|v) can be VERY small

We will make the sampling distribution almost uniform, i.e.:

minS p(v) · p(S|v)
maxS p(v) · p(S|v) = k−O(k)

This will make
P[S returned|S sampled] ≥ k−O(k) ∀S

I promise that everything will be efficient.

6 / 20

How to Fix It: Preprocessing

Compute a total order ≺ over V by repeatedly removing a vertex of max degree.
This takes time O(n + m).

v u

G(v)

For every v define the subgraph

G(v) := G[u � v]

and the related bucket of graphlets

B(v) = {S graphlet in G(v), v ∈ S}

Finally, for all v and all u � v define

d(u|v) = degree of u in G(v)

7 / 20

How to Fix It: Sampling

v u

G(v)

Obs 1. Every nonempty bucket B(v) satisfies:

|B(v)| kO(k)
' d(v |v)k−1

(Proof by counting argument.)

Then, we set

p(v) = d(v |v)k−1

Z
kO(k)
' |B(v)|

Z
where Z =

∑
u d(u|u)k−1.

8 / 20

How to Fix It: Sampling

v u

G(v)

Obs 2. Suppose we run the cut sampling process over G(v) starting from v .
Then any S ∈ B(v) is sampled with probability:

p(S|v) kO(k)
' 1

|B(v)| ⇒ p(v) · p(S|v) kO(k)
' 1

Z

(Proof by counting argument.)

Obs 3. If we sort the adjacency lists of G by ≺, then the cut sampling process
over G(v) can be run in time poly(k) log n.

Proof: for every u ∈ G(v) we can locate the cut E(u,G(v)) by binary searching
for v in u’s adjacency list.

9 / 20

The Uniform Algorithm

Algorithm 1 Ugs
1: procedure Preprocessing
2: compute the total order ≺ over V

O(n + m)

3: compute p(v) := d(v|v)k−1

Z for all v , where Z =
∑

u d(u|u)k−1

O(n)
4: set p(v) to 0 if I {B(v) = ∅}, for all v

O(nk2 log k)

5: procedure Sampling
6: sample v with probability p(v) := d(v|v)k−1

Z

O(1)

7: let S = {v}
8: grow S in G(v) via cut sampling until |S| = k

O(k3 log n)

9: compute p(S|v)

kO(k) log n

10: return S with probability k−O(k)/Z
p(v)·p(S|v)

O(1)

Total preprocessing time: O(nk2 log k + m)

Expected sampling time: kO(k) log n

10 / 20

The Uniform Algorithm

Algorithm 2 Ugs
1: procedure Preprocessing
2: compute the total order ≺ over V

O(n + m)

3: compute p(v) := d(v|v)k−1

Z for all v , where Z =
∑

u d(u|u)k−1

O(n)

4: set p(v) to 0 if I {B(v) = ∅}, for all v

O(nk2 log k)

5: procedure Sampling
6: sample v with probability p(v) := d(v|v)k−1

Z

O(1)

7: let S = {v}
8: grow S in G(v) via cut sampling until |S| = k

O(k3 log n)

9: compute p(S|v)

kO(k) log n

10: return S with probability k−O(k)/Z
p(v)·p(S|v)

O(1)

Total preprocessing time: O(nk2 log k + m)

Expected sampling time: kO(k) log n

10 / 20

The Uniform Algorithm

Algorithm 3 Ugs
1: procedure Preprocessing
2: compute the total order ≺ over V O(n + m)

3: compute p(v) := d(v|v)k−1

Z for all v , where Z =
∑

u d(u|u)k−1 O(n)
4: set p(v) to 0 if I {B(v) = ∅}, for all v O(nk2 log k)

5: procedure Sampling
6: sample v with probability p(v) := d(v|v)k−1

Z O(1)
7: let S = {v}
8: grow S in G(v) via cut sampling until |S| = k O(k3 log n)
9: compute p(S|v) kO(k) log n

10: return S with probability k−O(k)/Z
p(v)·p(S|v) O(1)

Total preprocessing time: O(nk2 log k + m)

Expected sampling time: kO(k) log n

10 / 20

The Uniform Algorithm

Algorithm 4 Ugs
1: procedure Preprocessing
2: compute the total order ≺ over V O(n + m)

3: compute p(v) := d(v|v)k−1

Z for all v , where Z =
∑

u d(u|u)k−1 O(n)
4: set p(v) to 0 if I {B(v) = ∅}, for all v O(nk2 log k)

5: procedure Sampling
6: sample v with probability p(v) := d(v|v)k−1

Z O(1)
7: let S = {v}
8: grow S in G(v) via cut sampling until |S| = k O(k3 log n)
9: compute p(S|v) kO(k) log n

10: return S with probability k−O(k)/Z
p(v)·p(S|v) O(1)

Total preprocessing time: O(nk2 log k + m)

Expected sampling time: kO(k) log n

10 / 20

The Sublinear Algorithm

11 / 20

The ε-Uniform Algorithm

v u

G(v)

Definition. A total order ≺ over V is α-degree-dominating (α-DD) if

d(v |v) ≥ α · d(u|v) ∀v ∀u ∈ G(v)

That is, v has approximately the largest degree in G(v).

Naive attempt for the ε-uniform algo:

1. compute an ε-DD ordering ≺ in time O(ε−1n log n)
2. sample as before

12 / 20

The ε-Uniform Algorithm: Preprocessing

We need the following relaxation.

An (α, β)-DD order for G is a pair (≺,bbb) where bbb = (bv)v∈V such that:

(1) bv > 0 =⇒ d(v |G(v)) ≥ α dv ≥ α d(u|G(v)) for all u � v

(2) bv > 0 =⇒ k−O(k)β ≤ bv
|B(v)| ≤ kO(k) 1

β

(3)
∑

v :bv=0 |B(v)| ≤ β
∑

v |B(v)|

(4) v ≺ u =⇒ du ≤ dv
3kα

v

G(v)

13 / 20

The ε-Uniform Algorithm: Preprocessing

Theorem. In time O
(
β−1k6 n log n

)
one can compute with high probability an

(α, β)-DD order (≺,bbb) with α = β
1

k−1 1
6k3 .

Proof is really unwieldly.

Algorithm 5 Compute-(α, β)-DD
1: start with v1, . . . , vn in nonincreasing order of degree
2: for i = 1, . . . , n do
3: draw O(β−2k4 log n) random neighbors of vi
4: if a fraction ≥ β

k2 of those neighbors are after vi then
5: set bv = dk−1

v
6: else
7: set bv = 0 and push vi at the end of the order

v1 vnvi

14 / 20

The ε-Uniform Algorithm: Sampling

We compute an (α, ε)-DD order (≺,bbb) in time O
(
ε−1k6 n log n

)
.

Then, we run the sampling phase of Ugs using (≺,bbb).

As the sampling phase guarantees uniformity over the support of the
distribution, by (3) we’ll get ε-uniform graphlets.

REMINDER – Properties of (α, β)-DD ordering:
(3)

∑
v :bv =0 |B(v)| ≤ β

∑
v |B(v)|

Problem: without sorted adjacency lists, cut sampling can take time Ω(n).

15 / 20

The ε-Uniform Algorithm: Sampling

How to fix it:

1. Set β = ε
2 . By (3) we only need ε

2 -uniformity over the B(v) s.t. bv > 0.

2. When growing S in G(v), estimate the cut E(u,G(v) \ S) of every u ∈ S.
By (1),(4) we can estimate E(u,G(v) \ S) with good multiplicative
accuracy. This ensures p(S|v) somewhat close to 1

|B(v)| .

3. Use cut estimates to approximately compute p(S|v).

4. Finally, by (2) the acceptance probability is not much worse than in Ugs.

REMINDER – Properties of (α, β)-DD ordering:
(1) bv > 0 =⇒ d(v|G(v)) ≥ α dv ≥ α d(u|G(v)) for all u � v
(2) bv > 0 =⇒ k−O(k)β ≤ bv

|B(v)| ≤ kO(k) 1
β

(3)
∑

v :bv =0 |B(v)| ≤ β
∑

v |B(v)|

(4) v ≺ u =⇒ du ≤ dv
3kα

16 / 20

The ε-Uniform Algorithm

Algorithm 6 Apx-Ugs
1: procedure Preprocessing
2: compute an (α, ε

2)-order (≺,bbb) over V O(ε−1k6n log n)
3: compute p(v) := bv

Z for all v , where Z =
∑

u bv O(n)

4: procedure Sampling
5: sample v with probability p(v) := bv

Z O(1)
6: let S = {v}
7: grow S in G(v) via cut sampling until |S| = k kO(k)ε−8 log ε−1

8: compute an estimate p̂(S|v) of p(S|v) kO(k)ε−8 log ε−1

9: return S with probability ε k−O(k)/Z
p(v)·p̂(S|v) O(1)

Total preprocessing time: O(ε−1k6n log n)

Expected sampling time: kO(k) poly(ε−1)

17 / 20

Extensions: Streaming and MPC

18 / 20

Streaming and MPC

Streaming: adversarial stream of edges, memory of M = Ω(n log n) words.

Theorem. The following guarantees are achievable w.h.p.:

passes running time # uniform samples

preprocessing O(log n) O(p m + n k2 lg k) –

sampling∗ 2k O((n 2k + m k) log n) Ω(M · k−O(k))

MPC: M machines, S ≥ M words per machine, M · S = Ω̃(n + m).

Theorem. The following guarantees are achievable w.h.p.:

rounds running time # uniform samples

preprocessing k + O(log n log log n) kO(k)(n + m) –

sampling∗ O(k) kO(k)(n + m) Ω(M · S · k−O(k))

19 / 20

Open Problems

(1) What can we achieve without preprocessing?

(2) What about hypegraphs?

20 / 20

