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Problem Statement

Connectivity Augmentation Problem (𝑘-CAP)
Input: 

▪ (𝑘 − 1)-edge-connected graph 𝐺 = (𝑉, 𝐸), and 

▪ set of weighted links 𝐿, where weights are in {0,1, … , 𝑊}

Output: min-weight 𝐿′ ⊂ 𝐿 s.t. 𝐺′ = (𝑉, 𝐸 ∪ 𝐿′) is 𝑘-edge connected
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Problem Statement

Connectivity Augmentation Problem (𝑘-CAP)
Input: 

▪ (𝑘 − 1)-edge-connected graph 𝐺 = (𝑉, 𝐸), and 

▪ set of weighted links 𝐿, where weights are in {0,1, … , 𝑊}

Output: min-weight 𝐿′ ⊂ 𝐿 s.t. 𝐺′ = (𝑉, 𝐸 ∪ 𝐿′) is 𝑘-edge connected

General Network Design Problem (aka SNDP)
Input: 

▪ graph 𝐺 = (𝑉, 𝐸) with a weight function 𝑤: 𝐸 → {0, … , 𝑊}, and 

▪ connectivity requirement 𝑟: 𝑉 × 𝑉 → ℤ≥0

Output: min-weight 𝐻 ⊂ 𝐺 s.t. ∀𝑠, 𝑡 ∈ 𝑉, 𝐻 contains 𝑟(𝑠𝑡) edge-disjoint 𝑠𝑡-paths

𝑘-ECSS: 
   𝑟 𝑢𝑣 = 𝑘 for all 𝑢, 𝑣 ∈ 𝑉
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Motivations

• Wireless/Telecommunication Networks

• Transportation Networks

• Its study led to fundamental theoretical advances in combinatorial 
optimization, algorithms and mathematical programming:

o  Primal-Dual

o  Iterative Rounding

• Recent Advancements on TAP and CAP [Byrka, Grandoni, Jabal Ameli’20] 

[Cecchetto, Traub, Zenklusen’21] [Traub, Zenklusen’22a,b] [Traub, Zenklusen’23] [Garg, Grandoni, 
Jabal Ameli’23]



What is Known (Offline)?

• General Network Design Problem: 

❑ 2-approximation [Jain’98]

• Connectivity Augmentation Problem

❑ Unweighted: 1.393-approximation [Cecchetto, Traub, Zenklusen’21] 

❑ Weighted: (1.5 + 𝜖)-approximation [Traub, Zenklusen’23]

❑ Hardness: APX-hard



Preliminaries: Streaming Model

Graph Streaming Model

• graph edges arrive in a stream, one by one (in an arbitrary order)

• using sublinear space, 𝑂(𝑛 polylog(𝑛)) space (known as semi-streaming)

Network Design in Streaming: increasing reliability of large-scale networks

• unlike graph problems such as MST, Matching, Cut, Sparsifiers, not much is known

• testing connectivity 



Connectivity Augmentation Problem

• Link Arrival Streams

❑ 𝐺 is given to the algorithm (its space is not counted in the space complexity)

❑ links 𝐿 arrive in a stream, one by one

Streaming Models: Possible Computation Models
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Streaming Models: Possible Computation Models

Connectivity Augmentation Problem

• Link Arrival Streams

❑ 𝐺 is given to the algorithm (its space is not counted in the space complexity)

❑ links 𝐿 arrive in a stream, one by one

❑ compact representation exists: 

o 𝑘-edge-connectivity certificate in 𝑂(𝑛𝑘) space

o cactus representation of min-cuts in 𝑂(𝑛) space

• (Fully) Edge Arrival Streams

❑ both 𝐺 and 𝐿 arrive in a stream, in an arbitrary order

For General Network Design Problem, the 
only relevant model is edge arrival



Results
𝑘-CAP, General Network Design, and Spanners 



Our Results I: Weighted Connectivity Augmentation

Approximation Space Model

𝑘-CAP
in one pass

2 + 𝜖

2 − 𝜖

𝑂(𝑛
𝜖 log 𝑛)

Ω(𝑛2) bits
Link Arrival

Unlike the offline setting, the 2-approximation is a barrier in link arrival streams

• To get any approximation, Ω(𝑛) space is needed.
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Our Results I: Weighted Connectivity Augmentation

Approximation Space Model

𝑘-CAP
in one pass

2 + 𝜖

2 − 𝜖

𝑂(𝑛
𝜖 log 𝑛)

Ω(𝑛2) bits
Link Arrival

𝑂(𝑡)
෨𝑂(𝑛𝑘 + 𝑛1+

1
𝑡 )

Ω(𝑛𝑘 + 𝑛1+
1

𝑡) bits

Edge Arrival

• An Interesting Special Case: All links arrive before existing (zero cost) edges

• 𝑛𝑘 denotes the amount of space required to construct the 𝑘-connectivity certificate

Spanner is the sparsifier for connectivity augmentation problem.



Our Results II: (Weighted) Spanners 

Distortion Space Model

Weighted 
Spanners
in one pass

𝑂(𝑡)
෨𝑂(𝑛1+

1
𝑡 )

Ω(𝑛1+
1

𝑡) bits

Edge Arrival

• Tight bound in unweighted case: 𝑂(𝑡)-spanners with 𝑂(𝑛1+
1

𝑡) edges 

• Weighted Case: Existing methods give 𝑂(𝑡)-spanners with 𝑂(𝑛1+
1

𝑡 ⋅ log 𝑊) edges



Results III: Applications to General Network Design

Passes Approximation Space Model

SNDP 1
𝑂 𝑡 log 𝑘

𝑂(𝑡)

෨𝑂(𝑘𝑛1+
1
𝑡 )

Ω(𝑛1+
1

𝑡) bits

Edge Arrival

𝑘-ECSS 𝑘 𝑂(log 𝑘) 𝑂(𝑛𝑘 log 𝑛) Edge Arrival



Algorithms Overview
Weighted Spanners / 𝑘-CAP in Streams



Weighted Spanner Problem

Input: 

▪ edge-weighted graph 𝐺 = (𝑉, 𝐸) where weights belong to {1, … , 𝑊}, 

▪ distortion parameter 𝑡

Output: subgraph 𝐻 ⊂ 𝐺 s.t. for every 𝑢, 𝑣 ∈ 𝑉, 𝑑𝐻 𝑢, 𝑣 ≤ 𝑡 ⋅ 𝑑𝐺(𝑢, 𝑣)
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2. For every edge 𝑒 ∈ 𝐸, add 𝑒 to 𝐻 if it does not form a cycle of length ≤ 𝑂(𝑡) with 
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Simple streaming-friendly algorithm 

with space complexity 𝑛1+1/𝑡



Weighted Spanner Problem

Input: 

▪ edge-weighted graph 𝐺 = (𝑉, 𝐸) where weights belong to [1, 𝑊], 

▪ distortion parameter 𝑡

Output: subgraph 𝐻 ⊂ 𝐺 s.t. for every 𝑢, 𝑣 ∈ 𝑉, 𝑑𝐻 𝑢, 𝑣 ≤ 𝑡 ⋅ 𝑑𝐺(𝑢, 𝑣)

Simple Extension of Algorithm for Weighted Graphs:

• Partition edges into log 𝑊 classes s.t. edges in each class differ by 𝑂(1)-factor

• Maintain 𝑂(𝑡)-spanner in each weight class

Simple streaming-friendly algorithm 

with space complexity 𝑂(𝑛1+
1

𝑡 ⋅ log 𝑊)



Shaving the log 𝑊 Factor: Even-Odd Bucketing

Standard Partitioning (into log 𝑊 partitions)

Even-Odd Bucketing

❑ Separately maintain spanners on even buckets and odd buckets

Key Property: It is cheaper to pick 𝑛 edges from 𝑩𝒊−𝟐 than to pick a single edge from 𝑩𝒊

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐
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Outline of Weighted Spanner Algorithm

STEP 1. Summarize edges in even and odd buckets separately (maintaining a 𝑂(𝑡)-spanner)

STEP 2. Combine 𝑡-spanners of even and odd buckets



Algorithm for Spanners on Even Buckets

• For any edge 𝑢𝑣 ∈ 𝑩𝒊:
o  If there exists a 𝑢𝑣-path in (even buckets of) 𝑩≤𝒊−𝟐, don’t keep 𝑢𝑣 in spanner 

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

Key Property: For every 𝒖𝒗-edge in 𝑩𝒊, a 𝒖𝒗-path (of any length) in 𝑩≤𝒊−𝟐 (if 
exists) has a lower weight
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𝐶1

II. Between any pair of CC, only keep 

the lightest edge from bucket 𝑖

I. Remove edges in bucket 𝑖 with both 

endpoints in a same CC



Algorithm for Spanners on Even Buckets

• For any edge 𝑢𝑣 ∈ 𝑩𝒊:
o  If there exists a 𝑢𝑣-path in (even buckets of) 𝑩≤𝒊−𝟐, don’t keep 𝑢𝑣 in spanner

• Need to deal with edges of 𝑩𝒊 between different CCs of 𝐺[𝑩≤𝒊−𝟐]

• Contract CCs of 𝐺[𝑩≤𝒊−𝟐] into super nodes
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Analysis of the Algorithm on Even Buckets

• If there are 𝑥 super nodes in 𝑩𝒊, need to store at most ෨𝑂(𝑥1+1/𝑡) 
edges from 𝑩𝒊

oUsing the simple weighted spanner algorithm within each 𝑩𝒊 (increase the 
space complexity by log 𝑛)

o If the number of non-zero-degree super nodes w.r.t. 𝑩𝒊 is 𝑦, the spanner size 
becomes ෨𝑂(𝑦1+1/𝑡)

• Using the nested structure of CCs w.r.t. buckets (𝑩≤𝒊, 𝑩≤𝒊−𝟐, …), we 
can bound the total number of edges by ෨𝑂(𝑛1+1/𝑡)

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3
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Implementation in Streaming

• Edges may come in any order and CCs may change for several buckets 
as we add an edge

• Maintain super nodes in the stream (given the set of so far stored edges 𝐻, 

we can compute them when needed)

• Sparsify the spanners of all heavier buckets once an edge is added to 𝐻 

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐
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Weighted 𝑘-CAP in Streams

• Edge Arrival Stream

Immediately follows from our streaming algorithm for weighted spanner

• Link Arrival Stream

It uses even-odd bucketing, but needs to deal with more involved structures



Overview of 𝑘-CAP in Link Arrival

2-Approximation Algorithm in Link Arrival

Connectivity 
Augmentation

Cactus 
Augmentation

Cycle
Augmentation

[Galvez, Grandoni, Jabal Ameli, Sornat’19]
[Traub, Zenklusen’23]
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Overview of 𝑘-CAP in Link Arrival

Cycle Augmentation

• 2-cuts corresponds to removal of two edges on the cycle
o A 2-cut is covered if there exists a crossing link

• Pick an arbitrary root node “1”

• Keep incident edges of 𝑣 whose endpoints are closets to “1”

o Total of 𝑂(𝑛) edges are kept.

2-Approximation Algorithm in Link Arrival

• Warm-up: using extra log 𝑊 factor in space compared to the unweighted case:

Connectivity 
Augmentation

Cactus 
Augmentation

Cycle
Augmentation



Overview of 𝑘-CAP in Link Arrival

2-Approximation Algorithm in Link Arrival

• Warm-up: using extra log 𝑊 factor in space compared to the unweighted case:

❑ keep at most 2 edges per vertex for each weight class

• Weighted: similar even-odd bucketing idea works

❑ shrink “3-edge-connected” components

❑ not Cycle Augmentation anymore

❑ still has nice structures to exploit

Connectivity 
Augmentation

Cactus 
Augmentation

Cycle
Augmentation



Algorithms Overview
General Network Design in Streams



General Network Design

𝑘-Edge Connected Spanning Subgraph (𝑘-ECSS)

• Augmentation Framework [Williamson et al.’93]

❑ Increase the connectivity one by one in each pass till get to 𝑘
❑ Using our algorithm for CAP in link arrival, we get an algorithm that runs

o  in 𝑘 passes, 

o  uses 𝑂(𝑛𝑘 + 𝑛 ⋅ log 𝑛) space, and

o  Approx. factor: trivial bound is 𝑂(𝑘) but a more careful analysis gives 𝑂(log 𝑘)

Approximation Bound

• The integrality gap of the standard LP relaxation of the augmentation problem is 2.

• In ℓ-th phase (i.e., ℓ-CAP), the optimal fractional solution has cost ≤
OPT𝑘−ECSS

ℓ
   



General Network Design (contd.)

SNDP: A collection of 𝑘 spanner-like structure is a coreset for the problem 

• Analysis relies on 
oReverse Augmentation Framework [Goemans et al.’94], and
oOur algorithm for CAP in edge arrival streams

• Guarantee

o In one pass, and

ousing 𝑂(𝑘𝑛1+1/𝑡),

o achieves 𝑂(𝑡 ⋅ log 𝑘)-approximation 



Summary: 
   “Network Design in streaming and its connection to weighted spanners”

Questions

oClose the gaps (for SNDP and 𝑘-ECSS)!

oClose the gaps for unweighted 𝑘-CAP in link 
arrival streams:

▪ UB: (2 + 𝜖)-approx. in ෨𝑂 𝑛  space

▪ LB: < 1.409-approx. not possible in ෨𝑂 𝑛  space

o  Dynamic streaming?

Thank you!
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