# Streaming Algorithms for Connectivity Augmentation Problems

### Ali Vakilian

### TOYOTA TECHNOLOGICAL INSTITUTE AT





Joint work with Ce Jin (MIT), Michael Kapralov (EPFL) and Sepideh Mahabadi (MSR)

#### **Connectivity Augmentation Problem (***k***-CAP)** Input:

- (k-1)-edge-connected graph G = (V, E), and
- set of weighted links *L*, where weights are in  $\{0, 1, ..., W\}$ Output: min-weight  $L' \subset L$  s.t.  $G' = (V, E \cup L')$  is *k*-edge connected

#### **Connectivity Augmentation Problem (***k***-CAP)** Input:

• (k-1)-edge-connected graph G = (V, E), and

• set of weighted links *L*, where weights are in  $\{0, 1, ..., W\}$ Output: min-weight  $L' \subset L$  s.t.  $G' = (V, E \cup L')$  is *k*-edge connected



#### **Connectivity Augmentation Problem (***k***-CAP)** Input:

• (k-1)-edge-connected graph G = (V, E), and

■ set of weighted links *L*, where weights are in  $\{0, 1, ..., W\}$ Output: min-weight  $L' \subset L$  s.t.  $G' = (V, E \cup L')$  is *k*-edge connected



#### **Connectivity Augmentation Problem (***k***-CAP)** Input:

• (k-1)-edge-connected graph G = (V, E), and

• set of weighted links *L*, where weights are in  $\{0, 1, ..., W\}$ Output: min-weight  $L' \subset L$  s.t.  $G' = (V, E \cup L')$  is *k*-edge connected

> Minimum Spanning Tree and Tree Augmentation Problem (TAP) are special cases.

$$k = 1$$
  $k = 2$ 

#### **Connectivity Augmentation Problem (***k***-CAP)** Input:

• (k-1)-edge-connected graph G = (V, E), and

• set of weighted links *L*, where weights are in  $\{0, 1, ..., W\}$ Output: min-weight  $L' \subset L$  s.t.  $G' = (V, E \cup L')$  is *k*-edge connected

#### **General Network Design Problem (aka SNDP)** Input: k-ECSS: r(uv) = k for all $u, v \in V$

- graph G = (V, E) with a weight function  $w: E \rightarrow \{0, \dots, W\}$ , and
- connectivity requirement  $r: V \times V \to \mathbb{Z}_{\geq 0}$

**Output:** min-weight  $H \subset G$  s.t.  $\forall s, t \in V, H$  contains r(st) edge-disjoint st-paths

### Motivations

- Wireless/Telecommunication Networks
- Transportation Networks

### Motivations

- Wireless/Telecommunication Networks
- Transportation Networks

- Its study led to fundamental theoretical advances in combinatorial optimization, algorithms and mathematical programming:
  - Primal-Dual
  - $\,\circ\,$  Iterative Rounding
- Recent Advancements on TAP and CAP [Byrka, Grandoni, Jabal Ameli'20] [Cecchetto, Traub, Zenklusen'21] [Traub, Zenklusen'22a,b] [Traub, Zenklusen'23] [Garg, Grandoni, Jabal Ameli'23]

# What is Known (Offline)?

#### • General Network Design Problem:

□ 2-approximation [Jain'98]

#### Connectivity Augmentation Problem

Unweighted: 1.393-approximation [Cecchetto, Traub, Zenklusen'21]

**Weighted:**  $(1.5 + \epsilon)$ -approximation [Traub, Zenklusen'23]

**Hardness:** APX-hard

### **Preliminaries: Streaming Model**

#### **Graph Streaming Model**

- graph edges arrive in a stream, one by one (in an arbitrary order)
- using sublinear space,  $O(n \operatorname{polylog}(n))$  space (known as **semi-streaming**)

#### **Network Design in Streaming: increasing reliability of large-scale networks**

- unlike graph problems such as MST, Matching, Cut, Sparsifiers, not much is known
- testing connectivity

#### **Connectivity Augmentation Problem**

- Link Arrival Streams
  - $\Box$  *G* is given to the algorithm (its space is not counted in the space complexity)
  - $\hfill \Box$  links L arrive in a stream, one by one

#### **Connectivity Augmentation Problem**

- Link Arrival Streams
  - $\Box$  *G* is given to the algorithm (its space is not counted in the space complexity)

 $\hfill \Box$  links L arrive in a stream, one by one



#### **Connectivity Augmentation Problem**

- Link Arrival Streams
  - $\Box$  *G* is given to the algorithm (its space is not counted in the space complexity)
  - $\Box$  links *L* arrive in a stream, one by one
  - □ compact representation exists:
    - $\circ$  *k*-edge-connectivity certificate in O(nk) space
    - $\circ$  cactus representation of min-cuts in  $\mathcal{O}(n)$  space

#### **Connectivity Augmentation Problem**

- Link Arrival Streams
  - $\Box$  *G* is given to the algorithm (its space is not counted in the space complexity)
  - $\Box$  links *L* arrive in a stream, one by one
  - □ compact representation exists:
    - $\circ$  *k*-edge-connectivity certificate in O(nk) space
    - $\circ$  cactus representation of min-cuts in O(n) space
- (Fully) Edge Arrival Streams
  - $\Box$  both G and L arrive in a stream, in an arbitrary order

#### **Connectivity Augmentation Problem**

- Link Arrival Streams
  - $\Box$  *G* is given to the algorithm (its space is not counted in the space complexity)

 $\Box$  links *L* arrive in a stream, one by one

□ compact representation exists:

 $\circ$  *k*-edge-connectivity certificate in O(nk) space

 $\circ$  cactus representation of min-cuts in O(n) sr

• (Fully) Edge Arrival Streams

For General Network Design Problem, the only relevant model is **edge arrival** 

 $\Box$  both G and L arrive in a stream, in an arbitrary order

# Results

*k*-CAP, General Network Design, and Spanners

|             | Approximation  | Space                         | Model        |
|-------------|----------------|-------------------------------|--------------|
| k-CAP       | $2 + \epsilon$ | $O(\frac{n}{\epsilon}\log n)$ | Link Arrival |
| in one pass | $2-\epsilon$   | $\Omega(n^2)$ bits            |              |

• To get any approximation,  $\Omega(n)$  space is needed.

Unlike the offline setting, the 2-approximation is a barrier in link arrival streams

|                      | Approximation                | Space                                                                            | Model        |
|----------------------|------------------------------|----------------------------------------------------------------------------------|--------------|
| k-CAP<br>in one pass | 2 + <i>ε</i><br>2 - <i>ε</i> | $O(rac{n}{\epsilon}\log n)$<br>$\Omega(n^2)$ bits                               | Link Arrival |
|                      | O(t)                         | $\tilde{O}(nk + n^{1 + \frac{1}{t}})$<br>$\Omega(nk + n^{1 + \frac{1}{t}})$ bits | Edge Arrival |

• An Interesting Special Case: All links arrive before existing (zero cost) edges

|                                               | Approximation  | Space                             | Model        |  |
|-----------------------------------------------|----------------|-----------------------------------|--------------|--|
| k-CAP                                         | $2 + \epsilon$ | $O(\frac{n}{\epsilon}\log n)$     | Lipk Arrival |  |
| in one pass                                   | $2-\epsilon$   | $\Omega(n^2)$ bits                |              |  |
|                                               | 0(t)           | $\tilde{O}(nk+n^{1+\frac{1}{t}})$ |              |  |
| An Interesting Special Case: All links arrive |                |                                   |              |  |
|                                               |                |                                   |              |  |

•

|                      | Approximation                    | Space                                                                            | Model        |
|----------------------|----------------------------------|----------------------------------------------------------------------------------|--------------|
| k-CAP<br>in one pass | $2 + \epsilon$<br>$2 - \epsilon$ | $O(rac{n}{\epsilon}\log n)$<br>$\Omega(n^2)$ bits                               | Link Arrival |
|                      | <i>O</i> ( <i>t</i> )            | $\tilde{O}(nk + n^{1 + \frac{1}{t}})$<br>$\Omega(nk + n^{1 + \frac{1}{t}})$ bits | Edge Arrival |

- An Interesting Special Case: All links arrive before existing (zero cost) edges
- *nk* denotes the amount of space required to construct the *k*-connectivity certificate

Spanner is **the sparsifier** for connectivity augmentation problem.

### **Our Results II: (Weighted) Spanners**

- Tight bound in unweighted case: O(t)-spanners with  $O(n^{1+\frac{1}{t}})$  edges
- Weighted Case: Existing methods give O(t)-spanners with  $O(n^{1+\frac{1}{t}} \cdot \log W)$  edges

|                                     | Distortion | Space                                                           | Model        |
|-------------------------------------|------------|-----------------------------------------------------------------|--------------|
| Weighted<br>Spanners<br>in one pass | 0(t)       | $	ilde{O}(n^{1+rac{1}{t}})$<br>$\Omega(n^{1+rac{1}{t}})$ bits | Edge Arrival |

### **Results III: Applications to General Network Design**

|        | Passes | Approximation         | Space                                                              | Model        |
|--------|--------|-----------------------|--------------------------------------------------------------------|--------------|
| SNDP   | 1      | $O(t \log k)$<br>O(t) | $	ilde{O}(kn^{1+\frac{1}{t}})$<br>$\Omega(n^{1+\frac{1}{t}})$ bits | Edge Arrival |
| k-ECSS | k      | $O(\log k)$           | $O(nk \log n)$                                                     | Edge Arrival |

# **Algorithms Overview**

Weighted Spanners / *k*-CAP in Streams

## Weighted Spanner Problem

#### Input:

- edge-weighted graph G = (V, E) where weights belong to  $\{1, ..., W\}$ ,
- distortion parameter t

**Output:** subgraph  $H \subset G$  s.t. for every  $u, v \in V$ ,  $d_H(u, v) \leq t \cdot d_G(u, v)$ 

## Weighted Spanner Problem

#### Input:

• edge-weighted graph G = (V, E) where weights belong to [1, W],

distortion parameter t

**Output:** subgraph  $H \subset G$  s.t. for every  $u, v \in V$ ,  $d_H(u, v) \leq t \cdot d_G(u, v)$ 

#### **Algorithm for Unweighted Graphs:**

- 1. Initialize H = (V, E') with  $E' = \emptyset$
- 2. For every edge  $e \in E$ , add e to H if it does not form a cycle of length  $\leq O(t)$  with existing edges in H

Simple streaming-friendly algorithm with space complexity  $n^{1+1/t}$ 

## Weighted Spanner Problem

#### Input:

- edge-weighted graph G = (V, E) where weights belong to [1, W],
- distortion parameter t

**Output:** subgraph  $H \subset G$  s.t. for every  $u, v \in V$ ,  $d_H(u, v) \leq t \cdot d_G(u, v)$ 

#### **Simple Extension of Algorithm for Weighted Graphs:**

- Partition edges into  $\log W$  classes s.t. edges in each class differ by O(1)-factor
- Maintain O(t)-spanner in each weight class

Simple streaming-friendly algorithm with space complexity  $O(n^{1+\frac{1}{t}} \cdot \log W)$ 

### Shaving the log W Factor: Even-Odd Bucketing

**Standard Partitioning** (into log *W* partitions)

#### **Even-Odd Bucketing**

$$\begin{array}{c} \bullet \bullet \bullet & \left[ n^{i-2}, n^{i-1} \right) & \left[ n^{i-1}, n^{i} \right) & \left[ n^{i}, n^{i+1} \right) & \left[ n^{i+1}, n^{i+2} \right) & \left[ n^{i+2}, n^{i+3} \right] & \bullet \bullet \bullet \\ & B_{i-2} & B_{i-1} & B_{i} & B_{i+1} & B_{i+2} \end{array}$$

**Key Property:** It is cheaper to pick n edges from  $B_{i-2}$  than to pick a single edge from  $B_i$ 

□ Separately maintain spanners on **even buckets** and **odd buckets** 

### Shaving the log W Factor: Even-Odd Bucketing

**Standard Partitioning** (into log *W* partitions)

#### **Even-Odd Bucketing**

$$\begin{array}{c} \bullet \bullet \bullet & \left[ n^{i-2}, n^{i-1} \right] \\ B_{i-1} \end{array} \left[ \begin{array}{c} n^{i}, n^{i+1} \\ B_{i} \end{array} \right] \left[ \begin{array}{c} n^{i+1}, n^{i+2} \\ B_{i+1} \end{array} \right] \left[ \begin{array}{c} n^{i+2}, n^{i+3} \\ B_{i+2} \end{array} \right] \\ \begin{array}{c} \bullet \bullet \bullet \\ B_{i+2} \end{array} \right] \\ \end{array}$$

**Key Property:** It is cheaper to pick *n* edges from  $B_{i-2}$  than to pick a single edge from  $B_i$ 

□ Separately maintain spanners on **even buckets** and **odd buckets** 

### Shaving the log W Factor: Even-Odd Bucketing

### **Standard Partitioning** (into log *W* partitions)

#### **Even-Odd Bucketing**

$$\begin{array}{c} \bullet \bullet \bullet \\ n^{i-2}, n^{i-1} \\ B_{i-2} \end{array} \begin{bmatrix} n^{i-1}, n^i \\ B_{i-1} \end{bmatrix} \begin{bmatrix} n^{i}, n^{i+1} \\ B_i \end{bmatrix} \begin{bmatrix} n^{i+1}, n^{i+2} \\ B_{i+1} \end{bmatrix} \begin{bmatrix} n^{i+2}, n^{i+3} \\ B_{i+2} \end{bmatrix} \\ \begin{array}{c} \bullet \bullet \bullet \\ B_{i+2} \end{bmatrix} \\ \begin{array}{c} \bullet \bullet \bullet \\ B_{i+2} \end{bmatrix} \\ \end{array}$$

**Key Property:** It is cheaper to pick n edges from  $B_{i-2}$  than to pick a single edge from  $B_i$ 

□ Separately maintain spanners on **even buckets** and **odd buckets** 

## **Outline of Weighted Spanner Algorithm**

**STEP 1.** Summarize edges in even and odd buckets separately (maintaining a O(t)-spanner)

**STEP 2.** Combine *t*-spanners of **even** and **odd** buckets

$$\begin{array}{c} \bullet \bullet \bullet & \left[ n^{i-2}, n^{i-1} \right] \\ B_{i-2} \end{array} \begin{array}{c} I \\ B_{i-1} \end{array} \begin{array}{c} n^{i}, n^{i+1} \\ B_{i} \end{array} \end{array} \begin{array}{c} n^{i+1}, n^{i+2} \\ B_{i-1} \end{array} \begin{array}{c} n^{i+2}, n^{i+3} \\ B_{i+1} \end{array} \begin{array}{c} \bullet \bullet \bullet \\ B_{i+2} \end{array} \end{array}$$

• For any edge  $uv \in B_i$ :

○ If there exists a uv-path in (even buckets of)  $B_{\leq i-2}$ , don't keep uv in spanner

**Key Property:** For every uv-edge in  $B_i$ , a uv-path (of any length) in  $B_{\leq i-2}$  (if exists) has a lower weight

$$\begin{array}{c} \bullet \bullet \bullet & \left[ \begin{array}{c} n^{i-2}, n^{i-1} \end{array} \right] \left[ \begin{array}{c} n^{i-1}, n^{i} \end{array} \right] \left[ \begin{array}{c} n^{i}, n^{i+1} \end{array} \right] \left[ \begin{array}{c} n^{i+1}, n^{i+2} \end{array} \right] \left[ \begin{array}{c} n^{i+2}, n^{i+3} \end{array} \right] \\ B_{i-1} \end{array} \right] \left[ \begin{array}{c} B_{i} \end{array} \right] \left[ \begin{array}{c} n^{i+2}, n^{i+3} \end{array} \right] \\ B_{i+1} \end{array} \right] \left[ \begin{array}{c} n^{i+2}, n^{i+3} \end{array} \right] \\ B_{i+2} \end{array} \right]$$

• For any edge  $uv \in B_i$ :

○ If there exists a uv-path in (even buckets of)  $B_{\leq i-2}$ , don't keep uv in spanner

• Need to deal with edges of  $B_i$  between different CCs of  $G[B_{\leq i-2}]$ 

$$\begin{array}{c} \bullet \bullet \bullet & \left[ n^{i-2}, n^{i-1} \right] \\ B_{i-2} \end{array} \begin{array}{c} I \\ B_{i-1} \end{array} \left[ n^{i}, n^{i+1} \right] \\ B_{i} \end{array} \left[ n^{i+2}, n^{i+3} \right] \\ B_{i+1} \end{array} \left[ n^{i+2}, n^{i+3} \right] \\ B_{i+2} \end{array} \right]$$

• For any edge  $uv \in B_i$ :

○ If there exists a uv-path in (even buckets of)  $B_{\leq i-2}$ , don't keep uv in spanner

• Need to deal with edges of  $B_i$  between different CCs of  $G[B_{\leq i-2}]$ 

• Remove edges in bucket *i* with both endpoints in a same CC

**II.** Between any pair of CC, only keep the lightest edge from bucket *i* 



$$\begin{array}{c} \bullet \bullet \bullet & \left[ n^{i-2}, n^{i-1} \right] \\ B_{i-1} \end{array} \left[ \begin{array}{c} n^{i}, n^{i+1} \\ B_{i} \end{array} \right] \left[ \begin{array}{c} n^{i+1}, n^{i+2} \\ B_{i-1} \end{array} \right] \left[ \begin{array}{c} n^{i+2}, n^{i+3} \\ B_{i+2} \end{array} \right] \\ \begin{array}{c} \bullet \bullet \bullet \\ B_{i+2} \end{array} \right] \\ \begin{array}{c} \bullet \bullet \bullet \\ B_{i+2} \end{array} \left[ \begin{array}{c} n^{i+2}, n^{i+3} \\ B_{i+2} \end{array} \right] \\ \end{array}$$

• For any edge  $uv \in B_i$ :

○ If there exists a uv-path in (even buckets of)  $B_{\leq i-2}$ , don't keep uv in spanner

- Need to deal with edges of  $B_i$  between different CCs of  $G[B_{\leq i-2}]$
- Contract CCs of  $G[B_{\leq i-2}]$  into super nodes

### Analysis of the Algorithm on Even Buckets

$$\begin{array}{c} \bullet \bullet \bullet & \left[ n^{i-2}, n^{i-1} \right] \\ \hline B_{i-2} \end{array} \begin{array}{c} I \\ B_{i} \end{array} \begin{array}{c} n^{i}, n^{i+1} \end{array} \end{array} \begin{array}{c} I \\ B_{i} \end{array} \begin{array}{c} I \\ B_{i+2} \end{array} \begin{array}{c} I \\ B_{i+2} \end{array} \end{array}$$

- If there are x super nodes in  $B_i$ , need to store at most  $\tilde{O}(x^{1+1/t})$  edges from  $B_i$ 
  - $\circ$  Using the simple weighted spanner algorithm within each  $B_i$  (increase the space complexity by  $\log n$ )

○ If the number of non-zero-degree super nodes w.r.t.  $B_i$  is y, the spanner size becomes  $\tilde{O}(y^{1+1/t})$ 

• Using the nested structure of CCs w.r.t. buckets  $(B_{\leq i}, B_{\leq i-2}, ...)$ , we can bound the total number of edges by  $\tilde{O}(n^{1+1/t})$ 

### Implementation in Streaming

$$\begin{array}{c} \bullet \bullet \bullet & \left[ n^{i-2}, n^{i-1} \right] \\ \hline B_{i-2} \end{array} \begin{array}{c} I \\ B_{i-1} \end{array} \left[ n^{i}, n^{i+1} \right] \\ \hline B_{i} \end{array} \left[ n^{i+1}, n^{i+2} \right] \left[ n^{i+2}, n^{i+3} \right] \\ \hline B_{i+2} \end{array} \left[ n^{i+2}, n^{i+3} \right] \\ \hline B_{i+2} \end{array} \left[ n^{i+2}, n^{i+3} \right] \\ \hline B_{i+2} \end{array} \right]$$

• Edges may come in any order and CCs may change for several buckets as we add an edge

- Maintain super nodes in the stream (given the set of so far stored edges *H*, we can compute them when needed)
- Sparsify the spanners of all heavier buckets once an edge is added to H

# **Algorithms Overview**

*k*-CAP in Streams

### Weighted *k*-CAP in Streams

• Edge Arrival Stream

Immediately follows from our streaming algorithm for weighted spanner

• Link Arrival Stream

It uses **even-odd bucketing**, but needs to deal with more involved structures

#### **2-Approximation Algorithm in Link Arrival**



[Galvez, Grandoni, Jabal Ameli, Sornat'19] [Traub, Zenklusen'23]

#### **2-Approximation Algorithm in Link Arrival**



• Warm-up: using extra  $\log W$  factor in space compared to the unweighted case:

#### **2-Approximation Algorithm in Link Arrival**



• Warm-up: using extra  $\log W$  factor in space compared to the unweighted case:



#### **2-Approximation Algorithm in Link Arrival**



• Warm-up: using extra  $\log W$  factor in space compared to the unweighted case:



#### **2-Approximation Algorithm in Link Arrival**



• Warm-up: using extra  $\log W$  factor in space compared to the unweighted case:

- 2-cuts corresponds to removal of two edges on the cycle
  - $\circ~$  A 2-cut is covered if there exists a crossing link



#### **2-Approximation Algorithm in Link Arrival**



• Warm-up: using extra  $\log W$  factor in space compared to the unweighted case:

- 2-cuts corresponds to removal of two edges on the cycle
  - $\circ~$  A 2-cut is covered if there exists a crossing link
- Pick an arbitrary root node "1"



#### **2-Approximation Algorithm in Link Arrival**



• Warm-up: using extra  $\log W$  factor in space compared to the unweighted case:

- 2-cuts corresponds to removal of two edges on the cycle
  - $\circ~$  A 2-cut is covered if there exists a crossing link
- Pick an arbitrary root node "1"
- Keep incident edges of v whose endpoints are closets to "1"
  - $\circ$  Total of O(n) edges are kept.



#### **2-Approximation Algorithm in Link Arrival**



• Warm-up: using extra  $\log W$  factor in space compared to the unweighted case:

 $\hfill\square$  keep at most 2 edges per vertex for each weight class

• Weighted: similar even-odd bucketing idea works

□ shrink "3-edge-connected" components

□ not Cycle Augmentation anymore

 $\hfill$  still has nice structures to exploit

# **Algorithms Overview**

General Network Design in Streams

# General Network Design

#### k-Edge Connected Spanning Subgraph (k-ECSS)

- Augmentation Framework [Williamson et al.'93]
  - $\hfill\square$  Increase the connectivity one by one in each pass till get to k
  - □ Using our algorithm for CAP in link arrival, we get an algorithm that runs
    - $\circ$  in k passes,
    - $\circ$  uses  $O(nk + n \cdot \log n)$  space, and
    - Approx. factor: trivial bound is O(k) but a more careful analysis gives  $O(\log k)$

#### **Approximation Bound**

- The integrality gap of the standard LP relaxation of the augmentation problem is 2.
- In  $\ell$ -th phase (i.e.,  $\ell$ -CAP), the optimal fractional solution has cost  $\leq \frac{OPT_{k-ECSS}}{\rho}$

# General Network Design (contd.)

**SNDP:** A collection of k spanner-like structure is a coreset for the problem

• Analysis relies on

Reverse Augmentation Framework [Goemans et al.'94], and
 Our algorithm for CAP in edge arrival streams

• Guarantee

In one pass, and
using  $O(kn^{1+1/t})$ ,
achieves  $O(t \cdot \log k)$ -approximation

# Summary:

"Network Design in streaming and its connection to weighted spanners"

### Questions

- $\odot$  Close the gaps (for SNDP and  $k\text{-}\mathsf{ECSS}$ )!
- $\odot$  Close the gaps for unweighted k-CAP in link arrival streams:
  - UB:  $(2 + \epsilon)$ -approx. in  $\tilde{O}(n)$  space
  - LB: < 1.409-approx. not possible in  $\tilde{O}(n)$  space
- $\circ$  Dynamic streaming?

| Problem | Pass                                                    | Approx.                                                                                   | Space                                                                                                           | Stream                          |
|---------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|
|         | $\begin{vmatrix} 2+\epsilon\\ 2-\epsilon \end{vmatrix}$ | $ \begin{vmatrix} O(\frac{n}{\epsilon}\log n) \\ \Omega(n^2) \text{ bits} \end{vmatrix} $ | link arrival                                                                                                    |                                 |
|         |                                                         | O(t)                                                                                      | $ \begin{vmatrix} \tilde{O}(kn+n^{1+\frac{1}{t}}) \\ \Omega(kn+n^{1+\frac{1}{t}}) & \text{bits} \end{vmatrix} $ | fully streaming                 |
| STAP    | 1                                                       | O(t)                                                                                      | $\begin{vmatrix} \tilde{O}(n^{1+\frac{1}{t}}) \\ \Omega(n^{1+\frac{1}{t}}) \text{ bits} \end{vmatrix}$          | fully streaming<br>link arrival |
| Spanner | 1                                                       | O(t)                                                                                      | $\begin{vmatrix} \tilde{O}(n^{1+\frac{1}{t}}) \\ \Omega(n^{1+\frac{1}{t}}) \text{ bits} \end{vmatrix}$          | edge arrival                    |
| SNDP    | 1                                                       | $ \begin{vmatrix} O(t\log k) \\ O(t) \end{vmatrix} $                                      | $ \begin{vmatrix} \tilde{O}(kn^{1+\frac{1}{t}}) \\ \Omega(n^{1+\frac{1}{t}}) & \text{bits} \end{vmatrix} $      | edge arrival                    |
| k-ECSS  | k                                                       | $O(\log k)$                                                                               | $O(kn\log n)$                                                                                                   | edge arrival                    |

# Thank you!