
Streaming Algorithms for
Connectivity Augmentation Problems

Joint work with Ce Jin (MIT), Michael Kapralov (EPFL) and Sepideh Mahabadi (MSR)

Ali Vakilian

TOYOTA TECHNOLOGICAL INSTITUTE AT
CHICAGO

Problem Statement

Connectivity Augmentation Problem (𝑘-CAP)
Input:

▪ (𝑘 − 1)-edge-connected graph 𝐺 = (𝑉, 𝐸), and

▪ set of weighted links 𝐿, where weights are in {0,1, … , 𝑊}

Output: min-weight 𝐿′ ⊂ 𝐿 s.t. 𝐺′ = (𝑉, 𝐸 ∪ 𝐿′) is 𝑘-edge connected

Problem Statement

Connectivity Augmentation Problem (𝑘-CAP)
Input:

▪ (𝑘 − 1)-edge-connected graph 𝐺 = (𝑉, 𝐸), and

▪ set of weighted links 𝐿, where weights are in {0,1, … , 𝑊}

Output: min-weight 𝐿′ ⊂ 𝐿 s.t. 𝐺′ = (𝑉, 𝐸 ∪ 𝐿′) is 𝑘-edge connected

Problem Statement

Connectivity Augmentation Problem (𝑘-CAP)
Input:

▪ (𝑘 − 1)-edge-connected graph 𝐺 = (𝑉, 𝐸), and

▪ set of weighted links 𝐿, where weights are in {0,1, … , 𝑊}

Output: min-weight 𝐿′ ⊂ 𝐿 s.t. 𝐺′ = (𝑉, 𝐸 ∪ 𝐿′) is 𝑘-edge connected

Problem Statement

Connectivity Augmentation Problem (𝑘-CAP)
Input:

▪ (𝑘 − 1)-edge-connected graph 𝐺 = (𝑉, 𝐸), and

▪ set of weighted links 𝐿, where weights are in {0,1, … , 𝑊}

Output: min-weight 𝐿′ ⊂ 𝐿 s.t. 𝐺′ = (𝑉, 𝐸 ∪ 𝐿′) is 𝑘-edge connected

➢ Minimum Spanning Tree and Tree Augmentation Problem (TAP) are special cases.

𝑘 = 1 𝑘 = 2

Problem Statement

Connectivity Augmentation Problem (𝑘-CAP)
Input:

▪ (𝑘 − 1)-edge-connected graph 𝐺 = (𝑉, 𝐸), and

▪ set of weighted links 𝐿, where weights are in {0,1, … , 𝑊}

Output: min-weight 𝐿′ ⊂ 𝐿 s.t. 𝐺′ = (𝑉, 𝐸 ∪ 𝐿′) is 𝑘-edge connected

General Network Design Problem (aka SNDP)
Input:

▪ graph 𝐺 = (𝑉, 𝐸) with a weight function 𝑤: 𝐸 → {0, … , 𝑊}, and

▪ connectivity requirement 𝑟: 𝑉 × 𝑉 → ℤ≥0

Output: min-weight 𝐻 ⊂ 𝐺 s.t. ∀𝑠, 𝑡 ∈ 𝑉, 𝐻 contains 𝑟(𝑠𝑡) edge-disjoint 𝑠𝑡-paths

𝑘-ECSS:
 𝑟 𝑢𝑣 = 𝑘 for all 𝑢, 𝑣 ∈ 𝑉

Motivations

• Wireless/Telecommunication Networks

• Transportation Networks

Motivations

• Wireless/Telecommunication Networks

• Transportation Networks

• Its study led to fundamental theoretical advances in combinatorial
optimization, algorithms and mathematical programming:

o Primal-Dual

o Iterative Rounding

• Recent Advancements on TAP and CAP [Byrka, Grandoni, Jabal Ameli’20]

[Cecchetto, Traub, Zenklusen’21] [Traub, Zenklusen’22a,b] [Traub, Zenklusen’23] [Garg, Grandoni,
Jabal Ameli’23]

What is Known (Offline)?

• General Network Design Problem:

❑ 2-approximation [Jain’98]

• Connectivity Augmentation Problem

❑ Unweighted: 1.393-approximation [Cecchetto, Traub, Zenklusen’21]

❑ Weighted: (1.5 + 𝜖)-approximation [Traub, Zenklusen’23]

❑ Hardness: APX-hard

Preliminaries: Streaming Model

Graph Streaming Model

• graph edges arrive in a stream, one by one (in an arbitrary order)

• using sublinear space, 𝑂(𝑛 polylog(𝑛)) space (known as semi-streaming)

Network Design in Streaming: increasing reliability of large-scale networks

• unlike graph problems such as MST, Matching, Cut, Sparsifiers, not much is known

• testing connectivity

Connectivity Augmentation Problem

• Link Arrival Streams

❑ 𝐺 is given to the algorithm (its space is not counted in the space complexity)

❑ links 𝐿 arrive in a stream, one by one

Streaming Models: Possible Computation Models

Connectivity Augmentation Problem

• Link Arrival Streams

❑ 𝐺 is given to the algorithm (its space is not counted in the space complexity)

❑ links 𝐿 arrive in a stream, one by one

Streaming Models: Possible Computation Models

Connectivity Augmentation Problem

• Link Arrival Streams

❑ 𝐺 is given to the algorithm (its space is not counted in the space complexity)

❑ links 𝐿 arrive in a stream, one by one

❑ compact representation exists:

o 𝑘-edge-connectivity certificate in 𝑂(𝑛𝑘) space

o cactus representation of min-cuts in 𝑂(𝑛) space

Streaming Models: Possible Computation Models

Streaming Models: Possible Computation Models

Connectivity Augmentation Problem

• Link Arrival Streams

❑ 𝐺 is given to the algorithm (its space is not counted in the space complexity)

❑ links 𝐿 arrive in a stream, one by one

❑ compact representation exists:

o 𝑘-edge-connectivity certificate in 𝑂(𝑛𝑘) space

o cactus representation of min-cuts in 𝑂(𝑛) space

• (Fully) Edge Arrival Streams

❑ both 𝐺 and 𝐿 arrive in a stream, in an arbitrary order

Streaming Models: Possible Computation Models

Connectivity Augmentation Problem

• Link Arrival Streams

❑ 𝐺 is given to the algorithm (its space is not counted in the space complexity)

❑ links 𝐿 arrive in a stream, one by one

❑ compact representation exists:

o 𝑘-edge-connectivity certificate in 𝑂(𝑛𝑘) space

o cactus representation of min-cuts in 𝑂(𝑛) space

• (Fully) Edge Arrival Streams

❑ both 𝐺 and 𝐿 arrive in a stream, in an arbitrary order

For General Network Design Problem, the
only relevant model is edge arrival

Results
𝑘-CAP, General Network Design, and Spanners

Our Results I: Weighted Connectivity Augmentation

Approximation Space Model

𝑘-CAP
in one pass

2 + 𝜖

2 − 𝜖

𝑂(𝑛
𝜖 log 𝑛)

Ω(𝑛2) bits
Link Arrival

Unlike the offline setting, the 2-approximation is a barrier in link arrival streams

• To get any approximation, Ω(𝑛) space is needed.

Our Results I: Weighted Connectivity Augmentation

Approximation Space Model

𝑘-CAP
in one pass

2 + 𝜖

2 − 𝜖

𝑂(𝑛
𝜖 log 𝑛)

Ω(𝑛2) bits
Link Arrival

𝑂(𝑡)
෨𝑂(𝑛𝑘 + 𝑛1+

1
𝑡)

Ω(𝑛𝑘 + 𝑛1+
1

𝑡) bits

Edge Arrival

• An Interesting Special Case: All links arrive before existing (zero cost) edges

Our Results I: Weighted Connectivity Augmentation

Approximation Space Model

𝑘-CAP
in one pass

2 + 𝜖

2 − 𝜖

𝑂(𝑛
𝜖 log 𝑛)

Ω(𝑛2) bits
Link Arrival

𝑂(𝑡)
෨𝑂(𝑛𝑘 + 𝑛1+

1
𝑡)

Ω(𝑛𝑘 + 𝑛1+
1

𝑡) bits

Edge Arrival

• An Interesting Special Case: All links arrive before existing (zero cost) edges

Our Results I: Weighted Connectivity Augmentation

Approximation Space Model

𝑘-CAP
in one pass

2 + 𝜖

2 − 𝜖

𝑂(𝑛
𝜖 log 𝑛)

Ω(𝑛2) bits
Link Arrival

𝑂(𝑡)
෨𝑂(𝑛𝑘 + 𝑛1+

1
𝑡)

Ω(𝑛𝑘 + 𝑛1+
1

𝑡) bits

Edge Arrival

• An Interesting Special Case: All links arrive before existing (zero cost) edges

• 𝑛𝑘 denotes the amount of space required to construct the 𝑘-connectivity certificate

Spanner is the sparsifier for connectivity augmentation problem.

Our Results II: (Weighted) Spanners

Distortion Space Model

Weighted
Spanners
in one pass

𝑂(𝑡)
෨𝑂(𝑛1+

1
𝑡)

Ω(𝑛1+
1

𝑡) bits

Edge Arrival

• Tight bound in unweighted case: 𝑂(𝑡)-spanners with 𝑂(𝑛1+
1

𝑡) edges

• Weighted Case: Existing methods give 𝑂(𝑡)-spanners with 𝑂(𝑛1+
1

𝑡 ⋅ log 𝑊) edges

Results III: Applications to General Network Design

Passes Approximation Space Model

SNDP 1
𝑂 𝑡 log 𝑘

𝑂(𝑡)

෨𝑂(𝑘𝑛1+
1
𝑡)

Ω(𝑛1+
1

𝑡) bits

Edge Arrival

𝑘-ECSS 𝑘 𝑂(log 𝑘) 𝑂(𝑛𝑘 log 𝑛) Edge Arrival

Algorithms Overview
Weighted Spanners / 𝑘-CAP in Streams

Weighted Spanner Problem

Input:

▪ edge-weighted graph 𝐺 = (𝑉, 𝐸) where weights belong to {1, … , 𝑊},

▪ distortion parameter 𝑡

Output: subgraph 𝐻 ⊂ 𝐺 s.t. for every 𝑢, 𝑣 ∈ 𝑉, 𝑑𝐻 𝑢, 𝑣 ≤ 𝑡 ⋅ 𝑑𝐺(𝑢, 𝑣)

Weighted Spanner Problem

Input:

▪ edge-weighted graph 𝐺 = (𝑉, 𝐸) where weights belong to [1, 𝑊],

▪ distortion parameter 𝑡

Output: subgraph 𝐻 ⊂ 𝐺 s.t. for every 𝑢, 𝑣 ∈ 𝑉, 𝑑𝐻 𝑢, 𝑣 ≤ 𝑡 ⋅ 𝑑𝐺(𝑢, 𝑣)

Algorithm for Unweighted Graphs:

1. Initialize 𝐻 = (𝑉, 𝐸′) with 𝐸′ = ∅

2. For every edge 𝑒 ∈ 𝐸, add 𝑒 to 𝐻 if it does not form a cycle of length ≤ 𝑂(𝑡) with
existing edges in 𝐻

Simple streaming-friendly algorithm

with space complexity 𝑛1+1/𝑡

Weighted Spanner Problem

Input:

▪ edge-weighted graph 𝐺 = (𝑉, 𝐸) where weights belong to [1, 𝑊],

▪ distortion parameter 𝑡

Output: subgraph 𝐻 ⊂ 𝐺 s.t. for every 𝑢, 𝑣 ∈ 𝑉, 𝑑𝐻 𝑢, 𝑣 ≤ 𝑡 ⋅ 𝑑𝐺(𝑢, 𝑣)

Simple Extension of Algorithm for Weighted Graphs:

• Partition edges into log 𝑊 classes s.t. edges in each class differ by 𝑂(1)-factor

• Maintain 𝑂(𝑡)-spanner in each weight class

Simple streaming-friendly algorithm

with space complexity 𝑂(𝑛1+
1

𝑡 ⋅ log 𝑊)

Shaving the log 𝑊 Factor: Even-Odd Bucketing

Standard Partitioning (into log 𝑊 partitions)

Even-Odd Bucketing

❑ Separately maintain spanners on even buckets and odd buckets

Key Property: It is cheaper to pick 𝑛 edges from 𝑩𝒊−𝟐 than to pick a single edge from 𝑩𝒊

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

Shaving the log 𝑊 Factor: Even-Odd Bucketing

Standard Partitioning (into log 𝑊 partitions)

Even-Odd Bucketing

❑ Separately maintain spanners on even buckets and odd buckets

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

Key Property: It is cheaper to pick 𝑛 edges from 𝑩𝒊−𝟐 than to pick a single edge from 𝑩𝒊

Shaving the log 𝑊 Factor: Even-Odd Bucketing

Standard Partitioning (into log 𝑊 partitions)

Even-Odd Bucketing

❑ Separately maintain spanners on even buckets and odd buckets

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

Key Property: It is cheaper to pick 𝑛 edges from 𝑩𝒊−𝟐 than to pick a single edge from 𝑩𝒊

Outline of Weighted Spanner Algorithm

STEP 1. Summarize edges in even and odd buckets separately (maintaining a 𝑂(𝑡)-spanner)

STEP 2. Combine 𝑡-spanners of even and odd buckets

Algorithm for Spanners on Even Buckets

• For any edge 𝑢𝑣 ∈ 𝑩𝒊:
o If there exists a 𝑢𝑣-path in (even buckets of) 𝑩≤𝒊−𝟐, don’t keep 𝑢𝑣 in spanner

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

Key Property: For every 𝒖𝒗-edge in 𝑩𝒊, a 𝒖𝒗-path (of any length) in 𝑩≤𝒊−𝟐 (if
exists) has a lower weight

Algorithm for Spanners on Even Buckets

• For any edge 𝑢𝑣 ∈ 𝑩𝒊:
o If there exists a 𝑢𝑣-path in (even buckets of) 𝑩≤𝒊−𝟐, don’t keep 𝑢𝑣 in spanner

• Need to deal with edges of 𝑩𝒊 between different CCs of 𝐺[𝑩≤𝒊−𝟐]

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

Algorithm for Spanners on Even Buckets

• For any edge 𝑢𝑣 ∈ 𝑩𝒊:
o If there exists a 𝑢𝑣-path in (even buckets of) 𝑩≤𝒊−𝟐, don’t keep 𝑢𝑣 in spanner

• Need to deal with edges of 𝑩𝒊 between different CCs of 𝐺[𝑩≤𝒊−𝟐]

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

𝐶1

II. Between any pair of CC, only keep

the lightest edge from bucket 𝑖

I. Remove edges in bucket 𝑖 with both

endpoints in a same CC

Algorithm for Spanners on Even Buckets

• For any edge 𝑢𝑣 ∈ 𝑩𝒊:
o If there exists a 𝑢𝑣-path in (even buckets of) 𝑩≤𝒊−𝟐, don’t keep 𝑢𝑣 in spanner

• Need to deal with edges of 𝑩𝒊 between different CCs of 𝐺[𝑩≤𝒊−𝟐]

• Contract CCs of 𝐺[𝑩≤𝒊−𝟐] into super nodes

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

Analysis of the Algorithm on Even Buckets

• If there are 𝑥 super nodes in 𝑩𝒊, need to store at most ෨𝑂(𝑥1+1/𝑡)
edges from 𝑩𝒊

oUsing the simple weighted spanner algorithm within each 𝑩𝒊 (increase the
space complexity by log 𝑛)

o If the number of non-zero-degree super nodes w.r.t. 𝑩𝒊 is 𝑦, the spanner size
becomes ෨𝑂(𝑦1+1/𝑡)

• Using the nested structure of CCs w.r.t. buckets (𝑩≤𝒊, 𝑩≤𝒊−𝟐, …), we
can bound the total number of edges by ෨𝑂(𝑛1+1/𝑡)

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

Implementation in Streaming

• Edges may come in any order and CCs may change for several buckets
as we add an edge

• Maintain super nodes in the stream (given the set of so far stored edges 𝐻,

we can compute them when needed)

• Sparsify the spanners of all heavier buckets once an edge is added to 𝐻

… …𝑛𝑖 , 𝑛𝑖+1𝑛𝑖−1, 𝑛𝑖 𝑛𝑖+1, 𝑛𝑖+2𝑛𝑖−2, 𝑛𝑖−1 𝑛𝑖+2, 𝑛𝑖+3

𝑩𝒊+𝟐𝑩𝒊+𝟏𝑩𝒊𝑩𝒊−𝟏𝑩𝒊−𝟐

Algorithms Overview
𝑘-CAP in Streams

Weighted 𝑘-CAP in Streams

• Edge Arrival Stream

Immediately follows from our streaming algorithm for weighted spanner

• Link Arrival Stream

It uses even-odd bucketing, but needs to deal with more involved structures

Overview of 𝑘-CAP in Link Arrival

2-Approximation Algorithm in Link Arrival

Connectivity
Augmentation

Cactus
Augmentation

Cycle
Augmentation

[Galvez, Grandoni, Jabal Ameli, Sornat’19]
[Traub, Zenklusen’23]

Overview of 𝑘-CAP in Link Arrival

2-Approximation Algorithm in Link Arrival

• Warm-up: using extra log 𝑊 factor in space compared to the unweighted case:

Connectivity
Augmentation

Cactus
Augmentation

Cycle
Augmentation

Overview of 𝑘-CAP in Link Arrival

Cycle Augmentation

2-Approximation Algorithm in Link Arrival

• Warm-up: using extra log 𝑊 factor in space compared to the unweighted case:

Connectivity
Augmentation

Cactus
Augmentation

Cycle
Augmentation

Overview of 𝑘-CAP in Link Arrival

2-Approximation Algorithm in Link Arrival

• Warm-up: using extra log 𝑊 factor in space compared to the unweighted case:

Cycle Augmentation

Connectivity
Augmentation

Cactus
Augmentation

Cycle
Augmentation

Overview of 𝑘-CAP in Link Arrival

Cycle Augmentation

• 2-cuts corresponds to removal of two edges on the cycle
o A 2-cut is covered if there exists a crossing link

2-Approximation Algorithm in Link Arrival

• Warm-up: using extra log 𝑊 factor in space compared to the unweighted case:

Connectivity
Augmentation

Cactus
Augmentation

Cycle
Augmentation

Overview of 𝑘-CAP in Link Arrival

Cycle Augmentation

• 2-cuts corresponds to removal of two edges on the cycle
o A 2-cut is covered if there exists a crossing link

• Pick an arbitrary root node “1”

2-Approximation Algorithm in Link Arrival

• Warm-up: using extra log 𝑊 factor in space compared to the unweighted case:

Connectivity
Augmentation

Cactus
Augmentation

Cycle
Augmentation

Overview of 𝑘-CAP in Link Arrival

Cycle Augmentation

• 2-cuts corresponds to removal of two edges on the cycle
o A 2-cut is covered if there exists a crossing link

• Pick an arbitrary root node “1”

• Keep incident edges of 𝑣 whose endpoints are closets to “1”

o Total of 𝑂(𝑛) edges are kept.

2-Approximation Algorithm in Link Arrival

• Warm-up: using extra log 𝑊 factor in space compared to the unweighted case:

Connectivity
Augmentation

Cactus
Augmentation

Cycle
Augmentation

Overview of 𝑘-CAP in Link Arrival

2-Approximation Algorithm in Link Arrival

• Warm-up: using extra log 𝑊 factor in space compared to the unweighted case:

❑ keep at most 2 edges per vertex for each weight class

• Weighted: similar even-odd bucketing idea works

❑ shrink “3-edge-connected” components

❑ not Cycle Augmentation anymore

❑ still has nice structures to exploit

Connectivity
Augmentation

Cactus
Augmentation

Cycle
Augmentation

Algorithms Overview
General Network Design in Streams

General Network Design

𝑘-Edge Connected Spanning Subgraph (𝑘-ECSS)

• Augmentation Framework [Williamson et al.’93]

❑ Increase the connectivity one by one in each pass till get to 𝑘
❑ Using our algorithm for CAP in link arrival, we get an algorithm that runs

o in 𝑘 passes,

o uses 𝑂(𝑛𝑘 + 𝑛 ⋅ log 𝑛) space, and

o Approx. factor: trivial bound is 𝑂(𝑘) but a more careful analysis gives 𝑂(log 𝑘)

Approximation Bound

• The integrality gap of the standard LP relaxation of the augmentation problem is 2.

• In ℓ-th phase (i.e., ℓ-CAP), the optimal fractional solution has cost ≤
OPT𝑘−ECSS

ℓ

General Network Design (contd.)

SNDP: A collection of 𝑘 spanner-like structure is a coreset for the problem

• Analysis relies on
oReverse Augmentation Framework [Goemans et al.’94], and
oOur algorithm for CAP in edge arrival streams

• Guarantee

o In one pass, and

ousing 𝑂(𝑘𝑛1+1/𝑡),

o achieves 𝑂(𝑡 ⋅ log 𝑘)-approximation

Summary:
 “Network Design in streaming and its connection to weighted spanners”

Questions

oClose the gaps (for SNDP and 𝑘-ECSS)!

oClose the gaps for unweighted 𝑘-CAP in link
arrival streams:

▪ UB: (2 + 𝜖)-approx. in ෨𝑂 𝑛 space

▪ LB: < 1.409-approx. not possible in ෨𝑂 𝑛 space

o Dynamic streaming?

Thank you!

	Slide 1: Streaming Algorithms for Connectivity Augmentation Problems
	Slide 2: Problem Statement
	Slide 3: Problem Statement
	Slide 4: Problem Statement
	Slide 5: Problem Statement
	Slide 6: Problem Statement
	Slide 7: Motivations
	Slide 8: Motivations
	Slide 9: What is Known (Offline)?
	Slide 10: Preliminaries: Streaming Model
	Slide 11: Streaming Models: Possible Computation Models
	Slide 12: Streaming Models: Possible Computation Models
	Slide 13: Streaming Models: Possible Computation Models
	Slide 14: Streaming Models: Possible Computation Models
	Slide 15: Streaming Models: Possible Computation Models
	Slide 16: Results
	Slide 17: Our Results I: Weighted Connectivity Augmentation
	Slide 18: Our Results I: Weighted Connectivity Augmentation
	Slide 19: Our Results I: Weighted Connectivity Augmentation
	Slide 20: Our Results I: Weighted Connectivity Augmentation
	Slide 21: Our Results II: (Weighted) Spanners
	Slide 22: Results III: Applications to General Network Design
	Slide 23: Algorithms Overview
	Slide 24: Weighted Spanner Problem
	Slide 25: Weighted Spanner Problem
	Slide 26: Weighted Spanner Problem
	Slide 27: Shaving the log cap W Factor: Even-Odd Bucketing
	Slide 28: Shaving the log cap W Factor: Even-Odd Bucketing
	Slide 29: Shaving the log cap W Factor: Even-Odd Bucketing
	Slide 30: Outline of Weighted Spanner Algorithm
	Slide 31: Algorithm for Spanners on Even Buckets
	Slide 32: Algorithm for Spanners on Even Buckets
	Slide 33: Algorithm for Spanners on Even Buckets
	Slide 34: Algorithm for Spanners on Even Buckets
	Slide 35: Analysis of the Algorithm on Even Buckets
	Slide 36: Implementation in Streaming
	Slide 37: Algorithms Overview
	Slide 38: Weighted k-CAP in Streams
	Slide 39: Overview of k-CAP in Link Arrival
	Slide 40: Overview of k-CAP in Link Arrival
	Slide 41: Overview of k-CAP in Link Arrival
	Slide 42: Overview of k-CAP in Link Arrival
	Slide 43: Overview of k-CAP in Link Arrival
	Slide 44: Overview of k-CAP in Link Arrival
	Slide 45: Overview of k-CAP in Link Arrival
	Slide 46: Overview of k-CAP in Link Arrival
	Slide 47: Algorithms Overview
	Slide 48: General Network Design
	Slide 49: General Network Design (contd.)
	Slide 50: Summary: “Network Design in streaming and its connection to weighted spanners”

