Sublinear time Approximation Algorithms for Max-Cut on Clusterable Graphs (ICALP 2024)

- **June 20, Simons Institute**
- **Workshop on Extroverted Sublinear Algorithms**
- **Akash Kumar (IIT Bombay)**

Agastya Jha $(EPFL \rightarrow U Chicago)$

Michael Kapralov

The Max-Cut Problem

The Max-Cut Problem

Let $MC(G)$ = fraction of edges cut by the best bipartition.

Vertex Query

Random Neighbor Query

Query Model:

Vertex Query Random Neighbor Query

Can only "crawl" along the edges of G.

Question: Decide whether $MC(G) \geq 1 - \gamma$ or $MC(G) \leq \frac{1}{2} + \gamma$

Known results for Sublinear Time Approximation to Max-Cut

- Factor $\frac{1}{2}$ trivial.
- [CKKMP 18] MC(G) to within a factor $\frac{1}{2}$ +ε needs n^{1/2+Ω(ε)} time.

Q: Can you beat ½ factor for some interesting graph classes?

Ø [Peng-Yoshida 23] Yes, on expanders. \triangleright [Jha, K.] Yes, on clusterable graphs.

Known results for Sublinear Time Approximation to Max-Cut

- Factor $\frac{1}{2}$ trivial.
- [CKKMP 18] MC(G) to within a factor $\frac{1}{2}$ +ε needs $n^{1/2+Q(\epsilon)}$ time.

Q: Can you beat ½ factor for some interesting graph classes?

[Peng-Yoshida 23] Yes, on expanders. \triangleright [Jha, K.] Yes, on clusterable graphs.

What is a good cluster?

Formalized using the notion of Inner conductance. We define

$$
\Phi_{\text{in}}(S) = \frac{|E(S, C \setminus S)|}{\min(\text{vol}(S), \text{vol}(C \setminus S))}
$$

$$
\Phi_{\text{in}}(S) = \frac{|E(S, C \setminus S)|}{\min(d|S|, d|C \setminus S|)} \text{ for d-regular graphs.}
$$

 $C \subseteq V$ is a good cluster if all sets $S \subseteq C$ have $\Phi_{in}(S) > \Phi$

 $\mathbf 1$

3

 5 20 6

4

2

G is (k, Φ, ε) clusterable if you can partition $V(G)$ into k disjoint subsets C_1 , $C_2, ..., C_k$ (of roughly same size) such that

1) $\Phi_{\text{in}}(C_i) > \Phi$ 2) $\Phi_{\text{out}}(C_i) < ε$

Here,
$$
\Phi_{\text{out}}(S) = \frac{|E(S,V \setminus S)|}{d|S|}
$$

G is (k, $\Omega(1)$, ε) clusterable if you can partition V(G) into k disjoint subsets C_1 , $C_2,..., C_k$ (of roughly same size) such that

 $\overline{\mathbb{1}}$

4

 8^{9}

 $\widehat{\mathbf{0}}$

5

6

7

 $2 - 3$

1) $\Phi_{\text{in}}(C_i) > \Omega(1)$ 2) $\Phi_{\text{out}}(C_i) < ε$

Here, $\Phi_{\text{out}}(S) = \frac{|E(S,V \setminus S)|}{|S|}$ $d|S$ Goal: Get a better than ½ approximation for MC(G) on this graph class.

The $k = 1$ case [Peng-Yoshida 23] Decide if MC(G) $\geq 1 - \gamma$ or MC(G) $\leq \frac{1}{2} + \gamma$ on an expander.

Notation: $p_{v,l}$ = end-pt distrib. of step lazy r/ walks from v. \vert = C log n/ Φ^2

PY idea:

- \triangleright Pick v ~ V(G) and consider W ~ p_{v I}.
- \triangleright Remove all loops on the walk W and obtain W'.

Exp_{v,l}^(e) = distrib on walks with length $|W'|$ being even.

- Exp_{v,l}^(o) = distrib on walks with length $|W'|$ being odd.
- > Return MC(G) large iff $||p_{v,I}^{(e)} p_{v,I}^{(o)}||_2^2$ large.

Assume $γ ≤ ε$.

Assume $\gamma \leq 10$ ε.

Assume $\gamma \leq 10$ ε.

Assume $\gamma \leq 10$ ε.

The $k > 1$ case.

Consider the following intuition.

Perform a two-step non-lazy walk in G. \triangleright If G had c clusters with large induced cut-value, the new graph has k+c sparse cuts.

How about doing even 2t length walks and tracking (k+c)-th eigenvalue of L^{2t} ?

Main Theorem [Jha, K.]

There exists an algorithm which when given as input a graph (k, Φ, ε) clusterable G (d-regular) runs in time $O^*(n^{1/2+O(\epsilon)})$ and returns a high/low cut-value verdict which is correct with probability at least 2/3.

O* hides terms poly(d,k, log n) terms.

Recapping our approach

Understand spectra of these instances. Show that spectra is appreciably different in the two cases.

Obtain access to the spectral info via random walks.

Note:

If MC(G) $\geq 1 - \gamma$, then $c \geq 2k/3$ clusters have induced cutvalue at least $1 - O(\gamma)$. If MC(G) \leq 1/₂ + γ , then c \geq 2k/3 clusters have induced cutvalue at most $\frac{1}{2} + O(\gamma)$.

The Algorithm (Inspired by [CKKMP 18])

- 1. Assign $c = 2k/3$.
- 2. Assign $s = poly(k) n^{O(\varepsilon)}$.
- 3. Assign t = $\frac{c \log n}{\sqrt{2}}$ $\frac{\log n}{\Phi^2}$.
- 4. Sample set S of s vertices.
- 5. Compute Gram Matrix (M^tS)^T (M^tS) approximately.
- 6. If $\frac{n}{2}$ $\overline{\mathcal{S}}$ v_{k+c} (M^tS)^T (M^tS) ≥ n^{-ε}, return High cut-value
- 7. Else return Low cut-value

The Algorithm (Inspired by [CKKMP 18])

- 1. Assign $c = 2k/3$.
- 2. Assign $s = poly(k) n^{O(\varepsilon)}$.
- 3. Assign t = $\frac{c \log n}{\sqrt{2}}$ $\frac{\log n}{\Phi^2}$.
- 4. Sample set S of s vertices.

- 5. Compute Gram Matrix (M^tS)^T (M^tS) approximately.
- 6. If $\frac{n}{2}$ $\overline{\mathcal{S}}$ v_{k+c} (M^tS)^T (M^tS) ≥ n^{-ε}, return High cut-value
- 7. Else return Low cut-value

The Algorithm (Inspired by [CKKMP 18])

- 1. Assign $c = 2k/3$.
- 2. Assign $s = poly(k) n^{O(\varepsilon)}$.
- 3. Assign t = $\frac{c \log n}{\sqrt{2}}$ $\frac{\log n}{\Phi^2}$.
- 4. Sample set S of s vertices.
-
- 5. Compute Gram Matrix (M^tS)^T (M^tS) approximately.
- 6. If $\frac{n}{2}$ $\overline{\mathcal{S}}$ v_{k+c} (M^tS)^T (M^tS) ≥ n^{-ε}, return High cut-value
- 7. Else return Low cut-value

Fix (i,j). Can compute entry (i,j) to an additive $n^{-1-\epsilon}$ approximation in time $n^{\frac{1}{2} + \epsilon}$ using collision counting.

Claim 1: If MC(G) $\geq 1 - \varepsilon$, then $v_{k+c}(M^t)^\top (M^t) \geq (1 - O(\varepsilon))^{2t}$. Note: $(1 - \varepsilon)^{2t}$ ≥ exp(-4t ε) ≥ exp(-4 $\frac{C \log n}{\Phi^2}$ ε) ≥ n^{-C'ε} Claim 2: If $MC(G) \leq \frac{1}{2} + \varepsilon$, then $v_{k+c}(M^t)^\top (M^t) \leq (1 - O(\Phi^2))^{2t}$. Note: $(1 - Φ²)^{2t} ≤ exp(-2t Φ²) ≤ exp(-2^C log n ²) ≤ n^{-2C}$

Claim 1: If $MC(G) \geq 1 - \varepsilon$, then $v_{k+c}(M^t)^\top (M^t) \geq (1 - O(\varepsilon))^{2t}$.

Claim 2: If $MC(G) \leq \frac{1}{2} + \varepsilon$, then $v_{k+c}(M^t)^\top (M^t) \leq (1 - O(\Phi^2))^{2t}$.

Intuition for Claim 1

- 1. By easy direction of Higher order Cheeger, $v_k(M) \geq 1-2\varepsilon$.
- 2. If MC(G) $\geq 1 \varepsilon$ then $c \geq 2k/3$. This means c eigenvalues of M are at most -1 + 10ε.
- 3. This implies Claim 1.

Claim 1: If $MC(G) \geq 1 - \varepsilon$, then $v_{k+c}(M^t)^\top (M^t) \geq (1 - O(\varepsilon))^{2t}$.

Claim 2: If $MC(G) \leq \frac{1}{2} + \varepsilon$, then $v_{k+c}(M^t)^\top (M^t) \leq (1 - O(\Phi^2))^{2t}$.

Intuition for Claim 2

- 1. A new spectral lemma: In a spectral expander, v_{n-1} >> -1. (Proof later)
- 2. In an expander G, if MC(G) close to $\frac{1}{2}$, then $v_n \gg -1$.
- 3. This implies Claim 2.

Claim 1: If $MC(G) \geq 1 - \varepsilon$, then $v_{k+c}(M^t)^\top (M^t) \geq (1 - O(\varepsilon))^{2t}$.

Claim 2: If $MC(G) \leq \frac{1}{2} + \varepsilon$, then $v_{k+c}(M^t)^\top (M^t) \leq (1 - O(\Phi^2))^{2t}$.

Finish up with Matrix Bernstein. Requires proving bounds on $\vert\vert\mathsf{M}^t1_x\vert\vert_2^2$. (Adapt [GKLMS 21]) $||M^t1_x||_2^2 = ||M^t \Sigma \beta_i(x) u_i||_2^2$ $= ||\sum \lambda_i^t \beta_i(x) u_i||_2^2$ $= \sum_{i \in Close} \lambda_i^{2t} \beta_i(x)^2 + \sum_{i \in Far} \lambda_i^{2t} \beta_i(x)^2$

Claim: If $\lambda_{n-1} \geq 2 - \varepsilon$, then $\lambda_2 \leq O(\varepsilon)$.

This means, in a spectral expander you have $\lambda_{n-1} \leq 2 - \Omega(1)$

Claim: If $\lambda_{n-1} \ge 2 - \varepsilon$, then $\lambda_2 \le O(\varepsilon)$.

Claim: If $\lambda_{n-1} \ge 2 - \varepsilon$, then $\lambda_2 \le O(\varepsilon)$.

Claim: If $\lambda_{n-1} \ge 2 - \varepsilon$, then $\lambda_2 \le O(\varepsilon)$.

```
Proof Overview:
Take any vector z with R(z) \geq 2 - \varepsilon.
Let z' = |z|.
You have R(z') \leq \varepsilon.
```
Produce two orthogonal vectors x, y with $R(x)$, $R(y)$ small. Choose $x = all 1's$. Can I pick y = z' for some z with $R(z) \ge 2 - \varepsilon$?

Claim: If $\lambda_{n-1} \ge 2 - \varepsilon$, then $\lambda_2 \le O(\varepsilon)$.

Choose $y = z' - (component along all 1's).$ Annoyance: *R(y) might shoot up! (Call such z a bad vector)*

Would like to show there exists a "good" vector z.

Existence of a good vector:

If y is bad, then z' is highly correlated with all 1's. Thus, z' has large l_1 -norm.

Suppose v_{n-1} and v_n are both bad. Choose $z =$! $\sqrt{2}$ $(v_{n-1} + v_n)$. Can show z' has small l_1 -norm

 \Rightarrow The resulting vector y is good!

$y = z'$ is bad if

 \triangleright R(y) is large, or \triangleright $||y||_2$ is small

Open Problems

- 1. Generalize better than ½ sublinear time approximation to a larger class of graphs?
- 2. Lower Bounds for Testing 3-colorability on expanders. Eg decide whether val(G) $\geq 1 - \gamma$ or val(G) $\leq \frac{2}{3}$ 3 $+$ γ
- 3. Characterizing approximation resistance for approximating 2-CSPs on expanders in sublinear time?

Thank you!

