Sampling Big ldeas in
Sublinear Algorithms

Edith Cohen
Google Research -
Tel Aviv University ¥



Random Sampling

Basis of learning from observations

Recent centuries: Tool for efficiently surveying populations
" Graunt 1662: Estimate population of England

= Laplace ratio estimator [1786, 1802]: Estimate the population of France.
Sampled “Communes” (administrative districts), counting population ratio
to live births in previous year. Extrapolate from birth registrations in whole
country.

= Kiaer 1895 “representative method”; March 1903 “probability sampling”
= US census 1938: Use probability sample to estimate unemployment

Recent decades: Ubiquitous tool in efficient data processing, analysis,
algorithms design



Big Ideas — Sampling Toolbox

This talk: Some synthesis of selected ideas
Originated in stats and CS works — see writeup for references

 Composable summary structures
* PPS sampling for Linear Queries
e Sampling via Order Statistics
* Graph sketches
e Estimation of Linear Queries
* Soft PPS
 Sticky per-key randomness
* Coordinated Samples
* Multi-objective Samples

Sampling Unaggregated raw data
* Max aggregation
* Sum aggregation
* Functions of frequency
* Transform to Max
* Transform to Heavy Hitters



Sample as a Summary Structure

Dataset D = {(x, w, )} of key-value pairs w, = 0,

Sampling Scheme specifies a randomized
summary structure D — S(D) in the form of
a subset of keys and auxiliary information

Approximate Queries in Sample Space:

f(D)fromS(D)

f(Dq,Ds,...) from S(D;),S(D5), ... .
estimator

Q:f(D)? ait)
* Sampling schemes and estimators (query response algorithms) (Accuracy

vs. sample size)

 Efficient Algorithms (storage, communication, compute)
* over the raw data presentation (distributed, streaming, graph, unaggregated...)




Q Composable (Mergeable) Summary Structures

Data AUBRB




Why Composable ?

Distributed data/parallelize computation




Task: Linear Aggregation Queries
Dataset D = {(x,w,)} w, =0, x € X
Sample S(D)

Query: h: X' — {0,1} Response: estimate sum(h) = )., h(x) - w, from S(D)

Error bounds™ for sample size k

sum(h) o 1

An = sum(1) MRz sum(h) = vk -qp

*With Probability Proportional to Size (PPS) sampling
(Weighted/Importance sampling)



PPS Sampling Schemes

PPSWR (With Replacement):

Repeat k times:

Wy

Select key x with prob.

sum(1)

PPSWOR (WithOut Replacement)
Y <l

Repeat k times:

Wy

Select key x € Y with prob

sum(ly)

Remove x from Y

Stochastic partition: random partition of
X to k parts. PPS sample from each part

Sample size k

* All yield the same worst-case error bounds

PPSWR less update-efficient
PPSWOR better on “heavy tailed” data

Effective sample size of with-replacement sampling
(support size 10000)

2504 — Distinct L1 WR samples, Zipf 1
Distinct L2 WR samples, Zipf 1

200 A

150 ~

100 ~

Distinct samples

50 A

0 50 100 150 200 250 300 350 400
Number of samples



Big Ideas — Outline

e Sampling via Order Statistics
 Distributed/streaming use

Graph sketches
Estimation of Linear Queries
Soft PPS
Sticky per-key randomness

* Coordinated Samples

* Multi-objective Samples

Sampling Unaggregated raw data
* Max aggregation
* Sum aggregation
* Functions of frequency
* Transform to Max
* Transform to Heavy Hitters



Sampling via Order Statistics

Transform sampling problem — computing bottom-k order statistics

Gains: Efficiency -- PPSWOR as described is sequential and inefficient
Applicability -- e.g. sample without knowledge of sum(1)

Compute an (independent) score to each (key,value) pair
e = (x,w,) - score(e) ~ F[w,]

§
U [O, ﬂ ; = sequential Poisson (Priority sampling)

KExp lw| ;= PPSWOR.

Flw] := A

PPSWR — bottom-1 score (X k)
PPSWOR — bottom-k scores



Bottom-k Transform:

score(i,w;) = X; ~ Exp[w;]

First step:
What is Pr [Xl < min X;|?
1>1
= minx; ~ Exp[)i~; wi]

W1

= Pr[Xl < rin>1{1Xl- =

Step 2+:

W1 +Zi>1 Wi

Why we get PPSWOR

Properties of Exponential Distribution
X; ~ Exp[w;]
— Wi
PriX; < X,] = -

min X; ~ Exp[Y; w;]
l

Memorylessness:
W1 PriX>ty+t|X >t 0] =Pr|X >t]

Zi Wi

> Fort=0,i>1 Pr[Xi>X1+t|Xl->X1]=Pr[Xl->t]



Bottom-k Transform: Efficiency benefits

e = (x,w,) »— score(e) ~ F[w,]

Application:
Raw data presents as distributed or streaming of pairs {(x, w, )}

e Scoreis locally” computed for each pair
 Composability of bottom- k :

bottom-k(A U B) = bottom-k( bottom-k(A) U bottom-k(B) )

More Applications: Neighborhood samples for each node in a graph



Graphs Sketches: Node-Centric

samples of neighborhoods or reachability sets
Graph G(V,E)

Task: Compute for each node v, a sample S(v) v
= Of N(v): nodes reachable from v
= Of N(v): nodes within distance 5 from v

= Naive: first compute N(v): O(|E||V])

= Through order transform: near-linear 0(k |E|)

Idea:

= score(v) ~F foreachv €V

= Compute for each node u € I/ the k reachable
nodes v with smallest score(v) = Samples are computed without

“Propagate” scores by prioritizing lower values. knowing cardinality [N (v)| !

Each node is visited at most k times.

= Can be used to estimate it!



Big Ideas — Outline

Sampling Unaggregated raw data
* Max aggregation

e Sampling via Order Statistics * Sum aggregation
* Functions of frequency

* Transform to Max
e Estimation of Linear Queries * Transform to Heavy Hitters
* Soft PPS

e Sticky per-key randomness
* Coordinated Samples
* Multi-objective Samples



Sum Estimation as Parameter estimation

Properties of Exponential Distribution
Estimating sum(1) from order samples: X; ~ Exp[w;]

The minimum score is iid Exp|[sum(1)] ml_in X; ~ Exp|X;w;l

PPSWR: The minimum scores in the k reps are k iid samples r; ~ Exp|[sum(1)]

k-1 1
NRMSE is —

The (optimal) unbiased estimator is

PPSWOR sample: can use memorylessness to “extract” k iid samples
~ Exp|sum(1)] from the bottom- k scores and weights of sampled keys.



Estimating Linear Queries from Samples
sum(h) = Y h(x) - wy

. . _ Z X €S
Inverse probability per-key estimate: w, = {Pr[x€S]
0 X &S

Sum(h) = ¥y h(x) - Wy = Yyesh(x) - Wy

Per-key estimates are unbiased (if w, > 0 = Pr|x € S} > 0)

A7 —_— . Wx . —_—
Elw,] =0-Pr[x &S]+ ——— Pr|x € S| = wy

linearity of expectation = sum estimate is unbiased
E[Sum(h) = Xy h(x) - E[wy] = Xy h(x) - wy = Sum(h)

I With PPS schemes we get ~optimal error bounds.
Catch -- need to compute Pr[x € §|. With PPSWR samples, we need sum(1). For
bottom-k samples, Pr[x € S | depends weights of keys not in sample.



Inverse Probability with bottom-k samples

Idea: Detangle -- use Pr|x € S | conditioned on the scores of all other keys
T, = {score(e) | e.key # x} The kth lowest score of keys other than x

W, =

Now easy to compute: . For PPSWOR
Pr[x€S| 1, =t] = Pr[score(x) <t]=1—e Wzt
( W,
XES
PrlxesS| t,=1t]
. 0 X ES

Unbiased when conditioned on 7, = unbiased (over distribution of 7,, )

Forx € S,7, =1 = {score(e)},iq
To facilitate estimation, we store the lowest score with the sample

Error bounds? Conditioning increases variance



Inverse Probability with PPSWOR --

. ~ 1 I 'Sun
Still get ~optimal error bounds.._ sum(n) \/Var[Sum(h) 1
= am@) T sumy Ve

* Bound per-key variance var|w,| < le1 W, - sum(1)

var[ wy | Tx=t]S%

var[wy] = E;_var[wy | 7, =t ]

Distribution of 7, is “dominated” by sum of k iid Exp [sum(1)] (small val more likely)
. cov[v/v}, v/v},] <0

= var[Sum(h)] < Z var|wy]

x€eH
< ﬁ csum(1) - D ey Wy = ﬁ sum(h) sum(1)



Big Ideas — Outline

Sampling Unaggregated raw data
* Max aggregation
e Sampling via Order Statistics * Sum aggregation
* Functions of frequency
* Transform to Max

* Transform to Heavy Hitters
e Soft PPS

e Sticky per-key randomness
* Coordinated Samples
* Multi-objective Samples



Soft PPS

Scenario: We PPS sampled with respect to weights w,
but our query is )., h(x) - w',, with respect to weights w',,
Useful when
 we are limited by the sampling procedure
* weights change and we want to use the same sample

Inverse probability estimate: w', = <PrV[ZES] x €S Unbiased when
crsep Y U 0 x &85 w,>0 =>Pr[xeS|>0)
\
. _P / o sumyy (1) ] W_ch
Error bound: N pw,w) =— T max’

Takeaway: gracefully degrades with “‘distance” between w' and w
can get the “exact PPS” error — but with a larger sample



Big Ideas — Outline

Sampling Unaggregated raw data
* Max aggregation
e Sampling via Order Statistics * Sum aggregation
* Functions of frequency
* Transform to Max
* Transform to Heavy Hitters

 Sticky per-key randomness
* Coordinated Samples
* Multi-objective Samples



Sticky per-key randomness

Permanent Random Numbers (PRN) [Brewer, Early, Joyce 1972]

Idea: “Attach” the random bits of score(e = (x,w,)) to the key x (rather than the pair)

1
For each key x, iid seed(x) ~ F Exp[w] = . Exp[1]
1
score(e) « — - seed(x) 1 1
Wx U [o, —] = —.U[0,1]
w w

Application scenarios:

 When there are multiple contexts/weights (aka instances) for the same set of keys
Samples of instances with sticky randomness are coordinated

* Unaggregated data — key appears in multiple data elements (e.g. distinct counting)



Sample Coordination

Same set of keys, multiple sets of weights (“instances”). Sample each instance

460.0kg




Coordinated Samples: Benefits

* Stability of sample under dynamic weight changes

Survey sampling: Weights evolve but surveys impose burden. Want to minimize the
burden and maintain a PPS sample of the evolved set.

* Representations (sketches) of instances:
* Accuracy on inter-instance queries (e.g. similarity)
* Locality Sensitive Hashing (LSH) property (similar weights= similar samples)
* Efficient to compute for many instances (e.g. Graph sketches)

* Maximize agreement when sampling from different instances (improved
privacy/utility)

* Multi-objective samples — overlap of samples implies less storage/computation



Multi-objective Sample: Basic

Compute coordinated samples S@ for each wW
®" multi-objective sample S is the union S = UiS(i)

= Estimation: Inverse probability with sampling probabilities p,, = max p(i) (x)
l

Gains: storage (maximum overlap)
Higher accuracy that with using just the dedicated sample



Multi-objective Sample

= Same keys can have different “weights:” |P flows have bytes, packets, count
= We want to answer queries with respect to all weights.
= Naive solution: 3 disjoint samples

= Smart solution: A single multi-objective sample

460.0k 210.0kg
.Okg 210.0kg

4.0kg 180cm 30.0kg 10.0kg  8.0kg 200cm
12.4kg 100cm 300cm 150 years
30cm  ©0cm 50 years 40 years 50cm  60cm o

100 years




“Classic” centrality, Coresets for Clustering

: : : : : O
"Classic” centrality: Pointset X in a metric space

Query: point x estimate }.,,cy d(x, V)

* “Instance” for each point x with weights d(x,y) fory € X
* Soft PPS + multi-objective sample size 0 (e~ %)

Clustering cost: Pointset X
Query: k-tuple x = (x4, ...,x;) estimate )., cy d(x,y) where d(x,y) =

min d(x;,y)

* “Instance” for each tuple x with weights d(x,v) fory € X
* Soft PPS + multi-objective sample size 0 (k € ?)



Multi-objective sample of monotone weights

All weights that are "ordered” the same way Wl(i) > Wl(i) > Wz(i) > W3(i) =
Multi-objective sample has

= (expected) size: O(k Inn) , where n = #keys

Suffices to take union of coordinated samples of all unweighted prefixes of the order

12:00am 1:00am 2:00am 3:00am .. 4:00am
i £ 4o ‘,‘7‘ WE ¢ @ =) 27 ' | .
B ww ¥ ¥ ® TLIW ®

Application: Data Streams time-decaying aggregations
monotone non-increasing a(x), and segment H C V

A=) a(ty)

u€eH
t,: Elapsed time from start of stream to u

t,,: Elapsed time from u to current time



Graph Sketches: All-distance Sketches

Graph G = (V,E) For each node v :
ADS(v) : A union of coordinated samples of all its 7-neighborhoods N,.(v)
={u|d(v,u) <r}

Coordination across nodes and distances!

« Smallsize: E[ |ADS(v)|| = k log(n)
« ADS(v) is multi-objective with monotone weights!
When ordered by distance (1, ..., 1,0, ..., 0)
* Near-linear computation/storage: O(k|E|)




Graph Sketches: All-distance Sketches...

Graph G = (V,E) For each node v :

ADS(v) : A union of coordinated samples of all its 7-neighborhoods N,.(v)
={u|d(v,u) <r}

Queries:
* Node-centric queries: centrality/kernel density,

* Inter-node queries: approximate distance oracles, similarity,
influence (merged coverage of multiple nodes

Distance-decaying centrality guery: (monotone weights!)

Query: Node v, monotone non-increasing «(x), selection predicate h

Estimate centrality (= kernel density) of v

Ca(v» h) - Zu h(U) " (dvu)



Big Ideas — Outline

Sampling Unaggregated raw data
* Max aggregation
* Sum aggregation
* Functions of frequency
* Transform to Max
* Transform to Heavy Hitters



Unaggregated raw data 2

" Data element e € E has key and value (e.key,e.value)
" Multiple elements may share the same key

= Max agg: w, = max e.value = Sum agg: w, = ), e.value
8 g ele.key=x 11 7 ¢lekey=x

= Naive: Aggregate pairs (x, w, ), then sample — requires structure size O(#distinct keys)

= Goal: Work over raw data via composable structures of size O (k)




Unaggregated data: Max-Distinct Sampling

" Max agg: w, = mgl)é Eé;]/g)lcue

Use hash-based sticky per-key randomness seed(x) ~ Exp[1]

Locally map each element
seed(e.key)

e = (e.key,e.val) » e* = (e.key, )

e.val

Aggregate mapped elements £ to find k unique keys with lowest scores
(via a composable bottom-k structure)

Correctness: the minimum value of a key in E™ corresponds to score of largest e. val




Unaggregated data: Sum aggregation

=" Sum agg: w, = Zle.kvalue
ele.key=x

Locally map each element
e = (e.key,e.val) » e* = (e.key, v ~ Exp|e.val])

Aggregate mapped elements £ via composable bottom-k structures
(keep lowest score for each key)

Correctness: the minimum value of a key x in E* has distribution

ek lnélil?ey:XEXp[e. val] = Exp|Y.cx | e.key=x €- val| (property of exp distribution)

Note: No sticky per-key randomness

Caveat: We have the right sample but we don’t have weights w, for sampled keys!!



Unaggregated data: Sum aggregation
estimation via inversion

We have a PPSWOR sample with no weights w,. for sampled keys!!

Easy solution: Perform a second aggregation pass to sum weights of the sampled keys
(simple composable structure of size k)

Solution for streaming: Can’t collect weights for sampled keys. But can collect weights
so that we have a handle on the distribution of the part we “missed”. “Invert” that

distribution to obtain estimates.
Surprise: We get the ~optimal error bounds on estimating linear statistics



Unaggregated data: Functions of frequency

Sum of weights (“frequency”): ) e.value
. ele.key=x
Monotone non-decreasing |

Our weights are function of frequency w, = (D] e.value)
ele.key=x

I Some functions are hard: can’t do super-quadratic growth

Two “transform” based ideas

* Via Max-Distinct sampling applicable to concave sublinear functions
 Via heavy hitters for moment functions f(w) = wP p € [0,2]



Unaggregated data: Functions of frequency
Transform to (Max)-Distinct

Concave sublinear functions are sub-linear with non-increasing growth. Examples:
f(w)=wP ,p € [0,1] (low frequency moments)
f(w) = min{T,w } (capping function)
fw) =log(1+w)
High level idea: These functions are "between” max and sum aggregations. We
“mix” the element maps.

Properties:

* No sticky randomness

 Can get a multi-objective sample of all concave-sublinear functions (logarithmic

factor increase in sample size)

* When only computing the statistics )., /(D e.value) -- can “strip” the sample and
ele.key=x

get hyperloglog-like composable structures.




Unaggregated data: Functions of frequency
Transform to heavy hitters

= w, = (Q e.val)P
ele.key=x

Use hash-based sticky per-key randomness seed(x) ~ Exp[1]

Locally map each element

e.val
e = (e.key,e.val) » e* = (e.Kkey, =
(Seed(e. key))5
* . Ze | e.key=x e.val
Sum aggregate of £~ has weights — . We want the top-k
(seed(e.key))P

top-k of sum-aggs generally needs structure size O(#distinct) !!
Fortunately, top-k are £, heavy-hitters. When p < 2, we apply a HH sketch (e.g.
Count Sketch) to £~



Summary: Big |deas

 Many of the ideas originated in the statistics literature for very different

and typically much smaller scale applications (survey sampling)
* These ideas, and their extensions, found and continue to find new

applications
* See writeup for references and pointers



Thank youl!



