Sampling Big Ideas in Sublinear Algorithms

Edith Cohen Google Research S Tel Aviv University

Random Sampling

Basis of learning from observations

Recent centuries: Tool for **efficiently** surveying populations

- Graunt 1662: Estimate population of England
- Laplace ratio estimator [1786, 1802]: Estimate the population of France. Sampled "Communes" (administrative districts), counting population ratio to live births in previous year. Extrapolate from birth registrations in whole country.
- Kiaer 1895 "representative method"; March 1903 "probability sampling"
- US census 1938: Use probability sample to estimate unemployment
- •
- •
- •

Recent decades: Ubiquitous tool in efficient data processing, analysis, algorithms design

Big Ideas – Sampling Toolbox

This talk: Some synthesis of **selected** ideas Originated in stats and CS works – see writeup for references

- Composable summary structures
- PPS sampling for Linear Queries
- Sampling via Order Statistics
 - Graph sketches
 - Estimation of Linear Queries
 - Soft PPS
 - Sticky per-key randomness
 - Coordinated Samples
 - Multi-objective Samples

Sampling Unaggregated raw data

- Max aggregation
- Sum aggregation
- Functions of frequency
 - Transform to Max
 - Transform to Heavy Hitters

- Sampling schemes and estimators (query response algorithms) (Accuracy vs. sample size)
- Efficient Algorithms (storage, communication, compute)
 - over the raw data presentation (distributed, streaming, graph, unaggregated...)

Why Composable ?

Distributed data/parallelize computation

Task: Linear Aggregation Queries **Dataset** $D = \{(x, w_x)\} | w_x \ge 0, x \in X$ Sample S(D)

Query: $h: \mathcal{X} \to \{0,1\}$ **Response:** estimate $sum(h) \coloneqq \sum_{x} h(x) \cdot w_{x}$ from S(D)

Error bounds* for sample size k $q_h \coloneqq \frac{sum(h)}{sum(1)}$ NRMSE $\frac{\sigma}{sum(h)} \le \frac{1}{\sqrt{k} \cdot q_h}$

*With Probability Proportional to Size (PPS) sampling (Weighted/Importance sampling)

PPS Sampling Schemes

PPSWR (With Replacement):

Repeat k times:

Select key x with prob. $\frac{w_x}{sum(1)}$

PPSWOR (WithOut Replacement)

 $Y \leftarrow \mathcal{X}$

Repeat k times:

Select key $x \in Y$ with prob $\frac{w_x}{sum(1_Y)}$ Remove x from Y

Stochastic partition: random partition of \mathcal{X} to k parts. PPS sample from each part

Sample size k

- All yield the same worst-case error bounds
- PPSWR less update-efficient
- PPSWOR better on "heavy tailed" data

Big Ideas – Outline

- Composable summary structures
- PPS sampling for Linear Queries
- Sampling via Order Statistics
 - Distributed/streaming use
 - Graph sketches
 - Estimation of Linear Queries
 - Soft PPS
 - Sticky per-key randomness
 - Coordinated Samples
 - Multi-objective Samples

Sampling Unaggregated raw data

- Max aggregation
- Sum aggregation
- Functions of frequency
 - Transform to Max
 - Transform to Heavy Hitters

Sampling via Order Statistics

Transform sampling problem \rightarrow computing bottom-k order statistics

Gains: Efficiency -- PPSWOR as described is sequential and inefficient Applicability -- e.g. sample without knowledge of $sum(1) \coloneqq \sum_{x \in H} w_x$

Compute an (independent) score to each (key,value) pair $e = (x, w_x) \mapsto score(e) \sim F[w_x]$

$$F[w] \coloneqq \begin{cases} U\left[0, \frac{1}{w}\right] & \text{;} \Rightarrow \text{sequential Poisson (Priority sampling)} \\ Exp[w] & \text{;} \Rightarrow PPSWOR. \end{cases}$$

PPSWR → bottom-1 score (× k) PPSWOR → bottom-k scores

Bottom-k Transform: Why we get PPSWOR

 $score(i, w_i) = X_i \sim Exp[w_i]$

First step:

What is $\Pr\left[\frac{X_1}{X_1} < \min_{i>1} X_i\right]$? (ii) $\Rightarrow \min_{i>1} X_i \sim \operatorname{Exp}[\sum_{i>1} w_i]$ (i) $\Rightarrow \Pr\left[X_1 < \min_{i>1} X_i\right] = \frac{w_1}{w_1 + \sum_{i>1} w_i} = \frac{w_1}{\sum_i w_i} \qquad \Pr\left[X > t_0 + t \mid X > t_0\right] = \Pr[X > t]$

Properties of Exponential Distribution

 $X_i \sim \operatorname{Exp}[w_i]$ (i) $\Pr[X_1 < X_2] = \frac{w_1}{w_1 + w_2}$ (ii) min $X_i \sim \operatorname{Exp}[\sum_i w_i]$ (iii) Memorylessness:

Step 2+:

(iii) \Rightarrow For $t \ge 0, i > 1$ Pr $[X_i > X_1 + t | X_i > X_1] = \Pr[X_i > t]$

Bottom-*k* Transform: Efficiency benefits

$$e = (x, w_x) \mapsto score(e) \sim F[w_x]$$

Application:

Raw data presents as distributed or streaming of pairs $\{(x, w_x)\}$

- Score is ``locally'' computed for each pair
- Composability of bottom- k :

bottom- $k(A \cup B)$ = bottom- $k(A) \cup bottom-k(B)$)

More Applications: Neighborhood samples for each node in a graph

Q

Graphs Sketches: Node-Centric samples of neighborhoods or reachability sets

Task: Compute for *each* node v, a sample S(v)

- Of N(v): nodes reachable from v
- Of N(v): nodes within distance 5 from v
- Naïve: first compute N(v): O(|E||V|)
- Through order transform: near-linear $\tilde{O}(k | E |)$

Idea:

- $score(v) \sim F$ for each $v \in V$
- Compute for each node u ∈ V the k reachable nodes v with smallest score(v)

"Propagate" scores by prioritizing lower values. Each node is visited at most k times.

- Samples are computed without knowing cardinality |N(v)| !
- Can be used to estimate it!

Big Ideas – Outline

- Composable summary structures
- PPS sampling for Linear Queries
- Sampling via Order Statistics
 - Distributed/streaming use
 - Graph sketches
 - Estimation of Linear Queries
 - Soft PPS
 - Sticky per-key randomness
 - Coordinated Samples
 - Multi-objective Samples

Sampling Unaggregated raw data

- Max aggregation
- Sum aggregation
- Functions of frequency
 - Transform to Max
 - Transform to Heavy Hitters

Sum Estimation as Parameter estimation

Estimating *sum*(1) from order samples: The minimum score is iid Exp[*sum*(1)] **Properties of Exponential Distribution**

 $X_i \sim \operatorname{Exp}[w_i]$ (ii) $\min_i X_i \sim \operatorname{Exp}[\sum_i w_i]$

PPSWR: The minimum scores in the *k* reps are *k* iid samples $r_i \sim \text{Exp}[sum(1)]$ The (optimal) unbiased estimator is $\frac{k-1}{\sum_{i \in [k]} r_i}$ NRMSE is $\frac{1}{\sqrt{k-1}}$

PPSWOR sample: can use memorylessness to "extract" k iid samples $r_i \sim \exp[sum(1)]$ from the bottom- k scores and weights of sampled keys.

Estimating Linear Queries from Samples

 $sum(h) \coloneqq \sum_{x} h(x) \cdot w_{x}$

Inverse probability per-key estimate: $\widehat{w_x} = \begin{cases} \frac{w_x}{\Pr[x \in S]} & x \in S \\ 0 & x \notin S \end{cases}$

 $\widehat{\operatorname{Sum}(h)} = \sum_{x} h(x) \cdot \widehat{w_x} = \sum_{x \in S} h(x) \cdot \widehat{w_x}$

Per-key estimates are **unbiased** (if $w_x > 0 \Rightarrow \Pr[x \in S] > 0$) $E[\widehat{w_x}] = 0 \cdot \Pr[x \notin S] + \frac{w_x}{\Pr[x \in S]} \cdot \Pr[x \in S] = w_x$

linearity of expectation \Rightarrow sum estimate is unbiased $E[\widehat{\text{Sum}(h)} = \sum_{x} h(x) \cdot E[\widehat{w_{x}}] = \sum_{x} h(x) \cdot w_{x} = \text{Sum}(h)$

!! With PPS schemes we get ~optimal error bounds. Catch -- need to compute $\Pr[x \in S]$. With PPSWR samples, we need sum(1). For bottom-k samples, $\Pr[x \in S]$ depends weights of keys not in sample.

Inverse Probability with bottom-k samples

Idea: Detangle -- use $\Pr[x \in S]$ conditioned on the scores of all other keys $\tau_x := \{score(e) \mid e.key \neq x\}_{(k)}$ The *k*th lowest score of keys other than *x*

Now easy to compute: $\Pr[x \in S \mid \tau_x = t] = \Pr[score(x) < t] = 1 - e^{-w_x \cdot t}$ For PPSWOR

$$\widehat{w_{x}} = \begin{cases} \frac{w_{x}}{\Pr[x \in S \mid \tau_{x} = t]} & x \in S \\ 0 & x \notin S \end{cases}$$

Unbiased when conditioned on $\tau_{\chi} \implies$ unbiased (over distribution of τ_{χ})

For $x \in S$, $\tau_x = \tau := \{score(e)\}_{k+1}$ To facilitate estimation, we store the lowest score with the sample Error bounds? Conditioning increases variance

Inverse Probability with PPSWOR --

Still get ~optimal error bounds! $q_h \coloneqq \frac{sum(h)}{sum(1)} \qquad \frac{\sqrt{\operatorname{Var}[\operatorname{Sum}(h)]}}{sum(h)} \leq \frac{1}{\sqrt{k-1} \cdot q_h}$

• Bound per-key variance $\operatorname{var}[\widehat{w_{\chi}}] \leq \frac{1}{k-1} w_{\chi} \cdot \operatorname{sum}(1)$ $\operatorname{var}[\widehat{w_{\chi}} \mid \tau_{\chi} = t] \leq \frac{w_{\chi}}{t}$ $\operatorname{var}[\widehat{w_{\chi}}] = \operatorname{E}_{\tau_{\chi}} \operatorname{var}[\widehat{w_{\chi}} \mid \tau_{\chi} = t]$

Distribution of τ_{χ} is "dominated" by sum of k iid Exp [sum(1)] (small val more likely)

• $\operatorname{cov}\left[\widehat{w_x}, \widehat{w_y}\right] \leq 0$

$$\Rightarrow \operatorname{var}[\widehat{Sum}(h)] \leq \sum_{x \in H} \operatorname{var}[\widehat{w_x}]$$
$$\leq \frac{1}{k-1} \cdot \operatorname{sum}(1) \cdot \sum_{x \in H} w_x = \frac{1}{k-1} \operatorname{sum}(h) \operatorname{sum}(1)$$

Big Ideas – Outline

- Composable summary structures
- PPS sampling for Linear Queries
- Sampling via Order Statistics
 - Distributed/streaming use
 - Graph sketches
 - Estimation of Linear Queries
 - Soft PPS
 - Sticky per-key randomness
 - Coordinated Samples
 - Multi-objective Samples

Sampling Unaggregated raw data

- Max aggregation
- Sum aggregation
- Functions of frequency
 - Transform to Max
 - Transform to Heavy Hitters

Scenario: We PPS sampled with respect to weights w_x but our query is $\sum_x h(x) \cdot w'_x$ with respect to weights w'_x Useful when

- we are limited by the sampling procedure
- weights change and we want to use the same sample

Inverse probability estimate:
$$\widehat{w'_{x}} = \begin{cases} \frac{w'_{x}}{\Pr[x \in S]} & x \in S \\ 0 & x \notin S \end{cases}$$
 Unbiased when
 $w'_{x} > 0 \Rightarrow \Pr[x \in S] > 0 \end{cases}$
Error bound: $\frac{\rho}{\sqrt{k} \cdot q_{h}}$ $\rho(w', w) \coloneqq \frac{\operatorname{sum}_{w}(1)}{\operatorname{sum}_{w'}(1)} \cdot \max_{x} \frac{w'_{x}}{w_{x}}$

Takeaway: gracefully degrades with ``distance" between w' and w can get the "exact PPS" error – but with a larger sample

Big Ideas – Outline

- Composable summary structures
- PPS sampling for Linear Queries
- Sampling via Order Statistics
 - Distributed/streaming use
 - Graph sketches
 - Estimation of Linear Queries
 - Soft PPS
 - Sticky per-key randomness
 - Coordinated Samples
 - Multi-objective Samples

Sampling Unaggregated raw data

- Max aggregation
- Sum aggregation
- Functions of frequency
 - Transform to Max
 - Transform to Heavy Hitters

Sticky per-key randomness

Permanent Random Numbers (PRN) [Brewer, Early, Joyce 1972]

Idea: "Attach" the random bits of $score(e = (x, w_x))$ to the key x (rather than the pair)

For each key x, iid seed(x) ~ F $\operatorname{Exp}[w] \equiv \frac{1}{w} \cdot \operatorname{Exp}[1]$ $score(e) \leftarrow \frac{1}{w_x} \cdot seed(x)$ $U\left[0, \frac{1}{w}\right] \equiv \frac{1}{w} \cdot U[0, 1]$

Application scenarios:

- When there are multiple contexts/weights (aka instances) for the same set of keys Samples of instances with sticky randomness are coordinated
- Unaggregated data key appears in multiple data elements (e.g. distinct counting)

Same set of keys, multiple sets of weights ("instances"). Sample each instance

Coordinated Samples: Benefits

• Stability of sample under dynamic weight changes

Survey sampling: Weights evolve but surveys impose burden. Want to minimize the burden and maintain a PPS sample of the evolved set.

- Representations (sketches) of instances:
 - Accuracy on inter-instance queries (e.g. similarity)
 - Locality Sensitive Hashing (LSH) property (similar weights⇒ similar samples)
 - Efficient to compute for many instances (e.g. Graph sketches)
- Maximize agreement when sampling from different instances (improved privacy/utility)
- Multi-objective samples overlap of samples implies less storage/computation

Multi-objective Sample: Basic

Compute coordinated samples $S^{(i)}$ for each $w^{(i)}$

- multi-objective sample S is the union $S = \bigcup_i S^{(i)}$
- Estimation: Inverse probability with sampling probabilities $p_x = \max_i p^{(i)}(x)$

Gains: storage (maximum overlap) Higher accuracy that with using just the dedicated sample

Multi-objective Sample

- Same keys can have different "weights:" IP flows have bytes, packets, count
- We want to answer queries with respect to all weights.
- Naïve solution: 3 disjoint samples
- Smart solution: A single multi-objective sample

"Classic" centrality, Coresets for Clustering

"Classic" centrality: Pointset X in a metric space Query: point x estimate $\sum_{y \in X} d(x, y)$

- "Instance" for each point x with weights d(x, y) for $y \in X$
- Soft PPS + multi-objective sample size $O(\epsilon^{-2})$

```
Clustering cost: Pointset X
```

Query: k-tuple $\mathbf{x} = (x_1, ..., x_k)$ estimate $\sum_{y \in X} d(\mathbf{x}, y)$ where $d(\mathbf{x}, y) = \min_{i \in [k]} d(\mathbf{x}_i, y)$

- "Instance" for each tuple x with weights d(x, y) for $y \in X$
- Soft PPS + multi-objective sample size $O(k \epsilon^{-2})$

Multi-objective sample of monotone weights

All weights that are "ordered" the same way $w_1^{(i)} \ge w_1^{(i)} \ge w_2^{(i)} \ge w_3^{(i)} \ge$ Multi-objective sample has

• (expected) size: $O(k \ln n)$, where n = #keys

Suffices to take union of coordinated samples of all **unweighted** prefixes of the order

<u>Application</u>: Data Streams time-decaying aggregations monotone non-increasing $\alpha(x)$, and segment $H \subset V$

 $A_{\alpha} = \sum_{u \in H} \alpha (t_u)$ t_u : Elapsed time from start of stream to u t_u : Elapsed time from u to current time

Graph Sketches: All-distance Sketches

Graph G = (V, E) For each node v: ADS(v): A union of coordinated samples of all its r-neighborhoods $N_r(v)$ = $\{u \mid d(v, u) \leq r\}$

Coordination across nodes and distances!

- Small size: $E[|ADS(v)|] = k \log(n)$
 - ADS(v) is multi-objective with monotone weights!
 When ordered by distance (1, ..., 1,0, ..., 0)
- Near-linear computation/storage: $\tilde{O}(k|E|)$

Graph Sketches: All-distance Sketches...

Graph G = (V, E) For each node v: ADS(v): A union of coordinated samples of all its r-neighborhoods $N_r(v)$ = $\{u \mid d(v, u) \leq r\}$

Queries:

- Node-centric queries: centrality/kernel density,
- Inter-node queries: approximate distance oracles, similarity, influence (merged coverage of multiple nodes

Distance-decaying centrality query: (monotone weights!)

Query: Node v, monotone non-increasing $\alpha(x)$, selection predicate hEstimate centrality (= kernel density) of v

 $C_{\alpha}(v,h) = \sum_{u} h(v) \cdot \alpha (d_{vu})$

Big Ideas – Outline

- Composable summary structures
- PPS sampling for Linear Queries
- Sampling via Order Statistics
 - Distributed/streaming use
 - Graph sketches
 - Estimation of Linear Queries
 - Soft PPS
 - Sticky per-key randomness
 - Coordinated Samples
 - Multi-objective Samples

Sampling Unaggregated raw data

- Max aggregation
- Sum aggregation
- Functions of frequency
 - Transform to Max
 - Transform to Heavy Hitters

Unaggregated raw data

- Data element $e \in E$ has key and value (e.key, e.value)
- Multiple elements may share the same key

- Naïve: Aggregate pairs (x, w_x) , then sample requires structure size O(#distinct keys)
- <u>Goal</u>: Work over raw data via composable structures of size O(k)

Unaggregated data: Max-Distinct Sampling

• Max agg: $w_{\chi} = \max_{\substack{e \mid e.key = x}} e.value$

Use hash-based sticky per-key randomness $seed(x) \sim Exp[1]$

Locally map each element

$$e = (e. \text{key}, e. \text{val}) \mapsto e^* = (e. \text{key}, \frac{seed(e.\text{key})}{e.\text{val}})$$

Aggregate mapped elements E^* to find k unique keys with lowest scores (via a composable bottom-k structure)

<u>Correctness</u>: the minimum value of a key in E^* corresponds to score of largest *e*. val

Unaggregated data: Sum aggregation

• Sum agg: $w_{\chi} = \sum_{e \mid e.key = \chi} e.value$

Locally map each element $e = (e. \text{key}, e. \text{val}) \mapsto e^* = (e. \text{key}, v \sim \text{Exp}[e. val])$

Aggregate mapped elements E^* via composable bottom-k structures (keep lowest score for each key)

<u>Correctness</u>: the minimum value of a key x in E^* has distribution $\min_{e \in E} \exp[e.val] \equiv \exp[\sum_{e \in E} e.key = x} e.val] \text{ (property of exp distribution)}$

Note: No sticky per-key randomness

Caveat: We have the right sample but we don't have weights w_x for sampled keys!!

Unaggregated data: Sum aggregation estimation via inversion

We have a PPSWOR sample with no weights w_{χ} for sampled keys!!

Easy solution: Perform a second aggregation pass to sum weights of the sampled keys (simple composable structure of size k)

Solution for streaming: Can't collect weights for sampled keys. But can collect weights so that we have a handle on the distribution of the part we "missed". "Invert" that distribution to obtain estimates.

Surprise: We get the ~optimal error bounds on estimating linear statistics

Unaggregated data: Functions of frequency

Sum of weights ("frequency"): $\sum_{\substack{e \mid e.key = x}} e.value$ Monotone non-decreasing f

Our weights are function of frequency $w_x = f(\sum_{e|e.key=x} e.value)$

!! Some functions are hard: can't do super-quadratic growth

Two "transform" based ideas

- Via Max-Distinct sampling applicable to concave sublinear functions
- Via heavy hitters for moment functions $f(w) = w^p \quad p \in [0,2]$

Unaggregated data: Functions of frequency Transform to (Max)-Distinct

Concave sublinear functions are sub-linear with non-increasing growth. Examples: $f(w) = w^p$, $p \in [0,1]$ (low frequency moments) $f(w) = \min\{T, w\}$ (capping function) $f(w) = \log(1 + w)$

High level idea: These functions are ``between" max and sum aggregations. We "mix" the element maps.

Properties:

- No sticky randomness
- Can get a multi-objective sample of all concave-sublinear functions (logarithmic factor increase in sample size)
- When only computing the statistics $\sum_{x} f(\sum_{e|e,key=x} e, value) can "strip" the sample and$

get hyperloglog-like composable structures.

Unaggregated data: Functions of frequency Transform to heavy hitters

• $w_{\chi} = (\sum_{e \mid e.key = x} e.val)^{p}$

Use hash-based sticky per-key randomness $seed(x) \sim Exp[1]$

Locally map each element

$$e = (e. \text{ key}, e. \text{ val}) \mapsto e^* = (e. \text{ key}, \frac{e. \text{ val}}{(\text{seed}(e. \text{ key}))^{\frac{1}{p}}})$$

$$(\text{seed}(e. \text{ key}))^{\frac{1}{p}}$$
Sum aggregate of E^* has weights $\frac{\sum_{e \mid e. \text{key} = x} e. \text{ val}}{(\text{seed}(e. \text{key}))^{\frac{1}{p}}}$. We want the top-k

top-k **of sum-aggs** generally needs structure size O(#distinct) !! Fortunately, top-k are ℓ_p heavy-hitters. When $p \leq 2$, we apply a HH sketch (e.g. Count Sketch) to E^*

Summary: Big Ideas

- Many of the ideas originated in the statistics literature for very different and typically much smaller scale applications (survey sampling)
- These ideas, and their extensions, found and continue to find new applications
- See writeup for references and pointers

Thank you!