
Sampling Big Ideas in
Sublinear Algorithms

Edith Cohen
Google Research

Tel Aviv University

Simons Bootcamp May 21, 2024

Random Sampling

Recent centuries: Tool for efficiently surveying populations
§ Graunt 1662: Estimate population of England
§ Laplace ratio estimator [1786, 1802]: Estimate the population of France.

Sampled “Communes” (administrative districts), counting population ratio
to live births in previous year. Extrapolate from birth registrations in whole
country.

§ Kiaer 1895 “representative method”; March 1903 “probability sampling”
§ US census 1938: Use probability sample to estimate unemployment

Recent decades: Ubiquitous tool in efficient data processing, analysis,
algorithms design

Basis of learning from observations

Big Ideas – Sampling Toolbox

• Composable summary structures
• PPS sampling for Linear Queries
• Sampling via Order Statistics
• Graph sketches
• Estimation of Linear Queries
• Soft PPS
• Sticky per-key randomness
• Coordinated Samples
• Multi-objective Samples

Sampling Unaggregated raw data
• Max aggregation
• Sum aggregation
• Functions of frequency
• Transform to Max
• Transform to Heavy Hitters

This talk: Some synthesis of selected ideas
Originated in stats and CS works – see writeup for references

Raw data

Sample as a Summary Structure

Sampling Scheme specifies a randomized
summary structure D ↦ 𝑆(𝐷) in the form of
a subset of keys and auxiliary information

Data D Sample 𝑺

Q: 𝑓(𝑫) ? %𝑓(𝑺)
estimator

Dataset 𝐷 = {(𝑥, 𝑤!)} of key-value pairs 𝑤! ≥ 0 , 𝑥 ∈ 𝒳

• Efficient Algorithms (storage, communication, compute)
• over the raw data presentation (distributed, streaming, graph, unaggregated…)

Approximate Queries in Sample Space:
𝑓 𝐷 from 𝑆(𝐷)
𝑓(𝐷!, 𝐷", …) from 𝑆 𝐷! , 𝑆 𝐷" , …

• Sampling schemes and estimators (query response algorithms) (Accuracy
vs. sample size)

Composable (Mergeable) Summary Structures

Data 𝐴 S (A)

Data 𝐵 S (B)

Data 𝐴 ∪ 𝐵 S (A∪ B)

Why Composable ?

Streaming

Distributed data/parallelize computation

S S S S S S

S 4

S	5

S 3
S 1

S. 1 ∪ 2

S. 1 ∪ 2 ∪ 5

S. 3 ∪ 4

1 ∪ 2 ∪ 3 ∪ 4 ∪ 5	

S	2

Task: Linear Aggregation Queries
Dataset 𝐷 = {(𝑥, 𝑤!)} 𝑤! ≥ 0 , 𝑥 ∈ 𝒳
Sample 𝑆(𝐷)

Query: ℎ:𝒳 → {0,1} Response: estimate 𝑠𝑢𝑚 ℎ ≔ ∑#	ℎ 𝑥 ⋅ 𝑤# from 𝑆(𝐷)

Error bounds* for sample size 𝑘

𝑞- 	≔
./0 -
./0 𝟏

 NRMSE 2
./0(-)

≤ 3
4	⋅6!

*With Probability Proportional to Size (PPS) sampling
(Weighted/Importance sampling)

PPS Sampling Schemes
• All yield the same worst-case error bounds
• PPSWR less update-efficient
• PPSWOR better on “heavy tailed” data

PPSWR (With Replacement):
 Repeat 𝑘 times:

 Select key 𝑥 with prob. %!
&'(!

Sample size 𝑘

PPSWOR (WithOut Replacement)
𝑌 ← 𝒳
Repeat 𝑘 times:

 Select key 𝑥 ∈ 𝑌 with prob %!
&'(!𝒀

 Remove 𝑥 from 𝑌

Stochastic partition: random partition of
𝒳 to 𝑘 parts. PPS sample from each part

Big Ideas – Outline

• Composable summary structures
• PPS sampling for Linear Queries
• Sampling via Order Statistics

• Distributed/streaming use
• Graph sketches
• Estimation of Linear Queries
• Soft PPS
• Sticky per-key randomness
• Coordinated Samples
• Multi-objective Samples

Sampling Unaggregated raw data
• Max aggregation
• Sum aggregation
• Functions of frequency
• Transform to Max
• Transform to Heavy Hitters

Sampling via Order Statistics

Compute an (independent) score to each (key,value) pair
𝑒 = (𝑥,𝑤#) ↦ 𝑠𝑐𝑜𝑟𝑒 𝑒 ∼ 𝐹[𝑤#]

Gains: Efficiency -- PPSWOR as described is sequential and inefficient
Applicability -- e.g. sample without knowledge of 𝑠𝑢𝑚 1 ≔	∑#∈*𝑤#

𝐹 𝑤 ≔	G𝑈 0, !% 	 ; ⇒ sequential	Poisson	(Priority	sampling)
Exp 𝑤 	 ;⇒ PPSWOR.	

PPSWR ↦ bottom-1 score (×	𝑘)
PPSWOR ↦	 bottom-𝑘 scores

Transform sampling problem → computing bottom-𝑘 order statistics

Bottom-𝑘	Transform: Why we get PPSWOR

Step 2+:
(iii) ⇒	For 𝑡 ≥ 0, 𝑖 > 1	 Pr 𝑋+ > 𝑋! + 𝑡	|	𝑋+ > 𝑋! = Pr 𝑋+ > 𝑡

Properties of Exponential Distribution
𝑋+ ∼ Exp[𝑤+]

(i) Pr 𝑋! < 𝑋" = %#
%#,%$

(ii) min
+
	𝑋+ ∼ 	Exp ∑+𝑤+

(iii) Memorylessness:
Pr 𝑋 > 𝑡- + 𝑡	|	𝑋 > 𝑡_0 = Pr 𝑋 > 𝑡

𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑤+ = 𝑋+ ∼ 𝐸𝑥𝑝[𝑤+]

First step:

What is Pr 𝑋! <	min+.!
	𝑋+ ?

(ii) ⇒	min
+.!

	X/ ∼ 	Exp ∑+.!𝑤+

(i) ⇒	Pr 𝑋! < min
+.!

	𝑋+ = %#
%#,∑%&#%%

= %#
∑%%%

Bottom-𝑘	Transform: Efficiency benefits

𝑒 = (𝑥, 𝑤!) ↦ 𝑠𝑐𝑜𝑟𝑒 𝑒 ∼ 𝐹[𝑤!]

Application:
Raw data presents as distributed or streaming of pairs {(𝑥, 𝑤#)}

More Applications: Neighborhood samples for each node in a graph

• Score is ``locally’’ computed for each pair
• Composability of bottom- 𝑘	:

 bottom-𝑘(𝐴 ∪ 𝐵) = bottom-𝑘(bottom-𝑘(𝐴) ∪ bo[om−𝑘(B))

Graphs Sketches: Node-Centric
samples of neighborhoods or reachability sets

Graph 𝐺(𝑉, 𝐸)

§ Naïve: first compute 𝑁 𝑣 : 	 𝑂(𝐸 𝑉)
§ Through order transform: near-linear w𝑂(𝑘 𝐸)

Task: Compute for each node 𝑣, a sample 𝑆(𝑣)
§ Of 𝑁 𝑣 : nodes reachable from 𝑣
§ Of 𝑁 𝑣 : nodes within distance 5 from 𝑣

Idea:
§ 𝑠𝑐𝑜𝑟𝑒 𝑣 ∼ 𝐹	 for each 𝑣 ∈ 𝑉
§ Compute for each node 𝑢 ∈ 𝑉 the 𝑘	reachable

nodes 𝑣 with smallest 𝑠𝑐𝑜𝑟𝑒 𝑣
“Propagate” scores by prioritizing lower values.
Each node is visited at most 𝑘 times.

§ Samples are computed without
knowing cardinality |𝑁 𝑣 | !

§ Can be used to estimate it!

Big Ideas – Outline

• Composable summary structures
• PPS sampling for Linear Queries
• Sampling via Order Statistics

• Distributed/streaming use
• Graph sketches
• Estimation of Linear Queries
• Soft PPS
• Sticky per-key randomness
• Coordinated Samples
• Multi-objective Samples

Sampling Unaggregated raw data
• Max aggregation
• Sum aggregation
• Functions of frequency
• Transform to Max
• Transform to Heavy Hitters

Sum Estimation as Parameter estimation
Estimating		𝑠𝑢𝑚 1 	from	order	samples:
The	minimum	score	is		iid	Exp 𝑠𝑢𝑚 1

PPSWOR	sample:		can	use	memorylessness	to	“extract”	𝑘		iid	samples		r/
∼ Exp 𝑠𝑢𝑚 1 	from	the		bottom- 𝑘	scores	and	weights	of	sampled	keys.

PPSWR:		The	minimum	scores	in	the	𝑘	reps	are	𝑘		iid	samples		r/ ∼ Exp 𝑠𝑢𝑚 1 	

	The	(optimal)	unbiased	estimator	is		 12!
∑%∈[)] 3%

					NRMSE is !
12!	

Properties of Exponential Distribution
𝑋+ ∼ Exp[𝑤+]

(ii) min
+
	𝑋+ ∼ 	Exp ∑+𝑤+

Estimating Linear Queries from Samples

Inverse probability per-key estimate: �𝑤# =	 �
%!

45[#∈7] 	 𝑥 ∈ 𝑆
0	 𝑥	 ∉ 𝑆

�Sum(ℎ) = ∑# h(x) ⋅ �𝑤# =	∑#∈7 h(x) ⋅ �𝑤#

linearity of expectation ⇒ sum estimate is unbiased
 �𝐸[Sum(ℎ) = ∑# h(x) ⋅ E[�𝑤#] = ∑# h(x) ⋅ 𝑤# = 	Sum(ℎ)

!! With PPS schemes we get ~optimal error bounds.
 Catch -- need to compute 𝐏𝐫[𝒙 ∈ 𝑺]. With PPSWR samples, we need 𝑠𝑢𝑚 𝟏 . For
bottom-𝑘 samples, 𝐏𝐫[𝒙 ∈ 𝑺] depends weights of keys not in sample.

𝑠𝑢𝑚 ℎ ≔ ∑# ℎ 𝑥 ⋅ 𝑤#

Per-key estimates are unbiased (if 𝑤# > 0 ⇒ Pr 𝑥 ∈ 𝑆 > 0)
𝐸 �𝑤# = 0 ⋅ Pr[𝑥	 ∉ 𝑆] + %!

45[#∈7]
⋅ Pr 𝑥 ∈ 𝑆 = w9

Inverse Probability with bottom-𝑘 samples

Now easy to compute:	
Pr 𝑥 ∈ 𝑆 	𝜏# = 𝑡 	= 	 Pr 𝑠𝑐𝑜𝑟𝑒 𝑥 < 𝑡 = 1 − 𝑒2	%!⋅;

�𝑤# =	G
𝑤#

Pr 𝑥 ∈ 𝑆 	𝜏# = 𝑡
	 𝑥 ∈ 𝑆

	 0	 𝑥	 ∉ 𝑆

For 𝑥 ∈ 𝑆, 𝜏# = 𝜏	 ≔ 𝑠𝑐𝑜𝑟𝑒 𝑒 1,!
To facilitate estimation, we store the lowest score with the sample

Idea: Detangle -- use 𝐏𝐫[𝒙 ∈ 𝑺] conditioned on the scores of all other keys
 𝜏# 	≔ 𝑠𝑐𝑜𝑟𝑒 𝑒 	|	𝑒. 𝑘𝑒𝑦 ≠ 𝑥 (1) The 𝑘th lowest score of keys other than 𝑥

Unbiased when conditioned on 𝜏# 	⟹	 unbiased (over distribution of 𝜏#)

For PPSWOR

Error bounds? Conditioning increases variance

Inverse Probability with PPSWOR --

• cov �𝑤#, �𝑤> ≤ 0

var �𝑤# 	 𝜏# = 𝑡	 ≤ %!
;

⟹ �v𝑎𝑟[𝑆𝑢𝑚(ℎ)] ≤ �
#∈*

𝑣𝑎𝑟 �𝑤#

 ≤ !
12! ⋅ 𝑠𝑢𝑚 1 ⋅ ∑#∈*𝑤# =

!
12! 𝑠𝑢𝑚 ℎ 𝑠𝑢𝑚 1

𝑞? 	≔
&'(?
&'(!

@AB5[CDE(?)

&'((?) ≤ !
12!	⋅F+

var[�𝑤#] 	= 	EG! 	var �𝑤# 	 𝜏# = 𝑡	
Distribution of 𝜏# is “dominated” by sum of 𝑘 iid Exp	[𝑠𝑢𝑚 1] (small val more likely)

• Bound per-key variance var[�𝑤#] ≤
!

12! 	𝑤# ⋅ 𝑠𝑢𝑚 1

Still get ~optimal error bounds!

Big Ideas – Outline

• Composable summary structures
• PPS sampling for Linear Queries
• Sampling via Order Statistics

• Distributed/streaming use
• Graph sketches
• Estimation of Linear Queries
• Soft PPS
• Sticky per-key randomness
• Coordinated Samples
• Multi-objective Samples

Sampling Unaggregated raw data
• Max aggregation
• Sum aggregation
• Functions of frequency
• Transform to Max
• Transform to Heavy Hitters

Soft PPS
Scenario: We PPS sampled with respect to weights 𝑤#
 but our query is ∑# ℎ 𝑥 ⋅ 𝑤′#	 with respect to weights 𝑤′#

Inverse probability estimate: �𝑤′# =	G
%H!

45[#∈7]
	 𝑥 ∈ 𝑆

0	 𝑥	 ∉ 𝑆
Unbiased when
 𝑤′# > 0	 ⇒ Pr 𝑥 ∈ 𝑆 > 0)

Takeaway: gracefully degrades with ``distance” between 𝒘′ and 𝒘
can get the “exact PPS” error – but with a larger sample

Useful when
• we are limited by the sampling procedure
• weights change and we want to use the same sample

𝜌(𝒘′, 𝒘) 	≔ IDE, !
IDE,- !

⋅ 	max
#

%!-

%!
Error bound: J

1	⋅F+

Big Ideas – Outline

• Composable summary structures
• PPS sampling for Linear Queries
• Sampling via Order Statistics

• Distributed/streaming use
• Graph sketches
• Estimation of Linear Queries
• Soft PPS
• Sticky per-key randomness
• Coordinated Samples
• Multi-objective Samples

Sampling Unaggregated raw data
• Max aggregation
• Sum aggregation
• Functions of frequency
• Transform to Max
• Transform to Heavy Hitters

Sticky per-key randomness

Idea: “Attach” the random bits of 𝑠𝑐𝑜𝑟𝑒(𝑒 = (𝑥,𝑤#)) to the key 𝑥 (rather than the pair)

Exp 𝑤 	 ≡ 	
1
𝑤 ⋅ 	Exp[1]

𝑈 0,
1
𝑤
	 ≡ 	

1
𝑤
⋅ 𝑈[0,1]

For each key 𝑥, iid seed 𝑥 ∼ 𝐹
 𝑠𝑐𝑜𝑟𝑒 𝑒 ← !

%!
⋅ 𝑠𝑒𝑒𝑑(𝑥)

Application scenarios:

Permanent Random Numbers (PRN) [Brewer, Early, Joyce 1972]

• When there are multiple contexts/weights (aka instances) for the same set of keys
Samples of instances with sticky randomness are coordinated

• Unaggregated data – key appears in multiple data elements (e.g. distinct counting)

Sample Coordination
Same set of keys, multiple sets of weights (“instances”). Sample each instance

10.0kg
460.0kg 210.0kg

210.0kg

12.4kg
30.0kg4.0kg 8.0xkg

5.0kg
300.0kg 110.0kg

300.0kg

15.0kg
50.0kg6.0kg 4.0kg

Monday:

Tuesday:

Coordinated Samples: Benefits

• Multi-objective samples – overlap of samples implies less storage/computation

• Stability of sample under dynamic weight changes

Survey sampling: Weights evolve but surveys impose burden. Want to minimize the
burden and maintain a PPS sample of the evolved set.

• Representations (sketches) of instances:
• Accuracy on inter-instance queries (e.g. similarity)
• Locality Sensitive Hashing (LSH) property (similar weights⇒ similar samples)

• Efficient to compute for many instances (e.g. Graph sketches)
• Maximize agreement when sampling from different instances (improved

privacy/utility)

Multi-objective Sample: Basic

Gains: storage (maximum overlap)
Higher accuracy that with using just the dedicated sample

Compute coordinated samples 𝑆(+) for each w(/)

§ multi-objective sample 𝑆 is the union	 S = ⋃+ 𝑆(+)

§ Estimation: Inverse probability with sampling probabilities 𝑝# = max
+
	𝑝 + (𝑥)

Multi-objective Sample
§ Same keys can have different “weights:” IP flows have bytes, packets, count
§ We want to answer queries with respect to all weights.
§ Naïve solution: 3 disjoint samples
§ Smart solution: A single multi-objective sample

10.0kg
50cm
10 years

460.0kg
180cm
50 years

210.0kg
300cm
40 years

210.0kg
200cm
150 years12.4kg

30cm
2 years

30.0kg
100cm
100 years

4.0kg
60cm
1 year

8.0kg
60cm
12 years

”Classic” centrality: Pointset 𝑋 in a metric space
 Query: point 𝑥 estimate ∑>∈K𝑑(𝑥, 𝑦)

“Classic” centrality, Coresets for Clustering

Clustering cost: Pointset 𝑋
 Query: 𝑘-tuple 𝒙 = (𝑥!, … , 𝑥1) estimate ∑>∈K𝑑(𝒙, 𝑦) where 𝑑 𝒙, 𝑦 =
min
+∈[1]

	𝑑(𝑥+, 𝑦)

• “Instance” for each point 𝑥 with weights 𝑑 𝑥, 𝑦 for 𝑦 ∈ 𝑋
• Soft PPS + multi-objective sample size 𝑂(𝜖2")

• “Instance” for each tuple 𝒙 with weights 𝑑 𝒙, 𝑦 for 𝑦 ∈ 𝑋
• Soft PPS + multi-objective sample size 𝑂(𝑘	𝜖2")

Multi-objective sample of monotone weights

12:00am 1:00am 2:00am 3:00am 4:00am

Application: Data Streams time-decaying aggregations
monotone non-increasing 𝛼(𝑥), and segment 𝐻 ⊂ 𝑉

𝐴L = �
'∈*

𝛼 𝑡'

𝑡': Elapsed time from start of stream to 𝑢
𝑡': Elapsed time from 𝑢 to current time

All weights that are ”ordered” the same way 𝑤!
(+) ≥	𝑤!

+ ≥ 𝑤"
+ ≥ 𝑤M

(+) ≥
Multi-objective sample has
§ (expected) size: 𝑂(𝑘	ln	𝑛) , where 𝑛 = #keys

Suffices to take union of coordinated samples of all unweighted prefixes of the order

Graph Sketches: All-distance Sketches

• Small size: E ADS 𝑣 = 𝑘	log(𝑛)
• ADS 𝑣 is multi-objective with monotone weights!

When ordered by distance (1, … , 1,0, … , 0)
• Near-linear computation/storage: w𝑂(𝑘 𝐸)

Graph 𝑮 = 𝑽, 𝑬 For each node 𝑣	:
ADS 𝑣 	: A union of coordinated samples of all its 𝑟-neighborhoods 𝑁3 𝑣
= 𝑢	 𝑑 𝑣, 𝑢 ≤ 𝑟}

Coordination across nodes and distances!

3

11
2

1

Graph Sketches: All-distance Sketches…

Distance-decaying centrality query: (monotone weights!)
Query: Node 𝑣, monotone non-increasing 𝛼 𝑥 , selection predicate ℎ
Estimate centrality (= kernel density) of 𝑣

 C8 𝑣, ℎ = ∑/ 	ℎ 𝑣 ⋅ 𝛼 𝑑9/

Graph 𝑮 = 𝑽, 𝑬 	 For each node 𝑣	:
ADS 𝑣 	: A union of coordinated samples of all its 𝑟-neighborhoods 𝑁3 𝑣
= 𝑢	 𝑑 𝑣, 𝑢 ≤ 𝑟}

3

11
2

1

Queries:
• Node-centric queries: centrality/kernel density,
• Inter-node queries: approximate distance oracles, similarity,

influence (merged coverage of multiple nodes

Big Ideas – Outline

• Composable summary structures
• PPS sampling for Linear Queries
• Sampling via Order Statistics

• Distributed/streaming use
• Graph sketches
• Estimation of Linear Queries
• Soft PPS
• Sticky per-key randomness
• Coordinated Samples
• Multi-objective Samples

Sampling Unaggregated raw data
• Max aggregation
• Sum aggregation
• Functions of frequency
• Transform to Max
• Transform to Heavy Hitters

Unaggregated raw data
§ Data element 𝑒 ∈ 𝐸 has key and value (e.key,e.value)
§ Multiple elements may share the same key

§ Naïve: Aggregate pairs (𝑥, 𝑤#), then sample – requires structure size O(#distinct keys)
§ Goal: Work over raw data via composable structures of size 𝑂(𝑘)

§ Max agg: 𝑤# = max	e. value
N|N.1N>Q#	

2

8
2

1

5

8 5
§ Sum agg: 𝑤# = ∑	e. value

N|N.1N>Q#	11 7

Unaggregated data: Max-Distinct Sampling

Locally map each element

𝑒 = 𝑒. key, 𝑒. val ↦ 𝑒∗ = (𝑒. key, &NNS N.TUV
N.WBX)

Use hash-based sticky per-key randomness seed 𝑥 ∼ Exp[1]

§ Max agg: 𝑤# = max	e. value
N|N.1N>Q#	

Aggregate mapped elements 𝐸∗ to find 𝑘 unique keys with lowest scores
(via a composable bottom-𝑘 structure)

Correctness: the minimum value of a key in 𝐸∗ corresponds to score of largest 𝑒. val

Unaggregated data: Sum aggregation
§ Sum agg: 𝑤# = ∑	e. value

N|N.1N>Q#	

Locally map each element
𝑒 = 𝑒. key, 𝑒. val ↦ 𝑒∗ = (𝑒. key, 𝑣 ∼ Exp 𝑒. 𝑣𝑎𝑙)

Aggregate mapped elements 𝐸∗ via composable bottom-𝑘 structures
 (keep lowest score for each key)

Correctness: the minimum value of a key 𝑥 in 𝐸∗ has distribution
min

U∈Y	|	U.TUVQ9
Exp 𝑒. 𝑣𝑎𝑙 	 ≡ 	Exp ∑N∈Y	|	U.TUVQ9 𝑒. 𝑣𝑎𝑙 (property of exp distribution)

Note: No sticky per-key randomness
Caveat: We have the right sample but we don’t have weights 𝑤# for sampled keys!!

Unaggregated data: Sum aggregation
estimation via inversion

We have a PPSWOR sample with no weights 𝑤# for sampled keys!!

Easy solution: Perform a second aggregation pass to sum weights of the sampled keys
(simple composable structure of size 𝑘)

Solution for streaming: Can’t collect weights for sampled keys. But can collect weights
so that we have a handle on the distribution of the part we “missed”. “Invert” that
distribution to obtain estimates.
Surprise: We get the ~optimal error bounds on estimating linear statistics

Unaggregated data: Functions of frequency

Sum of weights (“frequency”): ∑	e. value
N|N.1N>Q#	

Our weights are function of frequency 𝑤# = 𝑓(∑	e. value)
N|N.1N>Q#	

!! Some functions are hard: can’t do super-quadratic growth

Monotone non-decreasing 𝑓

Two “transform” based ideas
• Via Max-Distinct sampling applicable to concave sublinear functions
• Via heavy hitters for moment functions 𝑓 w = wZ	 p ∈ [0,2]

Unaggregated data: Functions of frequency
Transform to (Max)-Distinct

Concave sublinear functions are sub-linear with non-increasing growth. Examples:
𝑓 𝑤 = 𝑤[, 𝑝 ∈ [0,1]	(low	frequency	moments)
𝑓 𝑤 = 	min{𝑇,𝑤	} (capping function)
𝑓 𝑤 = log(1 + 𝑤)

High level idea: These functions are ``between” max and sum aggregations. We
“mix” the element maps.

Properties:
• No sticky randomness
• Can get a multi-objective sample of all concave-sublinear functions (logarithmic

factor increase in sample size)
• When only computing the statistics ∑# 𝑓(∑	e. value)

N|N.1N>Q#	
-- can “strip” the sample and

get hyperloglog-like composable structures.

Unaggregated data: Functions of frequency
Transform to heavy hitters

Locally map each element
𝑒 = 𝑒. key, 𝑒. val ↦ 𝑒∗ = (𝑒. key,

𝑒. 𝑣𝑎𝑙

𝑠𝑒𝑒𝑑 𝑒. 𝑘𝑒𝑦
!
[
)

Use hash-based sticky per-key randomness seed 𝑥 ∼ Exp[1]

§ 𝑤# = ∑𝑒. 𝑣𝑎𝑙 Z
N|N.1N>Q#	

Sum aggregate of 𝐸∗ has weights
∑.	|	..).23! 	N.\]^

&NNS N.1N>
#
4
	. We want the top-k

top-k of sum-aggs generally needs structure size O(#distinct) !!
Fortunately, top-𝑘	are ℓ[heavy-hitters. When 𝑝 ≤ 2, we apply a HH sketch (e.g.
Count Sketch) to 𝐸∗

Summary: Big Ideas

• Many of the ideas originated in the statistics literature for very different
and typically much smaller scale applications (survey sampling)

• These ideas, and their extensions, found and continue to find new
applications

• See writeup for references and pointers

Thank you!

