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Two fundamental problems

• Given access to an unknown constant depth quantum 
circuit 𝑈, learn a constant depth circuit that is close to 𝑈

• Given copies of an unknown quantum state | ⟩𝜓 = 𝑈| ⟩0!
that is prepared by an unknown constant depth circuit 𝑈, 
learn a constant depth circuit that prepares | ⟩𝜓

• This talk: polynomial time algorithms for both problems
• quasi-polynomial time, when depth of 𝑈 is polylog(𝑛)
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Quantum algorithms in NISQ

• NISQ computation can be modeled as shallow quantum circuits
• Can generate probability distributions that are classically hard

• Key idea behind NISQ algorithms: try to discover a shallow circuit as 
a solution to an interesting problem (assuming the circuit exists)
• Can be formulated as a learning problem

• Main challenge: how to develop efficient learning algorithms?
• This talk: two new learning algorithms that provably work in simple settings
• Primitives for new NISQ algorithms?



Key challenge: efficient reconstruction

• Step 1: Learn local observables
• Easy to do (using e.g. classical shadows)
• Sufficient information

• Step 2: efficiently reconstruct a quantum circuit from learned 
local observables
• This is a highly non-trivial problem
• Goal of this talk: demonstrate new and simple techniques to do this



Learning shallow quantum circuits
Based on arxiv 2401.10095 (QIP 2024, STOC 2024)
with Hsin-Yuan Huang, Michael Broughton, Isaac Kim, Anurag Anshu, Zeph 
Landau, Jarrod R. McClean



Learning shallow quantum circuits

• Want to learn a shallow circuit to implement𝑈
• Only need single-qubit random input/output

samples

• Theorem. Polynomial time algorithm for
learning shallow quantum circuits from
random input/output samples
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Lightcone in shallow circuits

• Consider a small region 𝐴 (on a lattice), each input qubit in 𝐴 only
affects the output qubits in the lightcone of 𝐴
• If we can undo the blue gates➔𝑈 acts as identity on 𝐴

Basic idea: guess a 
small circuit to 
disentangle the region 𝐴



Basic idea: local inversion
Local inversion: guess a 
small circuit to 
disentangle the region 𝐴

How? Enumerate small 
circuits and test if 𝐴 is 
disentangled

Key issue: the small circuit we apply could be different 
from the actual lightcone; in this case it creates a mess on 
remaining qubits!



Key idea: disentangle, swap, undo

Key idea: introduce a new ancilla qubit, swap with 𝐴", then undo 𝑉"
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Key idea: introduce a new ancilla qubit, swap with 𝐴", then undo 𝑉"



Key idea: disentangle, swap, undo

• We have learned a unitary𝑊" such that

We have learned a circuit acting on top of 𝑈 that achieves the effect of 
swapping an input wire
Key observation: the system is not disturbed; can repeat this for every qubit



Reconstructing the circuit

• We have learned a unitary𝑊" such that

Claim: using this idea, can learn the description of a 2𝑛-qubit circuit 𝑊 that 
satisfies 𝑊 = 𝑈#⊗𝑈



Reconstructing the circuit

Do the same 
for every qubit

SWAP entire system 
with ancilla



Reconstructing the circuit

• We have learned a 2𝑛-qubit circuit 𝑊 that satisfies

disentangle a local region without disturbing the system



Reconstructing the circuit in low depth

• 2D example: reconstruct the circuit in 3 layers

Each qubit is 
connected to an 
ancilla qubit

Do this in parallel for all green regions:

1. Apply local inversion operator

2. SWAP the entire region with ancilla wires

3. Undo local inversion operator

Continue for red and blue

Finally, SWAP all qubits with ancilla



Further simplifying the argument

• Key observation: steps 1-3 can be merged into one step, which is 
equivalent to implementing 𝑈#𝑆$𝑈 (𝑆$: SWAP 𝑖-th qubit and 𝑖-th ancilla)
• Sanity check: 𝑈%𝑆&𝑈 is a local operator



Further simplifying the argument

• Key observation: steps 1-3 can be merged into one step, which is 
equivalent to implementing 𝑈#𝑆$𝑈 (𝑆$: SWAP 𝑖-th qubit and 𝑖-th ancilla)
• Simpler algorithm: can directly learn these local operators 𝑈#𝑆$𝑈 and 

then combine them into a circuit that implements 𝑈⨂𝑈#

• Extension: can learn any unitary that maps a local operator to a local 
operator (quantum cellular automata)

One line proof: an identity for any unitary 𝑈

𝑈⨂𝑈# = /
$%"

!

𝑆$ 0/
$%"

!

(𝑈#𝑆$𝑈)



Learning quantum states prepared 
by shallow circuits
Based on upcoming work with Zeph Landau

See related upcoming work of Hyun-Soo Kim, Isaac Kim, and Daniel Ranard for a 
different approach



Learning quantum states

• Want to learn a shallow circuit to prepare | ⟩𝜓
• Only need single-qubit random measurement

samples

• Theorem. Polynomial time algorithm for learning
quantum states prepared by shallow circuits from
random measurement samples

𝑈

| ⟩0

| ⟩0

| ⟩0

| ⟩0

| ⟩0

| ⟩0

| ⟩0

Measurement in 
random Pauli basis

⋮

| ⟩𝜓
||



Basic idea: local inversion

Local inversion: find a small circuit to invert a small region to | ⟩0

What to do next?
Similar issues: | ⟩𝜙  could be a much more complicated state



Key idea 1: local inversion, undo

Step 1: Apply a local inversion 𝑉 to invert the region 𝐴, get | ⟩𝜙 ⨂| ⟩0 &

Local inversion



Key idea 1: local inversion, undo

Step 1: Apply a local inversion 𝑉 to invert the region 𝐴, get | ⟩𝜙 ⨂| ⟩0 &

Step 2 (not doing anything): replace 𝐴 with fresh qubits in state | ⟩0 &

Local inversion

Fresh qubits



Key idea 1: local inversion, undo

Step 1: Apply a local inversion 𝑉 to invert the region 𝐴, get | ⟩𝜙 ⨂| ⟩0 &

Step 2 (not doing anything): replace 𝐴 with fresh qubits in state | ⟩0 &

Step 3: Undo the local inversion, by applying 𝑉#

Local inversion

Fresh qubits

Undo



Key idea 1: local inversion, undo

Observation: the state did not change

Local inversion

Fresh qubits

Undo

| ⟩𝜓 =



Key idea 1: local inversion, undo

Observation: the state did not change

Observation 2: we have learned a small part of the state
• We have learned a circuit for the reduced density matrix on 𝐴'
• Circuit = backward lightcone

| ⟩𝜓 = Local inversion

Fresh qubits

Undo



Key idea 1: local inversion, undo

Observation: we have reconstructed a small part of the state, 
without changing the state at all

So, why not repeat?

| ⟩𝜓 = Local inversion

Fresh qubits

Undo



Repeating what we just did

| ⟩𝜓 =

We have reconstructed part of the state
Not enough: what about these regions?

The state did not change! Just repeat by doing another layer



Repeating what we just did

| ⟩𝜓 =

Potential issue: the new layer could mess up with what we had earlier
Claim: problem solved; we already reconstructed a circuit for | ⟩𝜓



Key idea: Reconstruction via backward lightcone

• Reconstruct the output state via backward lightcone of all wires
• This works because backward lightcone stops entirely at fresh qubits

| ⟩𝜓 =



Reconstruction via backward lightcone

• Reconstruct the output state via backward lightcone of all wires
• This works because backward lightcone stops entirely at fresh qubits

| ⟩𝜓 =

In general, this requires a careful geometric arrangement



Geometric arrangement: covering scheme

• Divide a lattice into layers of subsets
• Subsets in the same layer are “sufficiently non-overlapping”
• Subsets in different layers are “sufficiently overlapping”



Geometric arrangement: covering scheme

• Divide a lattice into layers of subsets
• Subsets in the same layer are “sufficiently non-overlapping”
• Subsets in different layers are “sufficiently overlapping”

• Construction: take a lattice coloring, then make every subset larger



Learning phases of matter

• “trivial phase”: quantum states prepared by constant depth
circuits on finite dimensional lattice

• Quantum states in the “trivial phase” can be learned efficiently

• Corollary: given an arbitrary state, can efficiently test whether it is
in the “trivial phase” (low circuit complexity),

   or  “topological phase” (high circuit complexity)



Discussion



More general geometry?

• First algorithm (learning shallow quantum circuits) works for 
arbitrary or even unknown geometry
• Recall one-line proof: 𝑈⨂𝑈% = ∏&()

* 𝑆& 3 ∏&()
* (𝑈%𝑆&𝑈)

• Second algorithm (learning quantum states prepared shallow 
circuits) works for any geometry with a good covering scheme
• We constructed good covering schemes for finite-dimensional lattices



No ancilla qubits?

• Using ancilla qubits is essential in both learning algorithms
• Is it possible to reconstruct the circuit without using any ancilla 

qubits?

• In [arxiv 2401.10095] we give an algorithm specialized to learning 
quantum states in 2D, no ancilla qubit assuming finite gate set
• Key idea: to learn a 2D state it suffices to solve a 1D CSP
• Probably works for learning quantum circuit in 2D as well?



Outlook

• Toward useful quantum advantage: learning shallow quantum 
circuits in NISQ algorithms
• Two new learning algorithms based on local inversion that works in 

simple clean settings; very different from gradient descent
• Can this be the basis of efficient learning algorithms in more general 

settings?
• Need to deal with practical issues such as noise
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