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Outline

• History of black holes and information.

• Difference between weak scrambling time and strong scram-

bling time.

• An argument that fast strong scrambling implies non-standard

physics.

• Some speculations.
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Black Holes

Black Holes are a consequence of Einstein’s

theory of relativity.

A Schwatzschilld black hole is one which

has no charge or spin. Its metric is given

by

ds2 = −
(

1−
2M

r

)
dt2 +

(
1−

2M

r

)−1
dr2 + r2dΩ2.
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Black Hole Thermodynamics

We will mostly be using natural units where c = ~ = kB = G = 1.

• The surface area of the horizon always increases. (Christodoulou)

This is reminiscent of entropy.

• The entropy of a black hole is S = A/4 = 4πM2 where A is
the area of the horizon and M is the mass. (Bekenstein)

• Black holes radiate. Schwatzschilld black holes emit black-
body radiation at a temperature of T = 1/(8πM) where M

is the mass. (Hawking)
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Black hole information paradox

1. General relativity says that any information thrown into a

black hole can never come out. So if the black hole evaporates,

the information must be destroyed.

To support this, Hawking’s derivation of Hawking radiation said it

is uncorrelated with the stuff that fell into the black hole (but this

derivation uses semi-classical gravity and is an approximation).
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Black hole information paradox

2. Quantum mechanics says that physics is reversible, so in-

formation can never be destroyed.

This wasn’t a problem before it was discovered that black holes

evaporated.

Stephen Hawking, Kip Thorne, and John Preskill made a bet:

Hawking, Thorne: the information is destroyed.

Preskill: the information escapes.

Hawking conceded, but Thorne still has not.
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Hawking/Unruh radiation

An observer hovering above the event horizon also sees Hawking
radiation. To stay stationary above the event horizon, they need
to be accelerating.

An accelerating observer sees Unruh radiation. For somebody
hovering just above the event horizon, this is essentially equiva-
lent to Hawking radiation.

The Hawking radiation seen at height h in Schwatzschilld co-
ordinates (for small h) above the event horizon by a hovering
observer is thermal radiation at a temperature

T =
1

4π
√

2Mh
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Susskind Complementarity (1993)

If somebody jumps into a black hole holding a qubit, for an
outside observer, the qubit must emerge somehow, because in-
formation is never destroyed.

But the person falling in sees the qubit annihilated at the singu-
larity.

Is the information destroyed?
Can we reconcile the point of view of the observer falling into a
black hole and an observer staying outside the black hole?

Susskind’s complementarity principle is the idea is that these ob-
servers can never get together and compare notes, so it doesn’t
matter if they have contradictory observations: They’re both
correct from their own point of view.
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AMPS (Almheiri, Marolf, Polchinski, Sully, 2012)

Complementarity contradicts some fundamental theorems of quan-

tum information theory.

One question: how much of complementarity can we save.

Does the outside observer’s point of view make any sense if we

completely ignore the point of view of somebody falling into the

black hole.
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“Black Holes as Mirrors” (Hayden and Preskill)

With quantum information theory, if you have a system that is

maximally entangled with the black hole, and you throw some-

thing into the black hole, we can get the information on what

was thrown in from just a few bits of the Hawking radiation.

This is true not just for a black hole, but for any quantum system

maximally entangled with another system.
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“Black Holes as Mirrors” (Hayden and Preskill)

Suppose you start with a black hole you know the state of.
And suppose half of the information has escaped from the black
hole (the Page time), and you have collected it. You now have
Hawking radiation that is maximally entangled with the black
hole.

Now, you throw a qubit into the black hole. You wait for the
“scrambling time”, and collect order logM bits of additional
Hawking information. You can then do a measurement that
gives you information about what was thrown in.

Because the Hawking radiation you collected is maximally entan-
gled with the black hole, you can use it to make any measurement
you could have made on Alice’s original qubit.
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Test of complementarity principle
(Hayden and Preskill)

Idea: Bob throws in a qubit, waits until he recovers the informa-

tion, and then jumps in, hoping to catch up the information he

has thrown in.

If he does catch up, he has duplicated the information, and thus

violated the no-cloning theorem.
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Bob has to be quick
(Hayden and Preskill)

If he waits more than order M logM time, he can never catch up

with the information he’s thrown in.

So in order for the no-cloning theorem not to be violated, the

scrambling time must be at least order M logM .
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Scrambling time:

What is “scrambling time”? There are several definitions that

have been used.

1. The time it takes for the out-of-time-order correlator (OTOC)

to equilibriate.

2. The time it takes for the system starting in an arbitrary

product state A⊗B to become nearly maximally entangled.

Time (2) is at least as large as time (1).

Sekino and Susskind used a third definition.

A fourth definition is based on the tripartite mutual information.
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Scrambling time:

What is “scrambling time”? There are several definitions that

have been used.

1. The time it takes for the out-of-time-order correlator (OTOC)

to equilibriate.

2. The time it takes for the system starting in an arbitrary

product state A⊗B to become nearly maximally entangled.

We will argue that for black holes, time (2) (strong scrambling

time) must be large, although time (1) (weak scrambling time)

may be small.
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Scrambling time:

What is “scrambling time”? There are several definitions that

have been used.

1. The time it takes for the out-of-time-order correlator (OTOC)

to equilibriate.

2. The time it takes for the system starting in an arbitrary

product state A⊗B to become nearly maximally entangled.

Yoshida and Kitaev (arXiv:1710.033623) show that definition (1)

is enough for the Hayden-Preskill protocol.
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Scrambling time:

What is “scrambling time”? There are several definitions that

have been used.

1. The time it takes for the out-of-time-order correlator (OTOC)

to equilibriate.

2. The time it takes for the system starting in an arbitrary

product state A⊗B to become nearly maximally entangled.

With Aram Harrow, Linghang Kong, Zi-Wen Liu, and Saeed

Mehraben, I have a toy model where we can prove these two

scrambling times differ substantially.
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Out of Time Order Correlators

We have two operators, W1 (at time 0 and position x) and

W2 (at time t and position y). We look at their commutator.

[W1(0, x),W2(t, y)].

V and W have different spatial locations and times. This gives

some indication of how long it takes the effects of V to reach

the location of W — if t is too small for the effects of V to reach

W , then the commutator is 0.

The OTOC is defined as

1

2
Tr [W (t), V (0)]† [W (t), V (0)]
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Out of Time Order Correlators

You can think of the OTOC as first applying W1(0, x), then

applying unitary evolution going forward in time, then applying

W2(t, y), then applying unitary evolution going backward in time.

The OTOC measures how close this procedure comes to getting

you back to the state you started with.

The scrambling time is

defined as how long you

need to make t before the

OTOC equilibriates.
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Lower bound on scrambling time.

A system with radius R clearly needs R/c time for information

to pass from one side to the other. For black holes, this means

the scrambling time (assuming relativity holds) has to be at least

order M since R = 2M .

Hayden and Preskill showed a lower bound of order M logM ,

assuming the no-cloning theorem holds.

20



Our Toy Example

We put qubits on the vertices of a binary tree.

Time evolution runs by choosing a random edge, and applying a

random two-qubit Clifford group element to that edge.

We choose edges according to a Poisson process with rate 1, so

for every unit time, approximately one Clifford group element is

applied to any edge.
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Our Toy Example

We let the operators W1(0, x) and W2(t, y) be Pauli operators,

say σx.

When we apply a Clifford operator,

it takes id⊗ id to id⊗ id.

It takes any other σa⊗σb to all pos-

sible non-identity σa⊗ σb with equal

probability.

Let I stand for id,

Let N stand for σx, σy, or σx.

Then N ⊗ I has probability 1
5

I ⊗N has probability 1
5

N ⊗N has probability 3
5

Starting Configuration
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Our Toy Example

N ⊗ I has probability 1
5

I ⊗N has probability 1
5

N ⊗N has probability 3
5

Consider the N closest to the point y. Let d be the distance
from this N to y. Assume this N is unique. Then d goes up
with probability 1

5 if the Clifford gate is applied to an edge before
this N , and goes down with probability 4

5 if the Clifford gate is
applied to the edge after this N .

So this is a random walk where the probability of going down is
more than the probability of going up.
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Our Toy Example

For the OTOC measure, the expected value of the OTOC
reaches its final value when the random walk has hit point y
with high probability. This is linear in the size of the tree, so
linear in n.

For the entanglement to reach order

n qubits between the two sides of the

tree, we need to have Schmidt rank of

order 2n between the two halves of the

binary tree. This can only happen if a

qubit moves from the left to the right

order 2n times, which takes time 2n.

So the entanglement scrambling time can be exponentially larger
than the OTOC scrambling time.
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Arbitrary Unitaries

Since the density matrix obtained by applying a random Clifford

is equivalent to the one obtained by applying an arbitrary unitary,

our lower bound also works for arbitrary unitaries.
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Lower bound on scrambling time.
(Hayden and Preskill)

Hayden and Preskill claimed that the scrambling time has to be

at least order M logM because in black holes, this is how long

it takes mass and charge to distribute themselves equally on the

surface of a black hole.
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Fast Scrambling Conjecture

Sekino and Susskind: Black holes scramble in order M logM time

(and are the fastest scramblers in existence).

Evidence:

If you drop some mass or charge onto a black hole, it takes order

M logM time for the surface to equalize.
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But ...

Suppose you put a drop of dye into a

pitcher of water. The water level will

equalize in a matter of seconds, while it

takes much longer for the dye to diffuse

evenly through the water.

This is because the change in water

level is driven by an energy difference,

while the diffusion of the dye is not.

Similarly, distributing mass or electric charge uniformly around

the black hole decreases its energy, while spreading information

does not.
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An Argument for Fast Scrambling from AdS-CFT

You can show that out-of-time order correlation functions in CFT

decay in time order M logM (Shenkar and Stanford). They ar-

gued that this means there should be fast decay in correlation

functions and thus fast scrambling in the AdS side of the corre-

spondence as well.

29



Our assumptions.

We will assume that from an outside observer’s point of view,

there is a consistent explanation of physics that makes sense

where nothing falls past the horizon in finite time.

We further assume that low-energy physics looks more or less

like the physics we know.

Finally, we assume that the causality structure of space-time

behaves like general relativity says it does.
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The photon sphere

Consider the space around a black hole.

There is a region called the photon

sphere which is the neighborhood of a

black hole inside the smallest circular

orbit. There are no orbits inside the

photon sphere — either a photon will

escape to infinity or it will fall into the

black hole.
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The stretched horizon

The Hawking radiation is only high-

temperature very close to the horizon.

Thus, except in the vicinity of the hori-

zon (an area we will call the stretched

horizon), physics should behave the way

we’re used to.
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What carries the information to scramble it?

If the causality structure of general

relativity holds, information cannot be

transmitted quickly if it stays within the

stretched horizon.

Outside the stretched horizon, the only

thing available to carry information is

Hawking radiation.

We will assume that the Hawking radi-

ation carries the black hole information

to scramble it (it has enough qubits).
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Subdividing the photon sphere

We can divide the photon sphere into cells, so that the round
trip from one side of the cell to the other and back takes time
order M when viewed by a distant observer.
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Information structure of the photon sphere

Each of these cells is filled with Hawking radiation, as seen from

an outside observer. The number of qubits contained in the

Hawking radiation inside each cell is O(1). There are αA cells

altogether, the vast majority very near the black hole. Within a

constant factor, this is the amount of information contained by

the black hole.
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Details of the subdivision

At height h (in Schwatzschilld coordinates)

above the event horizon, a cell has height

c1h and radial diameter c2
√
Mh, where c1,

c2 are constants. This ensures that the

Hawking radiation in each cell contains a

constant number of qubits.

The cells get smaller as you approach the

horion, but from the viewpoint of an ob-

server hovering inside one of these cells, its

aspect ratio is constant.
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More details of the subdivision

As seen from an outside observer’s viewpoint, the Hawking radi-

ation has the same frequency everywhere. The redshift makes it

much greater frequency to an observer hovering over the horizon.

Since we designed these cells so that the round trip from one

side of the cell to the other takes time M when viewed by a

distant observer, they all are of the same size as the dominant

wavelength in the Hawking radiation seen by an observer hovering

inside the cell.

This means that each of them contains a constant number of

bits of information.
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Requirements for Strong Scrambling

To scramble the information, if we start out with a separa-

ble state (nearly no entanglement between the top and bottom

halves) and end with a generic pure state (nearly maximal en-

tanglement between the top half and the bottom half) we need

to carry O(A) information from the top half to the bottom half.
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Intuition: Two paths I

Suppose we try to move the infor-

mation along paths near the horizon

of the black hole. The number of

cells each of these paths crosses is

order M , meaning we need order M2

time to traverse this path.
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Intuition: Two paths II

Suppose we try to move the informa-

tion on paths that go near the outside

of the photon sphere. There are only a

constant number of cells on the outside

boundary of the photon sphere, mean-

ing that it takes order M2 time steps to

move all the information through these

cells, leading to order M3 time total.
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The argument

Now, suppose we divide the photon sphere of

the black hole into two sections by a plane.

We can consider the Hawking radiation as a

channel carrying information from one side of

the plane to the other. There are order M

cells separating the top half and the bottom

half. Quantum information theory says this

can carry at most order M bits in a timestep

of length M . Thus, to get order A ≈ M2 in-

formation from one side to the other, we need

time order M2
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Question

Could the Hawking/Unruh radiation (which has O(M) entropy

according to our calculation) be the source of the microstates

of black holes?

Objection: But the Hawking/Unruh radiation is virtual.

Counter-objection: Why does this matter?
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How can information come out of black holes?

One possibility is that quantum fluctuations of the horizon let

information that fell into black holes long ago come out.

In order for causality to be preserved, this information would

have to come out essentially at the point where it entered.
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Speculation

Maybe the strong scrambling time is really order M2.

Maybe unitary breaks down for black holes, and the information

doesn’t come out.

Maybe there is new physics operating near the horizon.
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Thank You
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One Possibility

There is unknown physics going on ev-

erywhere; the universe is massively non-

local (despite what it looks like). Pos-

sibly the only way of understanding it

is to figure out what the CFT is in the

AdS-CFT correspondence and use that

to deduce the physics of our universe.
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Another Possibility

The unknown physics is con-

fined to the stretched horizon,

and somehow information is

being communicated from one

part of it to another.

This seems to violate relativity

But maybe, from the viewpoint of an outside observer, space is

connected strangely near the black hole horizon.
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Thank You
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