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List Decoding

What happens when number of errors exceeds 0/27?
Hope: Number of codewords is polynomial, if not 1.
Johnson bound: Upto J(0), list size is bounded.

0/2 < J(0) <o
Algorithmic task: find the list.



Tanner Codes
[Tanner’81, Sipser-Spielman’96, Zémor’'01]
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Thm (Sipser-Spielman’96):
Distance of Tanner code is at
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Decoding Tanner Codes

e Sipser-Spielman’96: ~ 6/48
e Zémor'01: =~ 6/4

e Skachek-Roth’03: =~ 6/2
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Our Result - list-decoding up to J(0).



Main Theorem

Inner Code: C, — distance 9,
Graph: G — A-expander

Theorem (Jeronimo-S-Tulsiani):
For any € > 0, the Tanner code C with distance at least 6 = §,(6y — 1)

can be list-decoded from radius J(0) — € in time p Ca(l/e®),
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Why care about list-decoding Tanner codes?

e Unique-decoding to list-decoding requires new ideas.
e Most list-decoding algorithms work for algebraic codes.

e Tanner codes: Source of linear time decoders.



Techniques

e Covering Lemma: Algorithm-friendly proof of Johnson bound.

e Proofs-to-Algorithms paradigm for codes.

Local Properties List Decoding
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(For local-to-global) Johnson bound

o Used for decoding Ta-Shma code [Richelson-Roy’23]

e Rounding algorithms for convex optimization based decoders.



Covering Lemma

In about an hour, the moon will cover the sun.

Source - Getty Images



Covering Lemma

Lemma. Given a family & of unit vectors in R", and a unit
vector g € R”, such that
VieZF, (&f)>a ac©l)

There exists g’ € conv(F) such that,
Ve F, (g.f)>a’

Proof. g’is the smallest £5-norm vector in conv(F).



From codes to geometry
Embed f € [} into R" as y(f), = (-1
A f) = 1= (s ()

2
1-p
Ui S==o= = x(fx(R) =P

e Hamming Distance < Inner product.

e Hamming Ball < Half-space.

Johnson Bound:

1 - 1 —+/p 5
Foro = > ﬂ, list sizes are polynomial until J() = 2\/_ S <5,5>.



Algorithm-friendly proof of Johnson bound

1] - -1 o 1 — \/,B
o Foranyh e & (r, J(5)), it holds that ( ¥ (7), y(h)) > \/ﬁ 2
e Covering Lemma = Thereis an 1’ € conv(Z) such that forany h € & (r, J(5)),
(r', x(h)) > .

e 7’ as a convex combination — distribution & over C.

Ero |A(fD)]| <6
e Support of I contains £ (r, J(5)).

e Pick & with support size < n + 1. Carathéodory’s
Theorem

Can take
exponential time!



Exponential Time Algorithm

1. Use covering lemma to find distribution &
over C such that forevery h € &£ (r, J(5)),

[EfNQZ[A(f, h)] < o.
2. Sample h' from .
3. Use distance of C to conclude
h'=nh
with some probability.



Igistance Proof of Tanner Code
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Distance Proof of Tanner Code
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Distance Proof of Tanner Code
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Igistance Proof of Tanner Code
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Continuous Relaxation for Tanner Code

Pseudocodeword
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Distance Proof for Relaxation of Tanner Code?

E[E[L40l1 > E[E[8) - 1,41l
AL(D, 0)>68,- A (D, 0)
AL(D, 0) > 5y A (D, 0)



Distance Proof for Relaxation of Tanner Code?

ELE [ 401] < By [E [0 - 14011
? <EIE Ll - E[L 4]



Continuous Relaxation for Tanner Code
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Key steps in the proof

E,.. [E [X(fz) : Y(ji,)]] Uses PSD-
ness/non-negativity
1 {} of sum-of-squares of
polynomials
~E, [ERD - YD) ron
average correlation
n 4} obtained by random
— NS conditioning.
~E, [E @] E v
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Exponential Time Algorithm

1. Use covering lemma to find distribution &

over C such that for every h € & (r, J(5)),

ErolA(f, )] <6
2. Sample h' from .

3. Use distance of C to conclude
h' = h.



Exponential Time Algorithm

1. Use covering lemma to find distribution &
over C such that forevery h € & (r, ](5)),

ErolA(f M) <5
2. Sampleh' from A

Condition & on all n coordinates to get /'.
3. Use distance-otC A(W', h) (AR, h) — 5) >0
to conclude
hi=h
A(h',h) = 0.



Exponential Time Algorithm Polynomial Time Algorithm

[ T|me 2]’1 ] T|men1/’72

1. Use covering lemma to find distribution & 1. Use covering lemma to find
over C such that forevery h € & (r, J(6)), distribution & over C such that for every
Er ol ACf, )] < & heZ(r.J©)),
2. Sampleh' from- A IEfNEj[A(f, h)] <6

Condition & on all n coordinates to get /',

3. Use distance-otC A(W', h) (AR, h) — 5) >0
to conclude

2. Condition D on O(1/n?) coordinates to get ',
3. Use A(K/, h)(A(h’, h) — 5) + 1 > 0 to conclude
=" A(h',h) < O(®).

A(h',h) = 0. 4. Unique-decode from /'




Extensions

Distance Amplification Scheme of Alon-Edmonds-Luby’95
C,.s0: high-rate positive distance code

Our Work
Rate R urrer List-decodable upto
> Distance ] — R — vy + J1—-—R—y)
Alphabet 270(1/7)

Cbase AEL

Non-binary Tanner codes
(Weighted) List Recovery

Concatenated Code upto Johnson bound



Alon-Edmonds-Luby (AEL) Amplification

e Only impose local code constraint on left side
e Local view on the right to be seen as a single alphabet symbol

0y Ar(f,8) S Ap(f,8) S Ap(f,8) - Ar(f,8) + 4

Ar(f, 8) = ) — A(f.9)

e Choose an (high-rate) outer code C; with distance 6,, and 1 = ¢ - §;.

A
Final code has rate R(C,) - R(C,) and distance 9, — —
1



List Decoding for AEL Amplification

e Typically, inner code is Reed-Solomon, with rate R, and distance
1 — R,

e Choose outer code C; to be a high-rate code, decodable upto some
constant radius.

e Final code has distance 1 — R, — €.

o Can be list decoded to radius 1 — /R, — ¢,.
e Works via reduction to (unique-)decoding of C;.



Future Directions

e Faster Algorithms
o Spectral
o Regularity Lemmas

e Beyond Johnson bound
o Interesting combinatorially also

e Quantum LDPC Codes
o [Upcoming work] Can list-decode quantum AEL codes.

Thank you!



Deterministic Algorithm

e All of these algorithms can be made deterministic.
e Try out all conditionings.

o For degree-t SoS, only n’ many conditionings.
e Use threshold rounding to derandomize the rest.



Correlation Rounding via Conditioning

[Barak, Raghavendra, Steurer '11]

o Suppose [, [ E [lfﬁéo : lfﬁéo]] and |, [ E [lfﬁéo] - E [lfﬁéo]] are more
than »n-different.
o Then {D,},c; and {D,}, . are correlated on average.

e Conditioning 5 on a random r € R reduces the average variance of
(D) per by Q).
o After O(1/n?) conditionings, must have low correlation on average.

e Can afford to condition this many times if the ensemble was induced by
larger degree moments.



