Application-Driven Coding Theory Workshop, Simons Institute, Berkeley ".m

Sparsity and Privacy in Distributed Matrix Multiplication

Rawad Bitar

Joint work with
Maximilian Egger, Marvin Xhemrishi and Antonia Wachter-Zeh

School of Information Computation and Technology
Technical University of Munich, Germany

March 8, 2024

DF Deutsche
Forschungsgemeinschaft

German Research Foundation




Tremendous Amount of Data Generated and Analyzed TI_ITI

© Statista 2022 &

4 SRaId - . . . )
Figure: Data Created per Minute (2021) . Figure: History of Worldwide Data (2021)

Our main concerns:
Privacy and Efficiency in distributed learning

https://dailyinfographic.com/how-much-data-is-generated-every-minute
2https://www.statista.com/statistics /871513 /worldwide-data-created/
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Distributed Learning Model
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Main Challenges in Distributed Learning TI_ITI

Data Main Node e Stragglers: Slow or unresponsive workers
e Heterogeneity: Different time-varying computing
power of the workers
® Privacy: Workers collude to gain knowledge of main
node’s data
, ® Security: Workers are malicious and try to jam the
= computation
=3 = e Efficiency: Reduce overall run-time and compute
Worker 1 tig g time of the workers
i |

Worker 2 Worker 3
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Main Challenges in Distributed Learning TI_ITI

e Main Node e Stragglers: Slow or unresponsive workers
: e Heterogeneity: Different time-varying computing
\ power of the workers
@ ® Privacy: Workers collude to gain knowledge of main

node's data

® Security: Workers are malicious and try to jam the
computation

e Efficiency: Reduce overall run-time and compute

Worker 1 }__:3 g ) Worker n time of the workers
&) &)

Worker 2 Worker 3

In this talk
Efficiency (sparsity), privacy and stragglers.
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System Model: Computation, Sparsity and Privacy
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Data: Sparse private matrices in [F
SA fora=20,
Pr(Ai;j=a)=<1—s5
(A ) A otherwise
qg—1

Privacy: IT privacy of A and B
No collusion: Each worker eavesdrops alone
Stragglers: Slow or unresponsive workers

Efficiency: sparsity of matrices assigned to the workers



System Model: Computation, Sparsity and Privacy
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Worker 3

® Data: Sparse private matrices in [
SA fora=20,
Pr(Ai;j=a)=<1—s5
(A ) A otherwise
qg—1

Privacy: IT privacy of A and B

No collusion: Each worker eavesdrops alone

Stragglers: Slow or unresponsive workers

Efficiency: sparsity of matrices assigned to the workers

Desired coding scheme

Encode A and B satisfying
¢ Privacy constraints
¢ Best sparsity in the codewords

¢ Straggler tolerance
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Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy
Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion
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Encoding and Privacy Measure

Information-Theoretic Privacy

Definition:
® Observation is statistically independent
from the private data, i.e.,
I(private data; observation) = 0
Assumptions:

+ Adversary with unbounded computation
power

- Limited number of collusions
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Encoding and Privacy Measure

Information-Theoretic Privacy

Definition:
® Observation is statistically independent
from the private data, i.e.,
I(private data; observation) = 0
Assumptions:

+ Adversary with unbounded computation
power

- Limited number of collusions

Variations of Information-Theoretic privacy

® Perfect: I(private data; observation) = 0 Usual privacy measure
when the data is Iarge\ 0

® Strong: I(private data; observation) = ¢
® Weak: I(private data; observation) = ¢ > 0
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Encoding and Privacy Measure TI_ITI

Information-Theoretic Privacy

® Observation is statistically independent
from the private data, i.e.,
I(private data; observation) = 0

® Draw random matrices R and S
o A— fA(X) =A+xR

Assumptions: ® B — gg(x) =B+ xS
+ Adversary with unbounded computation ® Assign fa(c;) and gg(cv;) to worker i
power Privacy guarantee
- Limited number of collusions ® Depends on how R and S are drawn

Variations of Information-Theoretic privacy
® Perfect: I(private data; observation) = 0 Usual privacy measure

> 0

when the data is large

e Strong: I(private data; observation) = ¢
e \Weak: I(private data; observation) = ¢ > 0

Rawad Bitar (TUM) 6



Implication of Perfect Privacy

AEngr—>

Private matrix
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Secret Sharing
(n,k,z) = (n,2,1)



Implication of Perfect Privacy
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Randomness

R~ U(Fg")

J

Secret Sharing

SXr
Al — (k2 =(n21)

Private matrix



Implication of Perfect Privacy
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Randomness

R~ U(Fg")

T ST
Secret Sharing ——— A+2R ~ U(]ngr)

SXr
ACE (K 2) = (n2,1) :
TS AR~ U(F)

Private matrix n Output shares



Implication of Perfect Privacy

Randomness

R ~ U(FS")

J o AFR ~U(E)

Secret Sharing = A+2R ~ U(FZW)

SXr
Al — (k2 =(n21)

TS AR~ U(F)

Private matrix n Output shares

® In several applications, e.g., medical imaging, data is represented by sparse matrices (non-uniform)

Problem of perfect privacy

Output shares have uniform distribution = Higher computation complexity.

Rawad Bitar (TUM)



Outline

Trade-Off Between Sparsity and Privacy
Sparse One-Time Pad

Sparse Shamir Secret Sharing



Trading Off Sparsity vs. Privacy TI_ITI

® |Insisting on perfect privacy does not allow sparsity

Lemma: fundamental tradeoff [BEwX24]

For k = 2 and z = 1, perfect privacy can be achieved if and only if the entries of R are i.i.d uniformly at
random.

1[BEWX24] R. Bitar, M. Egger, A. Wachter-Zeh, and M. Xhemrishi, “Sparsity and privacy in secret sharing: A fundamental trade-off,” accepted in IEEE

Transactions on Information Forensics and Security, 2024
Rawad Bitar (TUM) 8



Trading Off Sparsity vs. Privacy TI_ITI

® |Insisting on perfect privacy does not allow sparsity

Lemma: fundamental tradeoff [BEwx24]

For k = 2 and z = 1, perfect privacy can be achieved if and only if the entries of R are i.i.d uniformly at
random.

Relative Leakage per Share &
o
N
T

0 01 02 03 04 05 06 07 08 09 1

0 | |

Desired Sparsity Sehares
I(A + xR; A)

H(A) as function of desired sparsity.

Figure: Relative leakage & =

1[BEWX24] R. Bitar, M. Egger, A. Wachter-Zeh, and M. Xhemrishi, “Sparsity and privacy in secret sharing: A fundamental trade-off,” accepted in IEEE

Transactions on Information Forensics and Security, 2024
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Relax to Weak Privacy TI_ITI

Design R dependently on A, i.e., design a conditional PMF Pgia(R; = r|A; = a).
= This allows for sparsity, but leaks information about A.

Challenge

Given a desired sparsity of the shares, design R to get the smallest leakage.

Rawad Bitar (TUM) 9
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Sparse One-time Pad TI_ITI

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and A 4+ R. Design R as follows:

(p1, r=20
Pr{R; =r|lA;=0}=< 1 —
r{Rj = r|A; }= < P17 r£0
\q_l
(P2, r=20
PF{RU = I‘|AU = a}: < Ps, r= =
LR P g0, —a)
\ q—2

1[XEBQl] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data,” in |EEE Information Theory Workshop (ITW),
Invited paper, 2022
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Sparse One-time Pad TI_ITI

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and A 4+ R. Design R as follows:

(pl, r=20 (Sparisty of R)
PI’{RUZF|A,'J':0}=< ].—pl7 I‘#O,
\q_l
'pg, r=20
PF{RU = I‘|AU = a}: < Ps, r= =
LR fo,—a).
\ q—2
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Sparse One-time Pad TI_ITI

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and A 4+ R. Design R as follows:

pi, r=0 (Sparisty of R)
r{Rj = r|Aj J= S '011, r #0, (iid non-zero values in R)

q—

?

P2, r=

Pr{R; = r|A; = a}={ Ps r=-°
l—po P3’ r ¢ {0,—a)
\ q—2

1[XEBQl] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data,” in |EEE Information Theory Workshop (ITW),
Invited paper, 2022
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Sparse One-time Pad

= -

TUTI

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and A 4+ R. Design R as follows:

PI’{RU = F|A,J = O}Z <

PF{RU = I‘|AU = a}: <

p

p1, r=0 (Sparisty of R)
1 —
,0117 r # 0, (iid non-zero values in R)

. d —
(Do, r =0 (keeping non-zero values in A+ R)
P3, r—= —a

1 —p2— p3

—_ T 0,—at.
2P e 0-a)

1[XEBQl] M. Xhemrishi, M. Egger, and R. Bitar, '
Invited paper, 2022
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‘Efficient private storage of sparse machine learning data,” in /IEEE Information Theory Workshop (ITW),
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Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and A 4+ R. Design R as follows:

PI’{RU = F|A,J = O}Z <

PF{RU = I‘|AU = a}: <

p

p1, r=0 (Sparisty of R)
1—
,0117 r # 0, (iid non-zero values in R)
. q —
(P2, r =0 (keeping non-zero values in A+ R)
P3, r=—a (Sparsity in A+ R)
1—p>—ps
STRTB 200, —a).
2SR g

1[XEBQl] M. Xhemrishi, M. Egger, and R. Bitar, '
Invited paper, 2022
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Sparse One-time Pad
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TUTI

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and A 4+ R. Design R as follows:

PI’{RU = F|A,J = O}Z <

PF{RU = I‘|AU = a}: <

p

p1, r=0 (Sparisty of R)
1—p

r # 0, (iid non-zero values in R)

. q — 1’

(P2, r =0 (keeping non-zero values in A+ R)
Ps, r=—a (Sparsity in A+R)
1 —py —p3 , .
——— o ¥ ¢ {0, —a}. (iid non-zero values in A + R)

\ q—

1[XEBQl] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data,” in |EEE Information Theory Workshop (ITW),

Invited paper, 2022
Rawad Bitar (TUM)
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Sparse One-time Pad

=g

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and A + R. Desi

PI’{RU = r|A,J = O}Z <

Pr{Rj = r|Aj = a}= <

gn R as follows:

;

p1, r=0 (Sparisty of R)
1—p

r # 0, (iid non-zero values in R)

\ 4 — 1’
(P2, r =0 (keeping non-zero values in A + R)
Ps, r=—a (Sparsity in A+R)

1—p>—ps

—— r ¢ {0, —a}. (iid non-zero values in A + R)
] _

Proposition: Sparsity as function of the PMF

sr = p1s + p2(1 —s),
sa+rR = p15 + p3(1 — s).

1[XEB21] M. Xhemrishi, M. Egger, and R. Bitar, '
Invited paper, 2022
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Minimizing the Leakage TI_ITI

Minimizing Entry-Wise Leakage

Let P be the set of all g° values of Pgrja, then the optimal leakage is
Lopt = mpin I, (RiA) + 1 (A+R; A)
= mPin Dki (Par||[PaPr) + Dki (Paa+r||PaPa+R)

and is subject to valid PMF and desired sparsities.

Rawad Bitar (TUM) 11
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Minimizing Entry-Wise Leakage

Let P be the set of all g° values of Pgrja, then the optimal leakage is
Lopt = mpin I, (RiA) + 1 (A+R; A)
= mPin Dki (Par||[PaPr) + Dki (Paa+r||PaPa+R)

and is subject to valid PMF and desired sparsities.

e Constrained Convex Optimization
— For desired sg and sar, we solve convex optimization mpin L(p1, p2, p3) analytically.

— Solution is given by root finding of degree three polynomial.
— For small g, numerical results are the same as optimizing over g° values of PRria-
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Minimizing the Leakage TI_ITI

Minimizing Entry-Wise Leakage

Let P be the set of all g° values of Pgrja, then the optimal leakage is
Lopt = mpin I, (RiA) + 1 (A+R; A)
= mPin Dki (Par||[PaPr) + Dki (Paa+r||PaPa+R)

and is subject to valid PMF and desired sparsities.

e Constrained Convex Optimization
— For desired sg and sar, we solve convex optimization mpin L(p1, p2, p3) analytically.

— Solution is given by root finding of degree three polynomial.
— For small g, numerical results are the same as optimizing over g° values of PRria-

= Results in optimal privacy guarantees, i.e., minimal leakage.

Rawad Bitar (TUM) 11



Setting of Partly-Trusted /Untrusted Workers

Worker 0 Worker 1  Worker 2 Worker 3

A+R A+R R R

Figure: Two non-communicating clusters. One completely untrusted, one partially trusted.

Rawad Bitar (TUM)
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Setting of Partly-Trusted /Untrusted Workers

Worker 0  Worker 1 | Worker 2 Worker 3

A+R A+R R R

Figure: Two non-communicating clusters. One completely untrusted, one partially trusted.

® Choose py = p, = p3 = p such that I, (A+ R;A) =0
® Sparsity of the shares become

(sq—1) (1—5)
g—1 q-1’

® Choose p to satisfy the desired sparsity constraint

SR =P and  SspiR=p.-

Rawad Bitar (TUM)
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Sparse (n,2,1) Secret Sharing TUT

Constuction: Sparse Secret Sharing [EXWB24|

Use the encoding polynomial fa(x) = A 4+ xR. Choose n distinct non-zero symbols oy, . .., a, from [Fy. Share
i is the evaluation f(c;). Design the entries of R as follows:

P1, r=20
PI’{R,J:I’|A,J:0}:< ].—pl’ r7é0,
(g —1
( d
Ps, r € {——}iep
Q
Pr{Rj = r|Aj = a}= { 1 — p, a
1’ r ¢ {_ }lE[n]
. 4 i

1[EXWBZ4] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, “Sparse and private distributed matrix multiplication with straggler tolerance,” in |[EEE
International Symposium on Information Theory (ISIT), 2024

Rawad Bitar (TUM) 13
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Constuction: Sparse Secret Sharing [EXWB24|

Use the encoding polynomial fa(x) = A 4+ xR. Choose n distinct non-zero symbols oy, . .., a, from [Fy. Share
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Constuction: Sparse Secret Sharing [EXWB24]
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Sparse (n,2,1) Secret Sharing TUT

Constuction: Sparse Secret Sharing [EXWB24|

Use the encoding polynomial fa(x) = A 4+ xR. Choose n distinct non-zero symbols oy, . .., a, from [Fy. Share
i is the evaluation f(c;). Design the entries of R as follows:

p

p1, r=0 (sparsity of R)
r{Rj = r|Aj 1= pll, r # 0, (iid non-zero values in R)
\ 4 —
rpS’ re {—i}ie[nl (zero in A+ a;R)
Pr{Rj = r|Aj=a}= 14 1_ p, ” a’}
r — —fi€ln]-
L g — 1 ) o i€[n]

1[EXWBZ4] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, “Sparse and private distributed matrix multiplication with straggler tolerance,” in |[EEE
International Symposium on Information Theory (ISIT), 2024
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Sparse (n,2,1) Secret Sharing TUT

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial fa(x) = A 4+ xR. Choose n distinct non-zero symbols oy, . .., a, from [Fy. Share
i is the evaluation f(c;). Design the entries of R as follows:

(

p1, r=0 (sparsity of R)
PriRj=r|Aj =0}= (1 — . .
{Ry = rlAs = 0}= 4 pll, r # 0, (iid non-zero values in R)
\ q —
rps, re {_i.}"E["] (zero in A+ a;R)
Pr{Rj = rlAj=aj=q1—p. 3
o & {——riepn-  (iid non-zeros in A+ a;R)
( 9 Qj

1[EXWBZ4] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, “Sparse and private distributed matrix multiplication with straggler tolerance,” in |[EEE
International Symposium on Information Theory (ISIT), 2024
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Sparsity of our Sparse Secret Sharing UM

Lemma: Sparsity of the shares [EXWB24]

Given a matrix A with sparsity sa, the sparsity Sghare Of the shares is expressed as
Sshare = P1SA + ps(]- - SA)-

1[EXWBQ4] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, “Sparse and private distributed matrix multiplication with straggler tolerance,” in /EEE
International Symposium on Information Theory (ISIT), 2024
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Sparsity of our Sparse Secret Sharing UM

Lemma: Sparsity of the shares [EXWB24]

Given a matrix A with sparsity sa, the sparsity Sghare Of the shares is expressed as
Sshare = P1SA + ps(]- - SA)-

v Sparsity increases with p; and ps, e.g., p1 = 1, ps = 1 maximum sparsity
X So does the information leakage I(A + xR; A), e.g., pp = 1, ps = 1 = R is a multiple of — A

1[EXWBQ4] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, “Sparse and private distributed matrix multiplication with straggler tolerance,” in /EEE
International Symposium on Information Theory (ISIT), 2024
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=] -

Minimizing the Leakage of Sparse Secret Sharing TI_ITI

Theorem: Shares with minimum leakage

Given a desired sparsity Sghares, the leakage I(A 4 xR; A) of the n shares is minimized by setting ps = pi as the
n+1

: . . 1
real root of the polynomial g b;pl in ps that satisfies 0 < ps(1 — sp) < Min{Sshares, =} for 51 = Share/ (L —5),
n
Jj=0
5 2 (A — Sehares)/(1 — sp) and ¢ = (g — 1) /(g — n)" and

bpy1 = —1—c(—n)"

by = c(si(—n)" — n(=n)""") — 5

b= c (51 (’7) (—n) — (I_ ! 1) (—n)f—l) i n—1]

by = cs.

Then, p; is computed as
* Sshares — p:(l - SA)

py = :
1 Sa

Rawad Bitar (TUM) 15



Proof Idea

To prove that the values p; and p; the leakage, we do the following

® Assume sparsity is given and is same for all shares
® Prove that the leakage is a convex function of the conditional PMF Pgia(R; = r|A; = a)
® Find the leakage as function of ps and p; for our construction

® Solve the non-linear convex optimization problem using Lagrange multipliers

Rawad Bitar (TUM)
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Reducing the Computation Load TI_ITI

Group 0 Group 1 Group 2 Group 3

fo(x),&(x)  fA(x) &(x) f(x) g(x) f(x) g3(x)

n
® Divide the matrices A and B into m smaller chunks such that — = o + 3
m

e Compute and assign evaluations of f;(x) and gj(x) to workers of group i, each encoding a chunk of A and B

'[DFHJCG19] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix
multiplication,” |IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 278-301, 2019

Rawad Bitar (TUM)
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Reducing the Computation Load TI_ITI

Group 0 Group 1 Group 2 Group 3

fo(x),&(x)  fA(x) &(x) f(x) g(x) f(x) g3(x)

n
® Divide the matrices A and B into m smaller chunks such that — = o + 3
m

e Compute and assign evaluations of f;(x) and gj(x) to workers of group i, each encoding a chunk of A and B

—n=20 n=50—n=100—n=1000

(] o o o
N >~ (@)} (0]
| | | |

Break-even sparsity ss

O7\Hw\H\Hw\H\wawwwwwwwww
0 010203040506070809 1

a/n

Figure: Sparsity values above which our scheme is beneficial over [DFHJCG19] polynomial codes.

'[DFHJCG19] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix
multiplication,” |IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 278-301, 2019
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Outline

Numerical Observations



Leakage vs Scheme Parameters

Relative Leakage per Share &

Figure: Relative leakage & =
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Leakage vs Scheme Parameters

Relative Leakage per Share &

Figure: Relative leakage & =

® | eakage increases with n

® | eakage decreases with g
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Leakage vs Scheme Parameters TI_ITI
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Figure: Relative leakage & = as function of desired sparsity, number of shares n and field size gq.

® | eakage increases with n
® | eakage decreases with g

® | eakage increase with n is less emphasized for large g
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Leakage vs Scheme Parameters TI_ITI
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Why Same Sparsity for all Shares?
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Figure: Optimal element-wise total leakage over different s,,, with varying s5 for ¢ = 256 and s = 0.95.

Lemma: Optimal sparsity for two shares [XEB22]

Sparse secret sharing with shares R and A + R give the minimal total leakage when s5 = spx.g — sg = 0.

1[XEB22] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data,” in |EEE Information Theory Workshop (ITW),
Invited paper, 2022
Rawad Bitar (TUM)
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Matrices with Correlated Entries
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(a) Matrix A with s ~ 0.94 (b) Share f(«;) of A with
sparsity Sghare == 0.85

Figure: A depiction of the impact of correlated entries on the privacy guarantee.

® Naively encoding matrices with correlated entries using our sparse secret sharing may leak more information than

desired
20
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Matrices with Correlated Entries
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Figure: A depiction of the impact of correlated entries on the privacy guarantee.

® Naively encoding matrices with correlated entries using our sparse secret sharing may leak more information than

desired
® Qur approach is to randomly permute the entries
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Summary and Future Directions

Summary

Private and sparse matrix-matrix multiplication with no collusions

Fundamental trade-off between sparsity and privacy

Optimal solution under i.i.d entries of A for multiple shares with same sparsity

Privacy improves with g and small n

Extra care is needed for matrices with correlated entries

Rawad Bitar (TUM)
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Summary and Future Directions

Summary

® Private and sparse matrix-matrix multiplication with no collusions

Fundamental trade-off between sparsity and privacy

Optimal solution under i.i.d entries of A for multiple shares with same sparsity

Privacy improves with g and small n

Extra care is needed for matrices with correlated entries
Future Directions

® Improve the rate of sparsity-preserving secret sharing schemes, i.e., k > 2
® Sparse secret sharing with collusions, i.e., z > 1

® Beyond i.i.d entries of the matrices

Rawad Bitar (TUM)
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Munich Workshop on Coding and Cryptography

® Focus on post-quantum cryptography and privacy-preserving machine learning.

e Dates: April 8 — 10, 2024.
® Takes place after the Munich Workshop on Shannon Coding Techniques.

Rawad Bitar (TUM)
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ISIT Satellite Workshop on DNA-based Data Storage

Coding Theory and Algorithms for
DNA-based Data Storag

The workshop will focus on coding theory and algorithms for DNA-based data storage.
It will consist of invited and contributed talks, as well as poster presentations, from
researchers and experts. The workshop is organized as a satellite workshop of the 2024
IEEE International Symposium on Information Theory (ISIT2024).

® Jointly organized with Dave Landsman from the DNA Data Storage Alliance.
e Contribution deadline: April 15, 2024.

® Designed to foster collaboration.

Rawad Bitar (TUM)

23



Thank you

Figure: https://arxiv.org/abs/2306.15134

Rawad Bitar (TUM)

for your attention!

Questions?

@@

o

Further Questions?

Rawad Bitar

Technical University of Munich

rawad.bitar@tum.de
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