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Motivation
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systems in order to mitigate the occurrence of

e In many channels some patterns are more prone to error than others,
and we avoid them by using constrained codes.

e This reduces the number of errors, however the transmitted data
may still be corrupted by , requiring
additional



This is relevant for DNA storage

Examples of constraints
e Homopolymer runs
e GC content

e Local weight constraints

Examples of error types
e Substitution
e Insertions/Deletions

e Burst errors

Banerjee et al. ISIT '22, Cai et al. T-IT 21, Cai et al. ISIT '21, Lu et al.
IEEE Access '21, Nguyen et al. T-IT '21, Press et al. PNAS '20, Weber
et al. IEEE Comm. Lett. '20, (and others).
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e Construct an error-correcting code all of whose codewords obey the
constraints.
e Only a handful of ad-hoc examples are known.
e A non-constructive (hard to compute) lower bound on the rate
(Marcus and Roth, T-IT '92).

e Separate the error-correcting code and the constrained code, and
combine them using a concatenation scheme (e.g., concatenation, or
reverse concatenation).

e Many issues need to be resolved (see book draft by Marcus, Roth,
and Siegel).

e In the known schemes, the error-correction capabilities are quite
limited: the state-of-the-art method (Gabrys, Siegel and Yaakobi
ISIT '18) allows for a correction of O(y/n) errors (where n is the
block length).
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QCC is different

Conventionally: (concatenation, reverse concatenation)

e A constrained word represents the data to be transmitted and
protected against errors.

e The process of embedding the information in the constrained media
is reversible.

But in QCC:

e We consider the embedding process of information in the
constrained media as an irreversible process rather then
a coding procedure.

e The constrained word is considered as a corrupted version of the
input message, obtained by a quantization procedure.
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The Procedure

e Encoding: Given an information word @, use an encoder for an
error-correcting code to map it to a codeword ¢ € C.

¢ Quantization: Given ¢ € C, find a constrained word X € B,(X)
such that d(¢,x) < r, and transmit X.

e Channel: At the channel output, X’ € X", a corrupted version of X,
is observed.

e Decoding: Use the decoder for C on X’ and obtain @'
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Correcting ©(n) Errors
Assume that R(B,(X))/n converges to some number p and assume
that (C,), is a sequence of codes capable of correcting [dn] errors,

where § > p.

What About The Rate?
e The asymptotic rate of our scheme is determined by the rates of the
codes (Cp)nen-

e By the Gilbert-Varshamov bound, as long as p < 6 < (1 = 7) there
exists a sequence of codes with asymptotic rate of Hq(26) > 0.

If p< 3(1— 7) it is possible to correct ©(n) errors with a
non- vanlshlng rate.
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The covering radius of A constrained system

Definition

Let X, Y be constrained systems over .

e For a fixed n, the covering radius of B,(X) relatively to B,(Y) is
defined as

R(Bn(X), Ba(Y)) £ ming re N|B,(Y)C | ] Ball(x)
XEB(X)

e The (combinatorial) covering radius of X relatively to Y is

R(X,Y) £ liminf R(

n— o0

Bo(X), B(Y))

Remark

Typically, Y = X%, hence, B,(Y) = X" for all n and R(B,(X),B,(Y))
is the usual covering radius of B,(X).
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The essential covering radius

A Trade-off Between Quantization-Error and Rate

Question: What happens to the covering radius if we allow to drop an
€ (0,1) fraction of the words in B,(Y) to be covered?

e We can drop bad patterns and therefore reduce the covering radius.

e On the other hand, in the context of QCC, where B,(Y) = X", we
lose rate — the rate of our coding scheme decreases by f@.

Definition

Let X and Y be constrained systems, p be an invariant ergodic
measure on Y. For € € (0,1) we define R-(B,(X),Bn(Y), 1n) by:

min¢ r € N |, [ Bo(Y)N U Ball, >1—¢
XEB(X)
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taking u to be the i.i.d uniform measure, R(B,(X), Bn(Y), in) is the
minimal radius for covering a fraction of (1 — &) of X".

An Asymptotic Definition
For a fixed ¢ € (0, 1) define
R Bn X 7Bn Y ) 'n
R(X. Y, ) 2 liminf ReBn(X), Ba(¥), ttn)

n— 0o n

Taking the uncovered-fraction of Y to 0 we define the
of X with respect to (Y, u) as

Ro(X, Y, 1) £ lim Re(X, Y, ).
e—
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1 < L
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The Case of (0, k)-RLL

We revisit the case where Y = {0, 1}% is non-constrained and Xg x is
the (0, k)-RLL system. Let ;1 be the Ber(3) i.i.d measure on Y.

Question: is the essential covering radius is strictly smaller then the
combinatorial covering radius in that case?

Theorem

1 1

Ro(Xo,k7 Vs H) = 2(2k+1 _ 1) k +1

= R(Xok, Y)-

In The Context of QCC

For a sequence of ECCs capable of correcting dn errors:

e Using the combinatorial covering radius — it is possible to correct up
to (6 — k+1)n errors.

e Using the essential covering radius — with vanishing loss of rate, it is

: 1
possible to correct (6 — m)n errors! a0
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The Combinatorial Covering Radius

e We prove that under the assumption of primitive X or Y, the liminf
in the definition is a limit.

e We show a relation between covering radius and capacity:

R(X,Y) > HZH(h(Y) — h(X)).

The Essential Covering Radius

e We find an equivalent characterization of the essential covering
radius using ergodic theory.

e The ergodic-theoretic definition is useful for establishing bounds on
the essential covering radii of constrained systems.
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The covering radius of a constrained system is a new and interesting
parameter due to its applications for error-correcting constrained codes,
but also as a mathematical figure of merit.
Possible Directions for The Future
e The algorithmic aspect of QCC - developing quantization algorithms.
e Studying the covering radii of well-known constrained systems.

e Providing general bounds and methods to study the covering radius
for studying constrained systems.
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Thank you for your attention!
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