Generalized Staircase Codes with Arbitrary Bit Degree

Frank R. Kschischang

Department of Electrical & Computer Engineering University of Toronto frank@ece.utoronto.ca

> Simons Institute Workshop on Application-Driven Coding Berkeley, California

> > March 6, 2024

Acknowledgements

Joint work with:

Mohannad Shehadeh

Alvin Y. Sukmadji

Funding:

This work was funded in part by the Natural Sciences and Engineering Research Council of Canada, and in part by Huawei Canada Research Center.

Motivation I: Decoding Window Size

- Distance between transmitter and receiver: d (m)
- Propagation speed: c (m/s)
- Data transmission speed: D (bit/s)
- Bits in transit: $N = \frac{Dd}{c}$ (bit)
- Decoding window size: $\mathcal{O}(N)$

Wireless

$$d=100$$
 m to 10 km, $D=1$ Gb/s, $c=3\cdot 10^8$ m/s \Rightarrow $N=0.33$ to 33 kbit.

Mars Link

$$d = 225 \cdot 10^6$$
 km, $D = 2$ Mb/s, $c = 3 \cdot 10^8$ m/s $\Rightarrow N = 1500$ Mbit.

Fiber

d = 100 m to 1000 km, D = 1 Tb/s, $c = 2 \cdot 10^8$ m/s $\Rightarrow N = 0.5$ to 5000 Mbit.

Motivation II: Power Consumption

- Decoder Power Consumption (W) = Decoder Energy Efficency $(J/bit) \times D$ (bit/s)
- To achieve Decoder Power Consumption of ≈ 1 W, requires Decoder Energy Efficiency $\approx \left(\frac{1 \text{ Watt}}{D}\right)$.

Wireless

 $D = 1 \text{ Gb/s} \Rightarrow$ Decoder Energy Efficiency $\approx 1 \text{ nJ/bit}$

Mars Link

D=2 Mb/s \Rightarrow Decoder Energy Efficiency \approx 0.5 μ J/bit

Fiber

 $D = 1 \text{ Tb/s} \Rightarrow \text{Decoder Energy Efficiency} \approx 1 \text{ pJ/bit}$

Motivation II: Power Consumption (cont'd)

For high data rate (fiber-optic communications) applications, we are interested in codes with low decoding complexity:

- high code rate: $R \approx 0.9$ to $R \approx 0.99$
- large decoding windows $\approx 10^6$ bits.

- Introduced in B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang and J. Lodge, "Staircase Codes: FEC for 100 Gb/s OTN," *J. Lightwave Technology*, vol. 30, Jan. 2012, pp. 110–117.
- Spatially-coupled product codes
- Iterative algebraic decoding in a sliding window
- High-rate (low-complexity) BCH component decoders
- Low error floors with analytic bounds
- Adopted in standards:
 - OIF 400ZR (400 Gb/s, coherent), 2017 (inner Hamming, outer staircase)
 - ITU-T G.709.2 (OTU4 long-reach interface), 2018

Staircase Codes: Summary

- Each square "staircase block" is of size *S* × *S* bits.
- *C* is a binary systematic code of length 2*S* (e.g., a *t*-error-correcting BCH code).
- Iterative decoding occurs within a sliding window: "oldest" block shifted out when "newest block" is filled.
- Every bit is checked by two codes (degree 2)
- Two codes intersect in at most one bit ("scattering" = girth > 4 in Tanner graph with code-constraint vertices)

Increasing Bit Degree while Maintaining Scattering

Minimum weight uncorrectable error pattern contains at least (M + 1)t + 1 errors.

- Error floors below 10⁻¹⁵ with M = 1 usually requires t ≥ 3.
- Energy cost (J) for *t*-error-correcting BCH codes scales as $\mathcal{O}(t^2)$, or $\mathcal{O}(t^2/t) = \mathcal{O}(t)$ J per corrected bit.
- This motivates reducing *t*, compensating with an increased *M* to maintain low error floor.

Scattering: component codes intersect at most once

Alternative View of Staircase Codes (M = 1)

Generalization: M > 1

Notation: intra-block permutations

- Codeword is an infinite sequence B_0, B_1, B_2, \ldots of $S \times S$ matrices satisfying certain constraints
- Assume entries from \mathbb{F}_2 for concreteness (but could generally be any alphabet)
- $S \times S$ matrices indexed by $(i, j) \in \{0, 1, \dots, S-1\} \times \{0, 1, \dots, S-1\} = [S] \times [S]$
- M + 1 permutations π_k indexed by $k \in \{0, 1, \dots, M\} = [M + 1]$:

$$\pi_k \colon [S] \times [S] \longrightarrow [S] \times [S]$$

 $(i,j) \longmapsto \pi_k(i,j)$

• B^{π_k} is the permuted copy of $B \in \mathbb{F}_2^{S imes S}$ according to π_k

Notation: intra-block permutations (cont'd)

If

$$B = \begin{bmatrix} b_{(0,0)} & b_{(0,1)} & \dots & b_{(0,S-1)} \\ b_{(1,0)} & b_{(1,1)} & \dots & b_{(1,S-1)} \\ \vdots & \vdots & \ddots & \vdots \\ b_{(S-1,0)} & b_{(S-1,1)} & \dots & b_{(S-1,S-1)} \end{bmatrix},$$

then

$$B^{\pi_k} = egin{bmatrix} b_{\pi_k(0,0)} & b_{\pi_k(0,1)} & \dots & b_{\pi_k(0,S-1)} \ b_{\pi_k(1,0)} & b_{\pi_k(1,1)} & \dots & b_{\pi_k(1,S-1)} \ dots & dots & \ddots & dots \ b_{\pi_k(S-1,0)} & b_{\pi_k(S-1,1)} & \dots & b_{\pi_k(S-1,S-1)} \ \end{pmatrix}$$

• Without loss of generality, take $\pi_0 = {\rm id}$, so $B^{\pi_0} = B$

- Inter-block constraints are causal, characterized by delays
- Consider M+1 distinct non-negative integer block delay values d_0, d_1, \ldots, d_M
- Without loss of generality, assume

$$0 = d_0 < d_1 < \cdots < d_M$$

Generalized staircase code construction

- Fix a component code $\mathcal{C} \subseteq \mathbb{F}_2^{(M+1) \cdot S}$ of length $(M+1) \cdot S$
- Code is then defined by the constraint that the rows of the matrix

$$\begin{bmatrix} B_{i-d_M}^{\pi_M} & B_{i-d_{M-1}}^{\pi_{M-1}} & \cdots & B_{i-d_2}^{\pi_2} & B_{i-d_1}^{\pi_1} & B_i \end{bmatrix} \in \mathbb{F}_2^{S \times (M+1) \cdot S}$$

belong to the component code C for all $i \ge d_M$ and that

$$B_{-1}=B_{-2}=\cdots=B_{-d_M}=0_{S\times S}$$

- Encoding memory is d_M blocks
- If C is linear, systematic with redundancy r, dimension $(M+1) \cdot S r$

$$R_{\text{unterminated}} = \frac{S \cdot (S - r)}{S \cdot S} = 1 - \frac{r}{S}$$

• Rate of component code C has to be at least M/(M+1)

- It is both practically convenient and mathematically sufficient to consider permutations defined by linear-algebraic operations on matrix indices (i, j) ∈ [S] × [S]
- To do so, must associate the index set $[S] = \{0, 1, \dots, S 1\}$ with a finite commutative ring $\mathcal R$ of cardinality S
- Permutations are then defined by invertible 2×2 matrices:

$$\pi(i,j) = (i,j) \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (ai + cj, bi + dj)$$

where $(ad - bc)^{-1}$ exists in $\mathcal R$

Choice of ring \mathcal{R} with $|\mathcal{R}| = S$

- Intra-block scattering families of permutations are most easily constructed when \mathcal{R} has sufficiently many elements with invertible differences as will be seen shortly
- Finite fields are a good choice since any pair of distinct elements have an invertible difference since all nonzero elements are invertible
- Take $\mathcal{R} = \mathbb{F}_p = \mathbb{Z}_p$ with S = p a prime number, i.e., perform integer arithmetic on matrix indices modulo a prime-valued S
- Take $\mathcal{R} = \mathbb{F}_q$ with S = q a prime power and associate $\{0, 1, \dots, S 1\}$ with $\{0, 1, \alpha, \alpha^2, \dots, \alpha^{S-2}\}$ where α is a primitive element of \mathbb{F}_q
- R = Z_S for non-prime S can work if S has a sufficiently large lowest prime factor denoted lpf(S)
- This is because {0, 1, ..., lpf(S) − 1} have invertible differences for distinct elements modulo S since {±1, ±2, ..., ±(lpf(S) − 1)} are coprime with S

Definition

An (M + 1, S)-net is a set of S^2 elements called "points" along with a collection of (M + 1) partitions of these points into subsets of size S called "lines" such that distinct lines intersect in at most one point.

- This is a generalization of the concept of "rows" and "columns" of an $S \times S$ grid which define a (2, S)-net
- If the entries of the matrix B are the points and the rows of the M + 1 matrices B^{π_k} for $k \in \{0, 1, ..., M\}$ are the M + 1 partitions, then an (M + 1, S)-net is equivalent to a special collection of permutations on $[S] \times [S]$
- This collection has the property that for any distinct $k, k' \in \{0, 1, ..., M\}$, any row of B^{π_k} has at most a single element in common with a row of $B^{\pi_{k'}}$
- (M + 1, S)-nets are well-studied objects in combinatorics and finite geometry with close connections or equivalences to orthogonal arrays, mutually orthogonal Latin squares, transversal designs, and affine planes
- Standard reference: Handbook of Combinatorial Designs by Colbourn and Dinitz

Finite-geometric nets

Theorem (Linear-algebraic intra-block scattering permutations)

A collection of M + 1 permutations on $\mathcal{R} \times \mathcal{R}$, where \mathcal{R} is a finite commutative ring of cardinality S, defined by a collection of invertible 2×2 matrices define an (M+1,S)-net if and only if, for any pair of distinct matrices A, \tilde{A} in the collection where

$$egin{array}{c} A = egin{bmatrix} a & b \ c & d \end{bmatrix}, \; ilde{A} = egin{bmatrix} ilde{a} & ilde{b} \ ilde{c} & ilde{d} \end{bmatrix},$$

we have that $c\tilde{d} - d\tilde{c}$ is invertible in \mathcal{R} .

Proof.

By linear algebra.

Example

If $\mathcal{R} = \mathbb{Z}_p$ with p a prime, the identity permutation $I_{2\times 2}$ together with

$$\begin{bmatrix} 0 & 1 \\ 1 & z \end{bmatrix}$$

for $z \in \{0, 1, \ldots, M-1\}$ define an (M+1, p)-net if $M \leq p$. (Theorem condition becomes that $z_1 - z_2$ is invertible for **distinct** $z_1, z_2 \in \{0, 1, \ldots, M-1\}$ which is automatically true in $\mathbb{Z}_p = \mathbb{F}_p$ since $z_1 - z_2 \neq 0$.)

Example

If $\mathcal{R} = \mathbb{Z}_p$ with p a prime, the identity permutation $I_{2\times 2}$ together with the involutions

$$\begin{bmatrix} -z & 1-z^2 \\ 1 & z \end{bmatrix}$$

for $z \in \{0, 1, \dots, M-1\}$ define an (M+1, p)-net if $M \le p$.

Example

If
$$\mathcal{R} = \mathbb{Z}_{\mathcal{S}}$$
, the identity permutation $I_{2 \times 2}$ together with

$$\begin{bmatrix} 0 & 1 \\ 1 & z \end{bmatrix}$$

for
$$z \in \{0, 1, \dots, M-1\}$$
 define an $(M+1, S)$ -net if $M \leq lpf(S)$.

Example

If $\mathcal{R} = \mathbb{F}_q$ with q a prime power, the identity permutation $I_{2\times 2}$ together with

$$\begin{bmatrix} 0 & 1 \\ 1 & z \end{bmatrix}$$

for $z \in \{0, 1, \alpha, \alpha^2, \dots, \alpha^{M-2}\}$ where α is a primitive element of \mathbb{F}_q form an (M+1, q)-net if $M \leq q$.

M/(M+1) overlap problem for $(d_0, d_1, \ldots, d_M) = (0, 1, \ldots, M)$

Overlap problem:

- no problem when M = 1, but ...
- when M = 2, bits in the same row of $[B_{i-2}^{\pi} \ B_{i-1}^{T} \ B_{i}]$ may appear in the same row of $[B_{i-1}^{\pi} \ B_{i}^{T} \ B_{i+1}]$, violating the scattering property.
- same issue when $M \ge 2$.

Inter-block scattering delays for M = 2

 $0 B_0$ 0 $0 \quad B_0^{\mathsf{T}} \quad B_1$ $0 B_1^T B_2$ B_0^{π} B_2^{T} B_3 $B_1^{\pi} B_3^{\mathsf{T}} B_4$ $B_2^{\pi} B_4^{\mathsf{T}} B_5$ $B_{3}^{\pi} B_{5}^{T} B_{6}$ $B_{4}^{\pi} B_{6}^{T} B_{7}$ $B_5^{\pi} B_7^{\mathsf{T}} B_8$ $B_6^{\pi} B_8^{\mathsf{T}} B_9$: : :

- Take $(d_0, d_1, d_2) = (0, 1, 3)$ instead of $(d_0, d_1, d_2) = (0, 1, 2)$
- No overlap: for all $i \neq j$, $B_i^{\pi_k}$ and $B_j^{\pi_\ell}$ appear side-by-side at most once

Definition (Golomb ruler)

The M + 1 integers $0 = d_0 < d_1 < \cdots < d_M$ referred to as "marks" form a Golomb ruler of order M + 1 and length d_M if no two distinct pairs of marks are the same distance apart, i.e., have the same difference. An optimal Golomb ruler is the ruler with the shortest length d_M (thus smallest memory) for a given order M + 1.

- Any Golomb ruler whether optimal or suboptimal yields inter-block scattering
- Optimal Golomb rulers are known for all $M + 1 \leq 28$ as of today
- Optimal Golomb rulers have at least quadratic length $d_M = \Omega(M^2)$
- Though many more suboptimal or near-optimal constructions are known
- E.g., $d_k = 2^k 1$ gives a naive construction which is optimal for $M \in \{0, 1, 2\}$ but highly sub-optimal for $M \ge 3$ (exponential length $d_M = 2^M 1$)
- Good rulers for $M+1 \leq 65000$: www.cs.toronto.edu/~apostol/golomb/

Optimal Golomb Rulers

length	optimal Golomb ruler (see Wikipedia for sources)
0	0
1	01
3	013
6	0146
11	0 1 4 9 11
17	0 1 4 10 12 17
25	0 1 4 10 18 23 25
34	0 1 4 9 15 22 32 34
44	0 1 5 12 25 27 35 41 44
55	0 1 6 10 23 26 34 41 53 55
72	0 1 4 13 28 33 47 54 64 70 72
85	0 2 6 24 29 40 43 55 68 75 76 85
106	0 2 5 25 37 43 59 70 85 89 98 99 106
127	0 4 6 20 35 52 59 77 78 86 89 99 122 127
151	0 4 20 30 57 59 62 76 100 111 123 136 144 145 151
	length 0 1 3 6 11 17 25 34 44 55 72 85 106 127 151

LUT-free decoding of systematic Hamming codes

• Consider a $[2^m, 2^m - (m+1)]$ extended Hamming code whose parity-check matrix has columns given by the binary representations of 2j + 1 for $j \in \{0, 1, ..., 2^m - 1\}$

$$H = \begin{bmatrix} 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & \dots & 1 \\ 0 & 1 & 0 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix}$$

- Famously, syndrome decoding of such a code is trivial with the first *m* bits of the syndrome column interpreted as an integer directly giving the error location
 j ∈ {0,1,...,2^m − 1}
- Unfortunately, *H* must have its columns permuted in order to have a corresponding systematic generator matrix thus ruining this decoding method

Systematic Hamming Codes (cont'd)

- However, if we can find a systematizing permutation which is algebraically-defined so that it's easy to invert, this problem is solved
- Interpret the column index set $\{0, 1, \dots, 2^m 1\}$ as the ring of integers modulo 2^m , i.e., \mathbb{Z}_{2^m}
- All odd integers are invertible modulo 2^m so any odd a ∈ Z_{2^m} and possibly non-odd b ∈ Z_{2^m} define an algebraic (affine) permutation τ

$$au \colon \mathbb{Z}_{2^m} \longrightarrow \mathbb{Z}_{2^m} \ j \longmapsto au(j) = \mathsf{a} \cdot j + \mathsf{b}$$

$$au^{-1} \colon \mathbb{Z}_{2^m} \longrightarrow \mathbb{Z}_{2^m}$$

 $j \longmapsto au^{-1}(j) = a^{-1} \cdot (j - b)$

Systematic Hamming Codes (cont'd)

- au and au^{-1} are trivially implemented in software/hardware as a simple (m+1)-bit add-and-multiply
- By a computer search, we found values of *a* and *b* for all $m \in \{3, 4, ..., 15, 16\}$ such that the the parity check matrix *H* permuted according to τ has a systematic generator matrix
- This means that both decoding these Hamming codes as well as generating columns of H can be done as simply as computing τ and τ^{-1}
- Both such steps must be done repeatedly in a higher-order staircase code with high bit degree and many Hamming components
- The alternative would be to have multiple possibly redundant LUTs with 2^m (m+1)-bit entries wherever these computations are needed
- Adaptation to a code shortened in the first s positions is accomplished by replacing b with $b+a\cdot s$

Systematizing affine permutations for extended Hamming codes

т	а	Ь	a^{-1}
3	1	1	1
4	3	0	11
5	3	0	11
6	3	3	43
7	5	5	77
8	9	11	57
9	19	19	27
10	27	27	531
11	53	53	541
12	89	89	2025
13	163	170	4875
14	301	308	13989
15	553	553	14873
16	1065	1155	55321

Performance results (extended Hamming components)

- Highly-optimized C-based software simulators achieve simulated throughputs of several Gbps per core of a modern consumer multi-core CPU allowing for direct verification of sub-10⁻¹⁵ error floors
- Relative to conventional staircase codes with t = 3, performance is roughly 0.2 to 0.5 dB worse in terms of the gap to the hard-decision Shannon limit as the code rate ranges from 0.98 down to 0.8
- Under concatenation with soft-decoded inner codes, gap can be much smaller: e.g., using proposed codes as drop-in replacement for CFEC rate 239/255 outer code which is paired with rate 120/128 soft-decision Hamming code, loss is under 0.2 dB
- M = 3 or M = 4 seems to suffice for getting sub- 10^{-15} error floors
- Memory (decoding window size) is always smaller

Simulation Results

• For L an integer divisor of S, subdivide $S \times S$ codeword blocks evenly into $(S/L) \times S$ wide sub-blocks.

e.g.,
$$L = 2$$
: \longrightarrow ,

- Define a new code in terms of $(S/L) \times (S/L)$ blocks.
- This preserves rate, but can reduce memory.

Example (L = 2, M = 2**)**

- Now require *L* Golomb rulers, each with *M* + 1 marks, having disjoint distance spectra
- Intra-block permutations {π₀,..., π_M} can be "recycled" in different phases

Definition

An (L, M)-DTS is a set of L Golomb rulers of order M + 1 whose respective sets of distances are disjoint. Equivalently, it is a set of L rulers of order M + 1 given by

$$d_0^{(\ell)} < d_1^{(\ell)} < \cdots < d_M^{(\ell)}$$

for $\ell \in [L]$ such that all positive differences

$$d_{k_2}^{(\ell)} - d_{k_1}^{(\ell)}$$

for $k_1, k_2 \in [M+1]$, $k_2 > k_1$, and $\ell \in [L]$ are distinct.

 See, e.g, Chapter 19 of Colbourn and Dinitz (eds), Handbook of Combinatorial Designs, 2007.

L-uniform Ruler

Definition

An *L*-uniform ruler of order M' + 1 is a set of integers $d_0 < d_1 < \cdots < d_{M'}$ for which

$$\left| \{ d_k : k \in [M'+1], d_k \equiv \ell \mod L \} \right| = \frac{M'+1}{L}$$

for each $\ell \in [L]$.

- In other words, elements of $\{0, \ldots, L-1\}$ appear equally often as residues of $\{d_0, \ldots, d_{M-1}\} \mod L$.
- Necessarily, M' + 1 = L(M + 1) for some positive integer M + 1 and we can construct any such ruler from L base rulers of order M + 1 given by

$$d_0^{(\ell)} < d_1^{(\ell)} < \cdots < d_M^{(\ell)}$$

for each $\ell \in [L]$ as

$$\{d_k: k \in [M'+1]\} = \{Ld_k^{(\ell)} + \ell : k \in [M+1], \ell \in [L]\}.$$

Ingredient 1 (A difference triangle set)

An (L, M)-DTS given by

$$0 = d_0^{(\ell)} < d_1^{(\ell)} < \cdots < d_M^{(\ell)}$$

for $\ell \in [L]$ with corresponding *L*-uniform ruler of order L(M+1)

$$d_0 < d_1 < \cdots < d_{L(M+1)-1}$$

given accordingly as

$$\{d_k: k \in [L(M+1)]\} = \{Ld_k^{(\ell)} + \ell: k \in [M+1], \ell \in [L]\}$$

Ingredient 2 (geometric net)

An (M + 1, S/L)-net with corresponding M + 1 permutations of $[S/L] \times [S/L]$ given by π_k for $k \in [M + 1]$ where π_0 is the identity permutation, and a resulting collection of L(M + 1) permutations of $[S/L] \times [S/L]$ given by $\pi'_{k'} = \pi_k$ for every $k \in [M + 1]$ and $k' \in [L(M + 1)]$ such that $d_{k'} \in \{Ld_k^{(\ell)} + \ell : \ell \in [L]\}$

Ingredient 3 (component code)

A component code C of length (M + 1)S and dimension (M + 1)S - r

Definition

A higher-order staircase code of rate 1 - r/S is defined by the constraint on the bi-infinite sequence of $(S/L) \times (S/L)$ matrices ..., $B_{-2}, B_{-1}, B_0, B_1, B_2, ...$ that the rows of

$$(B_{n-d_{L(M+1)-1}}^{\pi'_{L(M+1)-1}} | \cdots | B_{n-d_1}^{\pi'_1} | B_{n-d_0}^{\pi'_0})$$

belong to C for all $n \in L\mathbb{Z}$.

- When L = M = 1, the classical staircase codes of Smith, et al. (2012) are recovered.
- When L > 1 and M = 1, the tiled diagonal zipper codes of Sukmadji, et al. (2022) are recovered.
- When S = L and r = 1, a recursive (rather than feedforward) version of the self-orthogonal convolutional codes of Robinson and Bernstein (1967), et al. are recovered

- Usually characterized by scope: the maximum length of the constituent rulers.
- The scope is a proxy for the *decoding memory* requirement.
- The **length-sum** an unstudied DTS parameter is the sum of the lengths of the constituent rulers.
- The length-sum is a proxy for the *encoding memory* requirement.
- Minimum scope DTSs and minimum length-sum DTSs do not necessarily coincide.
- For M = 1, a minimum scope (L, 1)-DTS is given by $\{0, 1\}, \{0, 2\}, ..., \{0, L\}$.
- For M = 2, minimum scope (L, 2)-DTSs have an explicit construction (Skolem, 1957)

Scope versus Length-Sum of DTSs (Examples)

- search for DTSs that are optimal with respect to the scope and length-sum tradeoff
- extend simulations to larger L and larger t (t = 2 in particular)
- evaluate performance/complexity tradeoffs
- evaluate performance in concatenation with suitable soft-decision inner code