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Presentation outline
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PIR capacity: known results and our conjecture (≈ theorem)
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Full support-rank PIR and that theorem

Current and future directions (beyond PIR)
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Private information retrieval (PIR)

With PIR, a user is able to download one out of m files
{x1, . . . , xm} from a database without revealing the identity
i ∈ [m] of the file to the database holder.

Theorem

If the data is stored on only one server, perfect privacy cannot be
achieved except by downloading the entire data.

→ Distributed storage system (DSS) with n servers...

→ ...encoded with an [n, k] (MDS) code!
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Short history of PIR

PIR from replicated databases was introduced by Chor in 1995
and was an active topic thereafter [Cho+95; Bei+02;
Dvi+16].
→ A sequence of papers reduced the communication cost to
be sub-linear in m.

More recently, a lot of renewed interest towards PIR from
coded storage systems from various perspectives [Aug+14;
Sha+14; Faz+15].

100s of papers since 2015; hits on IEEE Xplore:

1995–2004: 7
2005–2014: 72
2015–2024: 393
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A toy example with [n, k]q = [3, 2]2 code

x11
x21
x31

x12
x22
x32

x11 + x12
x21 + x22
x31 + x32

m = 3 files. Want x1.
Server j ∈ [n] stores
y ij = (x iG )j , i ∈ [n].
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y ij = (x iG )j , i ∈ [n].

1st round: Choose
random u = (1, 0, 1).

Send a query
q1 = u + e1 = (0, 0, 1)
to the 1st server, and
q2 = q3 = u = (1, 0, 1)
to the other servers.

Servers respond
rj = 〈yj , qj〉.
Decode x11 =

∑n
j=1 rj .
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Collusion and t-PIR

Servers in a colluding set may exchange their obtained queries in
order to reveal the identity of the desired file.

Definition

A PIR scheme protects against the colluding set J ⊆ [n], if the
projection of the overall query Qi to J does not depend on the
desired file i ∈ [m].

Definition

A t-PIR scheme protects against any colluding set of size ≤ t.
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Capacity of PIR

The rate R of a PIR scheme is defined as

R =
file size

download size

The capacity C of PIR is the maximum possible rate for a
given model.

We call a scheme asymptotically capacity achieving if

R = lim
m→∞

C .

8 / 34



Capacity of PIR

The rate R of a PIR scheme is defined as

R =
file size

download size

The capacity C of PIR is the maximum possible rate for a
given model.

We call a scheme asymptotically capacity achieving if

R = lim
m→∞

C .

8 / 34



Capacity of PIR

The rate R of a PIR scheme is defined as

R =
file size

download size

The capacity C of PIR is the maximum possible rate for a
given model.

We call a scheme asymptotically capacity achieving if

R = lim
m→∞

C .

8 / 34



PIR capacity and constructions

Several capacity results and scheme constructions have been
reported (non-exhaustive list!):

- replication [Sun+17; Tia+19]
- MDS-coded storage [Ban+18; Zhu+19]
- colluding servers [Sun+18b]
- MDS and colluding [Fre+17; Taj+18; D’O+18]

- symmetric PIR (SPIR) [Wan+17b; Wan+17a; Wan+17c]
- single-server PIR with side information [Hei+18]
- non-MDS storage [Fre+19; Kum+19]
- ...
- graph-based PIR [Sad+23]
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Capacity of PIR

A storage system with m files has the following (conjectured,
mostly proven) capacities:

replication [n, k]-coded

no collusion † 1−1/n
1−(1/n)m

m→∞−→ 1− 1
n

¶ 1−k/n
1−(k/n)m

m→∞−→ 1− k
n

t-collusion ‡ 1−t/n
1−(t/n)m

m→∞−→ 1− t
n

§ 1− t+k−1
n

1−( t+k−1
n )m

m→∞−→ 1− t+k−1
n

†Sun–Jafar [Sun+17].
¶Banawan–Ulukus [Ban+18].
‡Sun–Jafar [Sun+18b].
§Freij-Hollanti et al. [Fre+17]; Sun–Jafar [Sun+18a]; Holzbaur et al. [Hol+22].
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Fast convergence: coded case (k > 1, t = 1)

11 / 34



Capacity of uncoded PIR

Theorem (Sun–Jafar 2016)

The capacity of replicated n server PIR for a storage system
containing m files is given by(

1 +
1

n
+ · · ·+ 1

nm−1

)−1
=

1− 1
n

1− 1
nm

m→∞−→ 1− 1

n

Proof (sketch):

Information theoretic argument to provide an upper bound.

Scheme that achieves this bound.
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Sun–Jafar construction for replicated data

m = 2 files a and b, stored on n = 2 servers via replication.

“Sub-packetize” files into nm = 4 (!!!) symbols a1, a2, a3, a4
and b1, b2, b3, b4. Assume a user wants a.

A general retrieval strategy is as follows:

→ Download a1 from the 1st server.

→ Symmetrize over both servers

→ Symmetrize over files.

→ Use bi as interference.

→ Symmetrize again.

→ Random permutation provides privacy.

Rate = 4
6 = 2

3 .
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Proof of converse (sketch)

Theorem (Sun-Jafar, 2016)

The rate of any replicated PIR scheme on n servers with m files
satisfies

R =
file size

download size
≤

1− 1
n

1− 1
nm
.

In other words,

#symbols downloaded

#desired symbols retrieved
≥ 1 +

1

n
+

1

n2
+ · · ·+ 1

nm−1

File size := L. Claim:

#symbols downloaded ≥ L +
L

n
+

L

n2
+ · · ·+ L

nm−1
.
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Proof of converse (sketch)

Proof idea (induction over m):

Need to download ≥ L symbols of the file we want.
Clear if m = 1.

Induction assumption (m files): We must download in total

Dm := L +
L

n
+

L

n2
+ · · ·+ L

nm−1

symbols from the files 1, . . . ,m.

From some server, need

≥ Dm

n
=

1

n

(
L +

L

n
+

L

n2
+ · · ·+ L

nm−1

)
symbols from the files 1, . . . ,m.
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Proof of converse (sketch)

Induction step: Assume we want file m + 1.

Then by induction assumption, from some server need Dm
n

symbols from the files 1, . . . ,m.

In addition, need to download L symbols from file m + 1.

Total download:

L +
Dm

n
= L +

(
L

n
+

L

n2
+

L

n3
+ · · ·+ L

nm

)
= Dm+1

The proofs for the coded storage case and for the colluding case
are similar. Combine to get coded AND colluding case? Hard!
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Conjecture for PIR capacity with t > 1, k > 1

Conjecture [Fre+17, Conj. 1] Let C be a linear [n, k, d ] code.
Consider m files and let 1 ≤ t ≤ n− k . Any t-PIR scheme has rate

R ≤
1− k+t−1

n

1− (k+t−1
n )m

m→∞−→ 1− k + t − 1

n
.

Disproved in [Sun+18a] for m = 2, k = t = 2, n = 4.
The PIR rate is 3/5, while the conjecture states 4/7.

The query scheme in the counter-example is not full
support-rank!

Proved for full support-rank schemes in [Hol+22].

How, and what is “full support-rank”?
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Codes from star products

For two vectors x , y ∈ Fn
q, define the star product

x ? y := (x1y1, . . . , xnyn) .

Let C and D be linear codes in Fn
q. Define the star product

code as the linear span

C ? D := 〈{c ? d |c ∈ C , d ∈ D}〉 .

Product Singleton Bound †:

dC?D ≤ n − dim(C )− dim(D) + 2

†Mirandola–Zémor [Mir+15]: Apart from pairs C ,C⊥ and their products,
the only pairs that get to this bound are generalized Reed–Solomon (GRS) codes.
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Star-product PIR scheme

We proposed a fully general coded retrieval scheme protecting
against t-collusion [Fre+17]†.

Asymptotically capacity achieving at the known points (k = 1,
t = 1), when employed with GRS codes.

Also achieves the (asymptotic) capacity of the above
conjecture.

Novelty:
Earlier: n queries from the entire space Fm

q .

Star product scheme: m queries from an [n, t] code D ⊆ Fn
q.

→ smart (star-product) interplay of the [n, k] storage code C
and the query code D.

†You can find a couple of extra slides for details after the thank-you slide.
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Rate vs. capacity

What the user receives is a codeword in C ? D with errors in
known positions.

These errors can be treated as erasures and we know that the
code C ? D can correct up to dC?D − 1 erasures.

From the product singleton bound we know that

dC?D ≤ n − k − t + 2

For GRS pairs C ,D this gives us a rate of

R =
n − k − t + 1

n
= 1− k + t − 1

n

Asymptotically capacity (and conjecture) achieving:
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Capacity of ?-product schemes

Any “strongly linear” scheme can be replaced by a star product
scheme for the same privacy model, without losing in the PIR rate:

Theorem ([Hol+22])

Consider a strongly linear PIR scheme from a storage code C and a
query scheme as above. Then the rate is bounded by

R ≤ 1− k + t − 1

n

for any number of files m.

This bound coincides with the asymptotic capacity conjecture,
which is achieved for any number of files with star product PIR.
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Full support-rank PIR

Clearly, it is suboptimal to send linearly dependent queries to
servers.

However, submatrices of the query matrix may be dependent
[Sun+18a], i.e., have supported columns that are linearly
dependent.

The technical assumption of full support-rank restricts all
supported columns T , |T | ≤ t, to be independent:

Definition

A linear PIR scheme is of full support-rank if for every query
realization q ∈ Fαm×βn, any subset T ⊆ [n] of |T | ≤ t servers, and
any file index i ∈ [m]

rank(q[ψα(i), ψβ(T )]) = | colsupp(q[ψα(i), ψβ(T )])|.
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Capacity of full support-rank PIR

Theorem ([Hol+22])

The capacity of full support-rank linear PIR from [n, k]-MDS
coded storage with t colluding servers is

C =
1− k+t−1

n

1−
(
k+t−1

n

)m m→∞−→ 1− k + t − 1

n
.

The converse follows the converse proof for the symmetric
case [Wan+17a] with some additional lemmas.

A capacity-achieving scheme can be constructed from
[Fre+17; D’O+18].

The proof settles the earlier conjecture for linear PIR schemes
for full support-rank schemes, which seems to cover almost
everything.
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How to interpret the above result?

Our definition of full support-rank PIR captures the linear
independency of the queries that all general capacity-achieving
schemes have in common.

In order to exceed the conjectured capacity, it is necessary for
some restrictions of the queries to subsets of t servers to be
linearly dependent.

It is exactly this property that allows the scheme of
[Sun+18a], which is not of full support-rank, to exceed the
full support-rank capacity.

It seems difficult to extend the counter-example for m > 2
while maintaining a good rate.
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Conclusion

Intro to star product PIR from coded storage.

Overview of capacity results.

Strongly linear and full support-rank PIR capacity (almost)
proving earlier conjectures.

Importance of star product schemes in terms of practical
implementation: small field sizes and low sub-packetization.

Highly generalizable
→ stragglers, adversaries, networks, streaming, distributed
computation, interference alignment, quantum,...
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Beyond PIR: current and future directions

Okko Elif Syed Masahito Tefjol Matteo

Secure (analog) distributed matrix multiplication (SDMM):
Okko Makkonen

Cross-subspace alignment codes (CSA) for PIR and SDMM:
cf. Jafar et al.

Generalizations of the above using algebraic geometry codes:
Okko, Dave, Elif Sacikara (+Gretchen)

Quantum PIR: Matteo Allaix, Lukas, Tefjol Pllaha, Masahito

Hayashi+group, Syed Jafar+group
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Linear and strongly linear (SL) PIR

Definition

A PIR scheme is linear if the responses are given by

Ai
j =

〈
Q i

j ,Yj

〉
, ∀j ∈ [n].

Definition

A linear PIR scheme is strongly linear (SL) if each symbol of the
desired file x i is obtained as a deterministic linear function over Fq

of the response vector (Ai
1, . . .A

i
n), not depending on the

randomness used to produce the queries.

Strong linearity is important in practice, since it allows for
small field size and low sub-packetization level
O(k(n − k)) (in contrast to O(nm)).
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PIR codes from star products

Consider m files x1, . . . , xm.

We encode this data using an [n, k, dC ] storage code C with
generator matrix GC and store it on n servers.

x11 . . . x1k
...

. . .
...

xm1 . . . xmk




x1

xm

· GC =

y11 . . . y1n
...

. . .
...

ym1 . . . ymn




Server 1 Server n

Protects against failure of up to dC − 1 servers.
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