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Private information retrieval (PIR)

e With PIR, a user is able to download one out of m files
{x,...,x™} from a database without revealing the identity
i € [m] of the file to the database holder.

If the data is stored on only one server, perfect privacy cannot be
achieved except by downloading the entire data.

— Distributed storage system (DSS) with n servers...
— ...encoded with an [n, k] (MDS) code!



Short history of PIR

@ PIR from replicated databases was introduced by Chor in 1995
and was an active topic thereafter [Cho+95; Bei+02;
Dvi+16].

— A sequence of papers reduced the communication cost to
be sub-linear in m.

5/34



Short history of PIR

@ PIR from replicated databases was introduced by Chor in 1995
and was an active topic thereafter [Cho+95; Bei+02;
Dvi+16].

— A sequence of papers reduced the communication cost to
be sub-linear in m.

@ More recently, a lot of renewed interest towards PIR from
coded storage systems from various perspectives [Aug+14;
Sha+14; Faz+15].

5/34



Short history of PIR

@ PIR from replicated databases was introduced by Chor in 1995
and was an active topic thereafter [Cho+95; Bei+02;
Dvi+16].

— A sequence of papers reduced the communication cost to
be sub-linear in m.

@ More recently, a lot of renewed interest towards PIR from
coded storage systems from various perspectives [Aug+14;
Sha+14; Faz+15].

@ 100s of papers since 2015; hits on IEEE Xplore:
e 1995-2004: 7
e 2005-2014: 72
e 2015-2024: 393
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A toy example with [n, k], = [3, 2]2 code

e m = 3 files. Want x!.
Server j € [n] stores

yj" = (x'G)j, i € [n].
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A toy example with [n, k], = [3, 2]2 code

e m = 3 files. Want x1.

Server j € [n] stores

yj" = (x'G)j, i € [n].
@ 1st round: Choose

random v = (1,0,1).
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A toy example with [n, k], = [3, 2]2 code

e m = 3 files. Want x!.
Server j € [n] stores
yj" = (x'G)j, i € [n].

@ 1st round: Choose
random v = (1,0,1).

@ Send a query
gL =u-+e = (0,0,].)
to the 1st server, and
g =¢q3=u=(1,0,1)
to the other servers.
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A toy example with [n, k], =

(1,0,1)

X A3+ ¢ +x3

[3, 2], code

e m = 3 files. Want x1.

Server j € [n] stores
yj = (x'G)j, i €[n].
1st round: Choose
random v = (1,0,1).
Send a query

gL =u-+e = (0,0,].)
to the 1st server, and
g =¢q3=u=(1,0,1)
to the other servers.
Servers respond

rj = (¥ 95)-

Decode x{ = Y 7, 1.



A toy example with [n, k], = [3, 2]2 code

e m = 3 files. Want x!.
Server j € [n] stores
yj" = (x'G)j, i € [n].

@ 2nd round: Choose
random v = (1,1,0).
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A toy example with [n, k], = [3, 2]2 code

e m = 3 files. Want x!.
Server j € [n] stores
yj" = (x'G)j, i € [n].

@ 2nd round: Choose
random v = (1,1,0).

e gx=u+e =(0,1,0)
to the 2nd server,
gL = g3 = u.
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A toy example with [n, k], =

(1,1,0)

X +A3 +x¢ +x3

[3, 2], code

e m = 3 files. Want x1.

Server j € [n] stores
yj = (x'G)j, i €[n].
2nd round: Choose
random v = (1,1,0).
Q2 =UuU+e = (0,1,0)
to the 2nd server,

g1 = q3 = u.

ri =¥}, qj)-

°X21:ZJ 15

Privacy holds if no
collusion.

34



Collusion and t-PIR

Servers in a colluding set may exchange their obtained queries in
order to reveal the identity of the desired file.

Definition

A PIR scheme protects against the colluding set J C [n], if the
projection of the overall query Q' to J does not depend on the
desired file i € [m].
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Collusion and t-PIR

Servers in a colluding set may exchange their obtained queries in
order to reveal the identity of the desired file.

Definition

A PIR scheme protects against the colluding set J C [n], if the
projection of the overall query Q' to J does not depend on the
desired file i € [m].

Definition
A t-PIR scheme protects against any colluding set of size < t.
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Capacity of PIR

@ The rate R of a PIR scheme is defined as

file size
download size
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Capacity of PIR

@ The rate R of a PIR scheme is defined as

file size
download size

@ The capacity C of PIR is the maximum possible rate for a
given model.

@ We call a scheme asymptotically capacity achieving if

R= Ilim C.

m—>00
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PIR capacity and constructions

@ Several capacity results and scheme constructions have been
reported (non-exhaustive list!):
- replication [Sun+17; Tia+19]
- MDS-coded storage [Ban+18; Zhu+19]
- colluding servers [Sun+18b]
- MDS and colluding [Fre+17; Taj+18; D'O+18]
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PIR capacity and constructions

@ Several capacity results and scheme constructions have been
reported (non-exhaustive list!):

replication [Sun+17; Tia+19]

MDS-coded storage [Ban+18; Zhu+19]
colluding servers [Sun+-18b]

MDS and colluding [Fre+17; Taj+18; D'O+18]

symmetric PIR (SPIR) [Wan+17b; Wan+17a; Wan+17c]
single-server PIR with side information [Hei+18]
non-MDS storage [Fre+19; Kum+19]

graph-based PIR [Sad+23]
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Capacity of PIR

@ A storage system with m files has the following (conjectured,
mostly proven) capacities:

replication [n, k]-coded
; + 1-1/n  m—oo . 1 7k/n mooo 1k
no collusion T 11— —k/mm 1-2

1—t/n m— 1-H21 0 Mmoo thk—1
1—(t/n)m o 1—(EE=Lym 1- n

8
—

t-collusion

TSun—Jafar [Sun+17].
YBanawan-Ulukus [Ban+18].
1Sun—Jafar [Sun+18b].

$Freij-Hollanti et al. [Fre+17]; Sun—Jafar [Sun+18a]; Holzbaur et al. [Hol+22].
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Capacity of PIR

@ A storage system with m files has the following (conjectured,
mostly proven) capacities:

replication [n, k]-coded
no collusion | % =11 T (*"//'; mI K
. 1— — trk— N _
t-collusion | ¥ ﬁ -t 8 ey Mg kel

TSun—Jafar [Sun+17].
YBanawan-Ulukus [Ban+18].
1Sun—Jafar [Sun+18b].

$Freij-Hollanti et al. [Fre+17]; Sun—Jafar [Sun+18a]; Holzbaur et al. [Hol+22].
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Fast convergence: coded case (k > 1,t = 1)

Capacity
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Capacity of uncoded PIR

Theorem (Sun—Jafar 2016)

The capacity of replicated n server PIR for a storage system
containing m files is given by

1 1\t 1-1 o 1

Proof (sketch):
@ Information theoretic argument to provide an upper bound.
@ Scheme that achieves this bound.

12 /34



Sun—Jafar construction for replicated data

@ m = 2 files a and b, stored on n = 2 servers via replication.
@ “Sub-packetize” files into n™ = 4 (!} symbols a1, az, a3, a4
and by, by, bz, by. Assume a user wants a.

@ A general retrieval strategy is as follows:
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Sun—Jafar construction for replicated data

@ m = 2 files a and b, stored on n = 2 servers via replication.
@ “Sub-packetize” files into n™ = 4 (!} symbols a1, az, a3, a4
and by, by, bz, by. Assume a user wants a.

@ A general retrieval strategy is as follows:

q1 q2
— Download a; from the 1st server.
— Symmetrize over both servers a a
— Symmetrize over files. b by
as + by

— Use b; as interference.

13 /34



Sun—Jafar construction for replicated data

@ m = 2 files a and b, stored on n = 2 servers via replication.

@ “Sub-packetize” files into n™ = 4 (!} symbols a1, az, a3, a4
and by, by, bz, by. Assume a user wants a.

@ A general retrieval strategy is as follows:

q1 q2
Download a; from the 1st server.
Symmetrize over both servers a a
Symmetrize over files. b by

Use b; as interference. at+bo| |2+ bt

L4

Symmetrize again.
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Sun—Jafar construction for replicated data

@ m = 2 files a and b, stored on n = 2 servers via replication.

@ “Sub-packetize” files into n™ = 4 (!} symbols a1, az, a3, a4
and by, by, bz, by. Assume a user wants a.

@ A general retrieval strategy is as follows:

q1 q2
Download a; from the 1st server.
Symmetrize over both servers as a
Symmetrize over files. bs by

Use b; as interference. ag+by| |a+ b3

Symmetrize again.

L 4Ll

Random permutation provides privacy.
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Sun—Jafar construction for replicated data

@ m = 2 files a and b, stored on n = 2 servers via replication.

@ “Sub-packetize” files into n™ = 4 (!} symbols a1, az, a3, a4
and by, by, bz, by. Assume a user wants a.

@ A general retrieval strategy is as follows:

q1 q2
— Download a; from the 1st server.
— Symmetrize over both servers as a
— Symmetrize over files. bs by
— Use b; as interference. as+b| | a2+ b
— Symmetrize again.
— Random permutation provides privacy. e Rate — % _ %
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Proof of converse (sketch)

Theorem (Sun-Jafar, 2016)

The rate of any replicated PIR scheme on n servers with m files

satisfies

B file size - 1-—
~ download size — 1 —
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Proof of converse (sketch)

Theorem (Sun-Jafar, 2016)

The rate of any replicated PIR scheme on n servers with m files
satisfies )
file size 1--
= < .
download size — 1 — ,%m

In other words,

#symbols downloaded > 1 1 1 1
#desired symbols retrieved — n n nm-1
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Proof of converse (sketch)

Theorem (Sun-Jafar, 2016)

The rate of any replicated PIR scheme on n servers with m files

satisfies

file size 1-— %
= < .
download size = 1 — L.
In other words,
#symbols downloaded 1 1 1
>S14+ -4 = 4.
#desired symbols retrieved — + n + n? toed nm-1
File size := L. Claim:
L L L
#symbols downloaded > L+ — + — + -+ +
n n m—1

14/34



Proof of converse (sketch)

Proof idea (induction over m):

@ Need to download > L symbols of the file we want.
Clear if m=1.
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n n
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Proof of converse (sketch)

Proof idea (induction over m):

@ Need to download > L symbols of the file we want.
Clear if m=1.

@ Induction assumption (m files): We must download in total

LoL L
D=L+~ 4 —+-+
n n

nm—1
symbols from the files 1,..., m.

@ From some server, need

Dm 1 L L L
> P =" (l+-F 5+t
n n n

n nmfl

symbols from the files 1,... m.
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Proof of converse (sketch)

@ Induction step: Assume we want file m + 1.

@ Then by induction assumption, from some server need %
symbols from the files 1,..., m.
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Proof of converse (sketch)

@ Induction step: Assume we want file m + 1.

@ Then by induction assumption, from some server need %
symbols from the files 1,..., m.

@ In addition, need to download L symbols from file m + 1.

@ Total download:

D, L L L L
L+:L+<+2+3+"‘+m>:Dm+1
n n n n n
O

The proofs for the coded storage case and for the colluding case
are similar. Combine to get coded AND colluding case? Hard!

16 /34



Conjecture for PIR capacity with t > 1,k > 1

Conjecture [Fre+17, Conj. 1] Let C be a linear [n, k, d] code.
Consider m files and let 1 <t < n— k. Any t-PIR scheme has rate
1— k+t—1

k+t—1
n m—oo
Rty O
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Conjecture for PIR capacity with t > 1,k > 1

Conjecture [Fre+17, Conj. 1] Let C be a linear [n, k, d] code.
Consider m files and let 1 <t < n— k. Any t-PIR scheme has rate
1— k+t—1

k+t—1
n m—00
Re gy T

@ Disproved in [Sun+18a] for m=2, k=t =2, n=4.
The PIR rate is 3/5, while the conjecture states 4/7.
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Conjecture for PIR capacity with t > 1,k > 1

Conjecture [Fre+17, Conj. 1] Let C be a linear [n, k, d] code.
Consider m files and let 1 <t < n— k. Any t-PIR scheme has rate

1 Aol m—co k+t—-1
R n
<—W 4—;—1)m_>1_T'

@ Disproved in [Sun+18a] for m=2, k=t =2, n=4.
The PIR rate is 3/5, while the conjecture states 4/7.

@ The query scheme in the counter-example is not full
support-rank!

@ Proved for full support-rank schemes in [Hol+22].

@ How, and what is “full support-rank”?

17 /34



Codes from star products

@ For two vectors x,y € F7, define the star product

Xxy = (X1¥1,. .-, XnYn) -

@ Let C and D be linear codes in Fg. Define the star product
code as the linear span

CxD:=({cxd|ce C,de D}) .

"Mirandola~Zémor [Mir415]: Apart from pairs C,C* and their products,
the only pairs that get to this bound are generalized Reed—Solomon (GRS) codes.
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Codes from star products

@ For two vectors x,y € F7, define the star product

Xxy = (X1¥1,. .-, XnYn) -

@ Let C and D be linear codes in Fg. Define the star product
code as the linear span

CxD:=({cxd|ce C,de D}) .

e Product Singleton Bound:

dcxp < n—dim(C) —dim(D) + 2

"Mirandola~Zémor [Mir+15]: Apart from pairs C,C* and their products,
the only pairs that get to this bound are generalized Reed—Solomon (GRS) codes.
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Star-product PIR scheme

@ We proposed a fully general coded retrieval scheme protecting
against t-collusion [Fre+17]'.

e Asymptotically capacity achieving at the known points (k = 1,
t = 1), when employed with GRS codes.

@ Also achieves the (asymptotic) capacity of the above
conjecture.

"You can find a couple of extra slides for details after the thank-you slide.
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Star-product PIR scheme

@ We proposed a fully general coded retrieval scheme protecting
against t-collusion [Fre+17]'.

e Asymptotically capacity achieving at the known points (k = 1,
t = 1), when employed with GRS codes.

@ Also achieves the (asymptotic) capacity of the above
conjecture.

o Novelty:
o Earlier: n queries from the entire space [Fg’.

e Star product scheme: m queries from an [n, t] code D C Fy.
— smart (star-product) interplay of the [n, k] storage code C
and the query code D.

"You can find a couple of extra slides for details after the thank-you slide.
19/34



Rate vs. capacity

@ What the user receives is a codeword in C x D with errors in
known positions.

@ These errors can be treated as erasures and we know that the
code C % D can correct up to dcyp — 1 erasures.
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known positions.

@ These errors can be treated as erasures and we know that the
code C % D can correct up to dcyp — 1 erasures.

e From the product singleton bound we know that
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@ For GRS pairs C, D this gives us a rate of

n—k—t—i—l_1 k+t—1

n n

R =
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Rate vs. capacity

@ What the user receives is a codeword in C x D with errors in
known positions.

@ These errors can be treated as erasures and we know that the
code C % D can correct up to dcyp — 1 erasures.

e From the product singleton bound we know that
desp<n—k—t+2
@ For GRS pairs C, D this gives us a rate of

n—k—t+l . k+t—l
n - n

R =

e Asymptotically capacity (and conjecture) achieving:

20 /34



Capacity of x-product schemes

Any “strongly linear” scheme can be replaced by a star product
scheme for the same privacy model, without losing in the PIR rate:

Theorem ([Hol+22])

Consider a strongly linear PIR scheme from a storage code C and a
query scheme as above. Then the rate is bounded by

for any number of files m.

This bound coincides with the asymptotic capacity conjecture,
which is achieved for any number of files with star product PIR.

21/34



Full support-rank PIR

@ Clearly, it is suboptimal to send linearly dependent queries to
servers.

@ However, submatrices of the query matrix may be dependent
[Sun+18a], i.e., have supported columns that are linearly
dependent.

@ The technical assumption of full support-rank restricts all
supported columns T, | 7| < t, to be independent:

Definition

A linear PIR scheme is of full support-rank if for every query
realization g € F¥™*A" any subset T C [n] of |T| < t servers, and
any file index i € [m]

rank(q[a(7), ¥(T)]) = | colsupp(q[toa (), Y (T)I)I-

22 /34



Capacity of full support-rank PIR

Theorem ([Hol+22])

The capacity of full support-rank linear PIR from [n, k]-MDS
coded storage with t colluding servers is

k+t—1
co 1T moey kft—1

1= (=) z

@ The converse follows the converse proof for the symmetric
case [Wan+17a] with some additional lemmas.

@ A capacity-achieving scheme can be constructed from
[Fre+17; D'O+18].

23 /34



Capacity of full support-rank PIR

Theorem ([Hol+22])

The capacity of full support-rank linear PIR from [n, k]-MDS
coded storage with t colluding servers is

k+t—1
co 1T moey kft—1

1= (=) z

@ The converse follows the converse proof for the symmetric
case [Wan+17a] with some additional lemmas.

@ A capacity-achieving scheme can be constructed from
[Fre+17; D'O+18].

@ The proof settles the earlier conjecture for linear PIR schemes
for full support-rank schemes, which seems to cover almost
everything.

23 /34



How to interpret the above result?

@ Our definition of full support-rank PIR captures the linear
independency of the queries that all general capacity-achieving
schemes have in common.

@ In order to exceed the conjectured capacity, it is necessary for
some restrictions of the queries to subsets of t servers to be
linearly dependent.

24 /34



How to interpret the above result?

@ Our definition of full support-rank PIR captures the linear
independency of the queries that all general capacity-achieving
schemes have in common.

@ In order to exceed the conjectured capacity, it is necessary for
some restrictions of the queries to subsets of t servers to be
linearly dependent.

@ It is exactly this property that allows the scheme of
[Sun+18a], which is not of full support-rank, to exceed the
full support-rank capacity.

o It seems difficult to extend the counter-example for m > 2
while maintaining a good rate.
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Conclusion

@ Intro to star product PIR from coded storage.
@ Overview of capacity results.

@ Strongly linear and full support-rank PIR capacity (almost)
proving earlier conjectures.

@ Importance of star product schemes in terms of practical
implementation: small field sizes and low sub-packetization.

e Highly generalizable
— stragglers, adversaries, networks, streaming, distributed
computation, interference alignment, quantum,...

25 /34



Beyond PIR: current and future directions

)

Okko Elif Syed Masahito  Tefjol Matteo

@ Secure (analog) distributed matrix multiplication (SDMM):
Okko Makkonen

@ Cross-subspace alignment codes (CSA) for PIR and SDMM:

cf. Jafar et al.

@ Generalizations of the above using algebraic geometry codes:
Okko, Dave, Elif Sacikara (4Gretchen)

@ Quantum PIR: Matteo Allaix, Lukas, Tefjol Pllaha, Masahito
Hayashi+group, Syed Jafar+group
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Linear and strongly linear (SL) PIR

Definition

A PIR scheme is linear if the responses are given by
A= (Qi,Y;), Vi€ nl

Definition

A linear PIR scheme is strongly linear (SL) if each symbol of the
desired file x' is obtained as a deterministic linear function over F,
of the response vector (Ai,...A!), not depending on the
randomness used to produce the queries.

@ Strong linearity is important in practice, since it allows for
small field size and low sub-packetization level
O(k(n — k)) (in contrast to O(n™)).
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e We encode this data using an [n, k, dc| storage code C with
generator matrix G¢ and store it on n servers.
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@ Protects against failure of up to dc — 1 servers.
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