DATALAB

@Northeastern /

Factorized Graph Neural Networks
(and the power of)

("Po I really need +o teach PAXOS?")

Wolfgang Gatterbauer

Based on work with Krishna Kumar and Paul Langton,

and earlier work with Christos Faloutsos, Stephan Giinnemann, and Danai Koutra
Nov 15, 2023

Semi-supervised Node classification neighbour frequencies

412 4
M=l12 4 4
P, 4 4 12

)

PROBLEM: Given a network with labels
on some nodes, what labels should
we assign to all other nodes?

Semi-supervised Node classification neighbour frequencies

-

?

)

PROBLEM: Given a network with labels
on some nodes, what labels should
we assign to all other nodes?

Semi-supervised Node classification neighbour frequencies

412 4
M=[12 4 4
P, 4 4 12

0.2 0.6 0.2
H=]06020.2/3=1
. . 0.2 0.2 0.6
PROBLEM: Given a network with labels

on some nodes, what labels should compatibilities
we assign to all other nodes?

Semi-supervised Node classification neighbour frequencies

node attributes
= 4 12

4
M=12 4 4
P, 4 4 12

0.20.6 0.2
H=1l06020.2
0.20.20.6

PROBLEM: Given a network with labels

2=1

on some nodes, what labels should compatibilities

we assign to all other nodes?

Semi-supervised Node classification neighbour frequencies

NoAZZr S
: 4 12

4
M=12 4 4
P, 4 4 12

0.20.6 0.2
H=1l06020.2
0.20.20.6

PROBLEM: Given a network with labels

2=1

on some nodes, what labels should compatibilities

we assign to all other nodes?

NoO ATTRIBUTES: We only use relational
information (the graph structure)

Semi-supervised Node classification neighbour frequencies

412 4
M=[12 4 4
P, 4 4 12

0.2 0.6 0.2
H=]06020.2/3=1
. . 0.2 0.2 0.6
PROBLEM: Given a network with labels

on some nodes, what labels should compatibilities
we assign to all other nodes?

NoO ATTRIBUTES: We only use relational
information (the graph structure)

Semi-supervised Node classification

0.206 0.2
H=|06020.2
020206)

)

PART 1 (INFERENCE):

* @Given a network W,
 |abels on some nodes, and
 compatibilities H,

What labels should we assign
to all other nodes?

Semi-supervised Node classification

" 0.20.6 0.2
> H=1l06020.2
0.20.2 0.6

PART 1 (INFERENCE): PART 2 (LEARNING):

e G@Given a network W, e Given a network W,
 |abels on some nodes, and |abels on some nodes, and
 compatibilities H, * -compatibiitiesH;

What labels should we assign what labels should we assign

to all other nodes? to all other nodes?

Approximate Agenda

* Problem 1: How to propagate compatibilities?
Linearized Belief Propagation [VLDB'15]

[SIGMOD'20]: "Factorized Graph Representations for Semi-Supervised Learning from Sparse Data", Kumar, Langton, Gatterbauer. SIGMOD'20. https://doi.org/10.1145/3318464.3380577
[VLDB'15]: "Linearized and single-pass belief propagation", Gatterbauer, Ginnemann, Koutra, Faloutsos. VLDB'15. https://doi.org/10.14778/2735479.2735490

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

Belief Propagation (BP)

BP is a Dynamic Programming (DP) approach to
answer conditional probability queries in a
tree-based graphical model

1) Initialize all message entriesto 1
2) Iteratively: calculate messages for each edge and class
mee (D) o« Y HG,D %) | | mu()
label-label j/ / HEEAE

compatibilities prior beliefs

label-label
-I compatibilities

H(j,i): approximately the probability
of a node being in state i given that it
has a neighbour in state j

3) After messages converge: calculate final beliefs

@ ecxg(@) || mus()

final beliefs UEN(S)

Judea Pearl, "Probabilistic reasoning in intelligent systems: networks of plausible inference", 1988. https://dl.acm.org/doi/book/10.5555/534975
Yair Weiss. "Correctness of local probability propagation in graphical models with loops", Neural Computation, 2000. https://doi.org/10.1162/089976600300015880 12

https://dl.acm.org/doi/book/10.5555/534975
https://doi.org/10.1162/089976600300015880

Problems with BP (when applied to real graphs with loops)

BP applied as a heuristics to graphs with cycles
("Loopy BP") is difficult+ +o work with ®

Collective Classification
in Network Data

Prithviraj Sen, Galileo Namata, Mustafa Bilgic,
Lise Getoor, Brian Gallagher,
and Tina Eliassi-Rad

Al magazine 2008

cant and useful. However, the LBP accuracy had a
sudden drop when the graph became very dense.
The reason behind this result is the well known
fact that LBP has convergence issues when there
are many short loops in the graph.

Cited > 3600 times (11/2023)

gorithms. First, although MF and LBP performance
is in some cases a bit better than that of ICA and
GS, MF and LBP were also the most difficult to
work with in both learning and inference. Choos-
ing the initial weights so that the weights will con-
verge during training is nontrivial. Most of the
time, we had to initialize the weights with the
weights we got from ICA in order to get the algo-
rithms to converge. Thus, the results reported from

Sen, Namata, Bilgic, Getoor, Gallagher, Eliassi-Rad. "Collective classification in network data", Al magazine, 2008. https://doi.org/10.1609/aimag.v29i3.2157

13

https://doi.org/10.1609/aimag.v29i3.2157

Problems with BP (when applied to real graphs with loops)

BP applied as a heuristics to graphs with cycles
("Loopy BP") is difficult+ +o work with ®

Our solution for part 1:

1. Linearize and thereby simplify Belief Propagation
(it becomes " ")

2. Turns out to generalize semi-supervised learning
from smoothness (incl. PageRank) to

3. In more modern language: an infinitely deep graph
neural network with tied parameters and removed
non-linearities, and no "oversmoothing"

[VLDB'15]: "Linearized and single-pass belief propagation", Gatterbauer, Giinnemann, Koutra, Faloutsos. VLDB'15. https://doi.org/10.14778/2735479.2735490

©

14

https://doi.org/10.14778/2735479.2735490

Key Ideas: 1) Centering + 2) Linearizing BP

. . . 4 .)
Original Value = Center point +| Residual @
abellabel 0.210.6 0.2 | 1/3 1/3 1/3 _ [-0.1370.26 -0.13
compatibilities H [0460.2 0.2 = [E]kxk 131313 +| H | 026 -0.13 -0.13
0.2 0.2 0.6 1/3 1/3 1/3 -0.13 -0.13 0.26
0.2 173 013
beliefs x, f |06 - %1 1/3 +| % f 026
0.2 1/3 -0.13
1.1 1 0.1
messages m (0.8 = 1 +| m|-0.2
1.1 1 0.1
_ J
@ Expression Maclaurin series Approximation
. 2 3
Logarithm| In(1+¢€) =e—-<+5 —.. X €
1
« e —+E€
k 1 _ (1 _ 2 ~ 1)
Division | k_— =(tt+ea)l-—€+e—.)~ite -2

Intuition behind Centering and Linearizing

/ component-wise multiplication

Center 95| o |05 - [025 . |05
0.5 0.5 0.25 0.5
>=0.50 =1
p
Value Do ® e X
0.4 0.4 0.16 0.31
>=0.52 =1
_
4
: 0.1 0.1
Residual + == —
-0.1 -0.1 -0.2
>=0 =1

\\

Summation instead of multiplication!

No more normalization necessary ©

-5

16

Matrix formulation of LinBP

Update equation S
t t t
(nx k),
here k=3 < + >
labels

F < X + W- F-H
final explicit araph compatibility
beliefs beliefs matrix

Compare to Personalized PageRank

f « ax + a-Wel.f

t 0
< + SH

Basically a
generalization of
Kate centralityl

19

Matrix formulation of LinBP

Update equation S
t t t
(nx k),
here k=3 (_ + >
labels
F < X -+ W:- F-H
ﬁvml explicit graph compatibility
beliefs veliefs matrix vectorization of matrix: stacks
Kronecker product columus on top of each other
Closed form _1
vec(F) = (I —HQ W) “vec(X)
\ J
Y
Convergence Spectral radius of (...) < 1

Scale with "appropriate” &: H'<«—&H

Scaling factor: € = s-&”

(e* convergence boundary)

20

Geometric sums (intuition for closed-form)

Recall Javier's talk ©
_Lﬂ4ymwiﬂla}
1-Xx

S=1+Xx+x%+...

=1 S=1+%+%+.. = =2
X=5 Y
X=—"> S=1-%+%-... = 1 = %
1+ 1
1
X=2 S=1+2+4+... —=-1
®=

21

LinBP leads to very concise code

BP (Belief Propagation)

—— Actual loop: each loop calculates (a) the new messages (with damping) and (b) the new beliefs
converged = False
actualNumlt = <1 # iterations start with @th iteration
while actualMumIt < numMaxIt and not converged:
actualNumIt += 1

(a) calculate messages

if actualNumIt == @:
=— first pass (counts as @th iteration): create message dictionaries and initialize messages with ones
dict_messages_along 1 = {} # dictionary: messages for each edge (i-»j) in directiol j
dict_messages_against_1 = {} # dictionary: messages for each edge (i<-j) in direction
default = np.ones(k) # first message vector: all Is

for (i,j) in zip(row, col):
dict_messages_along_1[(1,])] = default
dict_messages_against_1[(],1)] = default
else:
—— other iterations: calculate "messages_new" using message-passing with division
dict_messages_along_2 = {} # new diction ssages for each edge (i
dict_messages_against_2 = {} # new dic : messages for each edge (i<-j
for {i,j) in dict_messages_along_l.keys(): # also des following case: "for (j,i) dict_messages_against_l.keys()"
if dim pot == 3: # need to reference the correct potential in case dim_pot == 3
Pot = P[dict_edges_pot([(i,i)1-1, :, :
dict_messages_along_2[(i,i)] = (F2[i] / dict_messages_against_1[{j,i)]).dot(Pot) # entry-wise division
dict_messages_against_2[(j,1)] = (F2[j] / dict_messages_along_1[{(i,7}1).dot(Pot.transpose()}
TODO above two lines can contain errors

(from F and messages)

assign new to old message dictionaries, and optionally damp messages
if damping == 1:
dict_messages_along_1 = dict_messages_along_2.copy() # requires sh
dict_messages_against_1 = dict_messages_against_2.copy()
else:
for (i,i) in dict_messages_along_l.keys(}:
dict_messages_along_1[(i,j)] = dampingxdict_messages_along_2[{i,j}] + \
(1-damping)#dict_messages_along_1[{i,i}]
for (1,i) in dict_messages_against_l.keys():
dict_messages_against_1[(1i,])] = damping=dict_messages_against_2[{i,j}] + \
{1-damping)#dict_messages_against_1[(i,])]

low copy because of later division

(b) create new beliefs by multiplying prior beliefs with all
for (i, f) in enumerate(F2):
if not clamping or implicitVector[i] = 0! # mped
F2[i] = x@[i] ¢ need to start multiplying from explicit beliefs, referencing the row with separate variable did not work out
for j in dict_edges_out[i]: # edges pointing away
F2[i] *= dict_messages_against_1[(j,1)]
for j in dict_edges_in[i]: # edges pointing imwards
F2[i] *= dict_messages_along_1[{j,i}]
TODO line can contain errors

incoming messages (pointing in both directions)

y update beliefs if thase are net explicit and cl

—— normalize beliefs [TODO: perhaps remove later to optimize except in last round]
F2 = row_normalize_matrix(F2, norm='11')

Python

LinBP

while actualNumIt < numMaxIt and not converged:
actualNumIt += 1

== Calculate new beliefs

i .
F = X + W.dot(F).dot{(H)

if not compensation:

F =X+ W.dot(F).dot(H) - D
else: 2
F = X + W.dot(F).dot(H_star) - D.dot{F).dot(H_star2)

els

(F).dot{H2) # W.dot(F) is short form for: sparse.csr_matrix.dot(W, F)

F = X + W.dot(F).dot(H)

22

"Algebraic cheating" for approximation-aware learning

That goes agaivst all the ideas from efficient knowledge compilation @

PEMs

Prediction

————— Inference
I
imate
Labeled Infer Jiction’
v Loopy BP Prediction

"Algebraic cheating" for approximation-aware learning

Model

Labeled Algebraic
data cheating

Approximation- Approx. Inference Dl ier
aware Learning Model LinB

Distant Compatibility mp?r

Estimation [SIGMOD'20] H [VLDB'15] ©

[SIGMOD'20]: "Factorized Graph Representations for Semi-Supervised Learning from Sparse Data", Kumar, Langton, Gatterbauer. SIGMOD'20. https://doi.org/10.1145/3318464.3380577
[VLDB'15]: "Linearized and single-pass belief propagation", Gatterbauer, Ginnemann, Koutra, Faloutsos. VLDB'15. https://doi.org/10.14778/2735479.2735490 26

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

Approximate Agenda

» Problem 2: How to learn/estimate compatibilities?
Factorized graph representations [SIGMOD'20]

- How well does it work?

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

Time and Accuracy for label propagation if we know H

= = =
o o o
= N w

Time [sec]

-
o
o

102

| ——Propagation

31

102 10° 10% 105 10° 107 10°

Number of edges (m)

Label propagation linear in # edges

1.0

0.95
0.8
0.7

uracy

S0.6-

A

0.51
0.4+

0.3

Gold standard

10 labeled wodes

Accuracy by
labeling with
the true H

001% 0.1% 1% 10% 1

Fraction of labeled data (f)

< Fewer labels

Time and Accuracy if we need to first estimate H ®
_ : 1.0 a
| — Propagation Gold standard g
103 . A~ Baseline Aﬁ 09_ A Baseline
316
= 102 A [304x 084 10 labeled nodes
g AA 30 7_ A
— 10! A £
), A)/ (3_3
E 100] LA 20-6' Compatibility
[| a2 0.5- estimation based
10-1 - - on hold-out sets
: ' not that great ®
1.0—2 - HI T LTI LT _TTm T Q34| L LTI L
102 103 104 10° 10° 107 108 0.01% 0.1% 1% 10% 1
Number of edges (m) Fraction of labeled data (f)
< Fewer labels

Estimation uses inference as subroutine (thus slower) ®

29

Time and Accuracy with our method © @S ACM SIGMOD 2021 Reproducibility

Y Award for papers from SIGMOD 2020

_ 1.
5 :TE;%%?i%aetion 0 Gold standard
10 j==o=Our method A 0.9 _ﬁ_gi?erggtehod
— X l
S 102 _08 10 labeled nodes
() O A
0 1 CUO?'
— 10" 4 s
- >
‘GE) Q0.6
= 10°: < Accuracy as good as
— 0.5 P
if estimated on fully
1071 |
0.4 labeled graph ©
1.0~2 LI _TTN_ LTI TE LT 0.3 e 1]
102 103 10% 10° 10° 107 108 0.01% 01% 1% 10% 1
Number of edges (m) Fraction of labeled data (f)
Our method for estimating H needs <5% < Fewer labels
of the time later needed for labeling © No more need for heuristics or domain experts ©

[SIGMOD'20]: "Factorized Graph Representations for Semi-Supervised Learning from Sparse Data", Kumar, Langton, Gatterbauer. SIGMOD'20. https://doi.org/10.1145/3318464.3380577 3()

https://doi.org/10.1145/3318464.3380577

Approximate Agenda

[SIGMOD"20]

- What is the magic sauce?

on)

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

Splitting parameter estimation into two steps

frequencies of labels across pathhs of different lengtins

Paramete/Estimation (in 2 steps) Label Propagation

Derived statistics for Compatibility
path lengths 1,2,...,¢ matrix
0 (mk?) kxk matrices 0(k*) kxk matrix %:
Factorized Optimization
graph representations
Sparsely labeled Fully labeled
network independent of graph size network

livear v # edges (m)

ond # of classes (k) 37

Approximate Agenda

[SIGMOD"20]

- What we would like to do (but it does not work)

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

A myopic view: counting relative neighbor frequencies
Fully labeled graph Sparsely labeled graph

’

Neighbor count Gold standard compatibilities Labeled neighbor count

2 6 2 0.2 0.6 0.2 0 1 0 [x=1
M=lle 2 2| = H=/06020.2 M=l1 0 132 = H

2 2 6 0.2 0.2 0.6 0 1 0
normalize 2=1 Tdea: vormalize, thew find closest

symmetric, doubly-stochastic matrix 34

A myopic view: counting relative neighbor frequencies
Fully labeled graph Sparsely labeled graph

'

Remaining problem ®

Assume =100 labeled mod@&?
What is the percentage of °
edges with labeled end poivts

Neighbor count Gold standard compatibilities

0.2 0.6 0.2
0.6 0.2 0.2
0.2 0.2 0.6 1% ® Few nodes =

=1 even fewer edges mf*

M= = H=

N OO N
N N O
A NN

normalize

35

Myopic compatibility estimation (MCE): from M to H DETAlLs

1. Graph summarization

Sparsely labeled graph

Observed labeled
neighbor counts M

Observed row—stochaftic
compatibility matrix

Closest doubly stochastic
symmetric matrix H

M=X -

Neighbor statistics

graph

P =M% 2 dijag(M1)"1. M

ECH) = |H- 7P|’

H = minE(H) s.t.

symmetric donbly stochastic constraints

W - X

labels

2. Optimization

H=

Estimated
compatibilities

H1=1
H' = H

Example values

18

135

27

135

36

189

27

189

324

0.1

0.75

0.15

0.375

0.1

0.525

0.05

0.35

0.6

2=0.525 2=1.2 2=1.275

0.258

0.608

0.134

0.608

0.034

0.358

0.134

0.358

0.508

2=180
2=360
2=540

2=1

2=1

36

Approximate Agenda

[SIGMOD"20]

- What we actually do (Distant Compatibility Estimation)

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.14778/2735479.2735490

Distant compatibility estimation (DCE)

0.2 0.6 0.2
H= 10602 0.2
0.2 0.2 0.6

£=1
0 0.6
1 0.2
0 0.2

£ =2

0.28
0.44
0.28

Expected signals for neighbors

£ =3

0.38
0.31
0.31

0.44 0.28 0.28
0.28 0.44 0.28
0.28 0.28 0.44

0.310.380.31
0.380.310.31
0.310.310.38

0.6, 0.44, 0.38, 0.35, ...
(maximal entries)

38

Distant compatibility estimation (DCE)

0.2 0.6 0.2
H= 10602 0.2
0.2 0.2 0.6

£ =1 £ =2 £ =3
0 0.6 0.28 0.38
1 0.2 0.44 0.31
0 0.2 0.28 0.31

Expected signals for neighbors

graph with:

* m edges

[fraction labeled nodes
* d node degree

Expected # of labeled %
neighbors of distance £

d*"'mf? expected neighbors
of distance ¥

ldea: amplify the signal from
observed length-# paths ©

39

Distant compatibility estimation (DCE) czervedpath-frow DETAILS

stochastic compatibilities

0.2 0.6 0.2 distance-smoothed en&gy\function
H= 0.6 02 0.2 F& fmax

020206 E(H) = z w, [[H = P||?

Statistics for path P=1
lengths 1, 2, ...
Wyyq = %\Wf w=[1,12 .1
ove free parameter (like in PagéRank)©
100 42 10k, d=25,h=3, [=0.001
estimated fmc ___
0 0.6 0.28 0.38 (smaller &
1 0.2 0.44 0.31 Is better) == b = 1
0 0.2 0.28 0.31 V=i
Expected signals for neighbors O g o 0 40

Two technical difficulties

1. Idea from previous page
gives biased estimates ®

0.65
S [
0.60 - H
Hl naive
_ 0.55 -
Signal
(max. 0.50 -
entries) 0.45- unbiased ©
0.40 -
0.35 -
1 2 3 5

4
Path length (£)

1. We must ignore
backtracking paths

2. Calculating longer paths leads
to dense matrix operations ®
(W = sparse adjacency matrix)

10 10 sec too long
§ for 10k nodes ®
0 w!
_ 10 -
;
510"
£ 1014 paths
"0 in 200 msec
| © OO
R 4 5 6 7 8

3
Path length (£)

2. Requires more careful re-
factorization of the calculation

"factorized graph representations” 41

Scalable factorized path summation

ntuition

Relational algebra
M, (R(X) ™ S(X,y)
= R(x) ™ m,S(X,y)

Wisparse wan matrix ik (kekn)
Lineall\'algebra /lalocl matrix
W-W) - X
= W-(W-X

"
swmall nxk intermediate results

Details

PROPOSITION 4.2 (NON-BACKTRACKING PATHS). Let ng
be the matrix with Wl\(gij being the number of non-

. . ®)
backtracking paths of length € from node i to j. Then W,
for £ > 3 can be calculated via following recurrence relation:

wl =ww - »-pw&? (15)
with starting values WS% = W and WS% =W?-D. O

ALGORITHM 4.3 (FACTORIZED PATH SUMMATION). Itera-

tively calculate the graph summaries ﬁﬁ%, fort € [€nax] as
follows:

(1) Starting from N\ =(va and(gl%g = WNS])S(; :))x,
iteratively calculate Ny; = WNy, 7 — (D —)Ny ~.

(2) Calculate Mg% = XTN&?S.

(3) Calculate IA’% from normalizing MY with Eq. 9.

PROPOSITION 4.4 (FACTORIZED PATH SUMMATION). Algo-

rithm 4.3 calculates all graph statistics IA’% fort € [€nax] in
O(mk€pmay) |

42

Scalable factorized path summation

ntuition

Relational algebra
M, (R(X) ™ S(X,y)
= R(x) ™ m,S(X,y)

Wisparse wan matrix ik (kekn)
Lineall\'algebra /lalacl matrix
W-W)- X
= W-(W-X

~

small uxk intermediate results

Similar ideas of factorized calculation:

e Generalized distributive law
[Aji-McEliece IEEE TIT '00]

* Algebraic path problems
[Mohri JALC'02]

* Provenance semirings
[Green+ PODS'07]

* Valuation algebras
[Kohlas-Wilson Al'08]

e Factorized databases
[Olteanu-Schleich Sigmod-Rec'16]

 FAQ (Functional Aggregate Queries)
[AboKhamis-Ngo-Rudra PODS'16]

* Associative arrays
[Kepner, Janathan MIT-press'18]

* Optimal ranked enumeration
[Tziavelis+ VLDB'20]

43

Approximate Agenda

e Discussion

Neighborhood aggregation in GNNs

Input graph Computation graph
Target node »" Sl B
’ < ? B . N
simplification . ________simplification = simplification
GCNs SGCs LinBP / DCE Belief Propagation
[Kipf, Welling 2017] [Wu+ 2019] [VLDB'15], [SIGMOD'20] [Pearl 1986]
Graph convolution, Simplified graph convolution, No non-linearities), Multiplication
Supervised learning Non-linearity only at the end Infinite layers, No oversmoothing
via cross entropy because spectral radius < 1,

Structured regression via £2-norm

Upper diagrams adapted from course notes by Jure Leskovec, C5224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

http://cs224w.stanford.edu/

Open topics

1. Network information only in semi-supervised setting: how much
can one learn without node features?
— a unified information theoretic framework (#parameters vs. #labeled data)
2. Phenomenology of network effects: label bias, degree distributions,
long-distance interactions ("triangles"), combinatorial properties,...
— how to create "unbiased" synthetic graph generators

3. What formalism can learn those phenomena "well enough"?
— and how well "factorizable"

Thank you ©

For more details: https://github.com/northeastern-datalab/factorized-graphs/

49

https://github.com/northeastern-datalab/factorized-graphs/

