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Theorem [Dinur-Evra-Livne-Lubotzky-Mozes and Pantaleev-Kalachev 2022] 


For every  there exist  and  and an explicit construction 
of an infinite family of error-correcting codes  with rate , distance 

 and locally testable with q queries.

0 < r < 1 δ > 0 q ∈ ℕ
{Cn}n ≥ r

≥ δ

 Locally Testable Codesc3

-LTC : Constant query, Constant fractional distance and constant ratec3



1. Locally Testable Codes - quick recap


2. Existing Constructions (Hadamard, Reed-Muller, …)


3. Attempts at -LTC construction


4. DELLM construction 


• Square Complex: Left-right Cayley complex


• Code on the square complex


• Proof Sketch of Testability 

c3

Talk Outline



Locally Testable Codes

A linear error-correcting code is a linear subspace 


Rate = ,       Distance = 


A code C is locally testable with q queries if there is a tester T that has query access to 
a given word w, reads q randomized bits from w and accepts / rejects, such that


• If  then Pr[T accepts] 


• If  then Pr[T rejects] 


q = the locality of the tester

C ⊆ {0,1}n

dim(C)
n

minw∈C∖{0}
|{i : wi ≠ 0} |

n

w ∈ C = 1

w ∉ C ≥ const ⋅ dist(w, C)



• LTCs were studied implicitly in early PCP works [BlumLubyRubinfeld 1990, 

BabaiFortnowLund 1990, ..]


• Formally defined in works on low degree tests [Friedl-Sudan, Rubinfeld-Sudan] ~ 

1995


• Spielman [1996 thesis]: useful in practice- can check “on the fly” if many 
errors occurred, and if so request re-transmission


• A systematic study initiated by Goldreich and Sudan in 2002.               
“what is the highest possible rate of an LTC?”

Historical background 



• Sequence of works (BenSasson-Sudan-Vadhan-Wigderson 2003, BenSasson-Goldreich-H.-Sudan-Vadhan 2004, 

Ben-Sasson-Sudan 2005, Dinur 2005) achieved rate = 1/polylog & constant locality+distance


• “c3 LTCs” (constant rate, constant distance, constant locality) - experts doubt 
existence. Restricted lower bounds are shown [BenSasson-H-Rashkhodnikova 2003, Babai-Shpilka-

Stefankovic 2005, BenSasson-Guruswami-Kaufman-Sudan-Viderman 2010, Dinur-Kaufman2011]


• Fix rate to constant, get locality : [Kopparty-Meir-RonZewi-Saraf 2017, Gopi-Kopparty-

Oliveira-RonZewi-Saraf 2018]  (forget about PCPs, inject expanders) 


• Affine invariance [Kaufman-Sudan 2007,…]: what makes properties testable? 


• High dimensional expansion: local to global features [Garland 1973, Kaufman-Lubotzky 2013, 

Kaufman-Kazhdan-Lubotzky 2014, Evra-Kaufman 2016, Oppenheim 2017, Dinur-Kaufman 2017, Dinur-H.-Kaufman-
LivniNavon-TaShma 2019, Dikstein-Dinur-H.-Kaufman-RonZewi 2019, Anari-Liu-OveisGharan-Vinzant 2019]

(log n)log log n

Historical background 



We even had a summer cluster at the Simons Institute in 2019 



Low density parity check (LDPC) codes [Gallager ‘1963]

 - parity check matrixH

𝒞 = Ker(H) = {w ∈ {0,1}n : Hw = 0}
Two measures for a word w  {0,1}n


1.  - distance to closest codeword

2.  - fraction of rejecting constraints

∈
dist(w, 𝒞)
rej(w)

1 1 0 0 0 0 0 0 0 0 0 0 0 

n

m

factor graph

parity constraint

bit

n m
In an LTC these measures are related!

A (linear) locally testable code is necessarily an LDPC

𝒞 = {w ∈ {0,1}n : ∀v ∈ [m], ∑i∼v wi = 0 mod 2}

rej(w) ≥ ρ ⋅ dist(w, 𝒞)



Expander Codes

• Gallager (1963): A random LDPC code has 
good rate & distance 


• Tanner (1981): Place a small base-code 
 on each constraint node. 

Consider various bipartite graph structures


• Sipser & Spielman (1996):  Explicit expander-
codes: Tanner codes using edges of an 
(explicit) expander

C0 ⊆ {0,1}d

factor graph

parity constraint

bit

n m

𝒞 = {w ∈ {0,1}n : ∀v ∈ [m], ∑i∼v wi = 0 mod 2}

𝒞 = {w ∈ {0,1}n : ∀v ∈ [m], w |nbrs(v) ∈ 𝒞0}



Expander Codes [Sipser & Spielman 1996]

d-regular expander graph 

good base code 

on d bits

C0

G = (V, E)

 C[G, C0] = {f : E → {0,1} : f |edges(v) ∈ C0 ∀v}



Expander Codes [Sipser & Spielman 1996]

Given 

1. A d-regular expander graph G on n vertices

2. A base code  with rate , distance 

Let 

λ−
C0 ⊆ {0,1}d r0 δ0

C[G, C0] = {f : E → {0,1} : ∀v, f |edges(v) ∈ C0}

 constraintsC0

Edges Vertices

bits



Expander Codes [Sipser & Spielman 1996]

• Dim( C )  #bits - #constraints = 
  rate positive if 



• Distance 

• Linear time decoding !

• Locally testable?

≥
|E | − |V | ⋅ (1 − r0)d = |E | (2r0 − 1)
r0 > 1/2

≥ δ0(δ0 − λ)

Given 

1. A d-regular expander graph G on n vertices

2. A base code  with rate , distance 

Let 

λ−
C0 ⊆ {0,1}d r0 δ0

C[G, C0] = {f : E → {0,1} : ∀v, f |edges(v) ∈ C0}

 constraintsC0

Edges Vertices

bits



Expander Codes [BenSasson-H.-Raskhodnikova ’03]
are typically not locally testable 

Expander codes often have a word  that is both


• Far from the code: 


• Rejected by only 1 constraint 


Proof:


Choose  and remove one constraint from the base-code of 


New codewords are far from old code, but violate only one 
constraint

w ∉ C

dist( f, C) > const

ρ( f ) = 1/ |V |

v0 v0



Other LTCs

• Hadamard Codes [Blum-Luby-Rubinfeld 1990,…]


• Reed-Muller Codes 


• Large fields [Rubinfeld-Sudan 1992,…]


• Small fields [Alon-Kaufman-Krivilevich-Litsyn-Ron 2003]



Hadamard Code as Tanner Code

factor graph

Triples 

Constraints

(x, y, x + y)

Codeword bits

{0,1}n

factor graph

 constraintsC0bits



Reed-Muller Code as Tanner Code

factor graph

Affine Lines

Constraints



Codeword bits

𝔽m

factor graph

 constraintsC0bits



What makes Hadamard and RM codes testable?

• Hadamard Codes [Blum-Luby-Rubinfeld 1990,…]


• Reed-Muller Codes 


• Large fields [Rubinfeld-Sudan 1992,…]


• Small fields [Alon-Kaufman-Krivilevich-Litsyn-Ron 2003]



Testability of Hadamard Code

3-layered factor graph3-layered factor graph

 constraintsC0bits dependencies
Triples 


Constraints
(x, y, x + y)


Codeword bits
{0,1}n Magic Squares




Testability of Reed-Muller Codes

3-layered factor graph3-layered factor graph

 constraintsC0bits dependencies
Affine Planes

Dependences

Affine Lines

Constraints



Codeword bits

𝔽m



High dimensional expansion

The idea of using a higher-dimensional complex instead of a graph for LTCs has been circulating a 
number of years.


HDXs exhibit local-to-global features: prove something locally and then use expansion to globablize


[Garland 1973, Kaufman-Kazhdan-Lubotzky2014, Evra-Kaufman2016, Oppenheim2017, D.-
Kaufman2017, Dinur-H.-Kaufman-LivniNavon-TaShma2018, Anari-Liu-OveisGharan-Vinzant2019]


Dikstein-Dinur-H.-RonZewi2019 proved that if one defines a code on a HDX using a base code that 
itself is an LTC, (and if there is an agreement-test), then the entire code is an LTC. 


Recently also Kaufman-Oppenheim 2021 proved a similar “schema”.


How to“instantiate” this? …we worked on the Lubotzky-Samuels-Vishne complexes (quotients of BT 
buildings), and have conjectured base codes, but no proof of local LTCness



Dinur-Evra-Livne-Lubotzky-Mozes Approach

• High-dimensional expansion not required


• A square complex suffices



Expander Codes, one level up

factor graph

Edges VerticesSquares

 constraintsC0bits dependencies



Expander Codes, one level up

factor graph

Edges VerticesSquares

 constraintsC0bits dependencies



Left-right Cayley Complex
 “a graph with squares”

Let G be a finite group,


Let  be closed under taking inverses, i.e. such that 


Cay(G,A) is a graph with vertices G, and edges  

A ⊂ G a ∈ A → a−1 ∈ A

EA = {{g, ag} : g ∈ G, a ∈ A}



Left-right Cayley Complex
 “a graph with squares”

Let G be a finite group,


Let  be closed under taking inverses 
A, B ⊂ G



Left-right Cayley Complex
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Left-right Cayley Complex
 “a graph with squares”

Let G be a finite group,


Let  be closed under taking inverses 
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Left-right Cayley Complex
 “a graph with squares”

Each triple  define a rooted square 


Each square can have 4 roots,





This square naturally contains 


• The edges {g,ag}, {g,gb}, {gb,agb}, {ag,agb},


• The vertices g,ag,gb,agb


The set of squares is 

a ∈ A, g ∈ G, b ∈ B (a, g, b)

[a, g, b] = { (a, g, b), (a−1, ag, b), (a−1, agb, b−1), (a, gb, b−1) }

X(2) = {[a, g, b] : g ∈ G, a ∈ A, b ∈ B} = A × G × B / ∼

(a, gb, b−1)

(a−1, agb, b−1)

(a−1, ag, b)

(a, g, b)



Left-right Cayley Complex Cay2(A,G,B) 

Let G be a finite group, and let  be closed under taking inverses. 


The left-right Cayley complex Cay2(A,G,B) has


• Vertices G


• Edges   


• Squares A x G x B / ~


We say that Cay2(A,G,B) is a -expander if Cay(G,A) and Cay(G,B) are -expanders.


Lemma: For every  there are explicit infinite families of bounded-degree left-right 
Cayley complexes that are -expanders.

A, B ⊂ G

EA ∪ EB

λ λ

λ > 0
λ

EA = {{g, ag} : g ∈ G, a ∈ A}, EB = {{g, gb} : g ∈ G, b ∈ B}



Left-right Cayley Complex
 “a graph with squares”

Squares touching the edge {g,ag} 


are naturally identified with B


Squares touching the edge {g,gb} 


are naturally identified with A

a ↦ [a, g, b]

b ↦ [a, g, b]

A vertex g has |A| + |B| neighbors


For each  there is one square touching g,


so there is a natural bijection* 


* it is a bijection assuming 

a ∈ A, b ∈ B

(a, b) ↦ [a, g, b]

∀a, b, g, g−1ag ≠ b
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The Code

Let Cay2(A,G,B) be a left-right Cayley complex. 


Fix base codes   (assuming |A| = |B| = d we can take one base code  

and let )


Define a code CODE = :


• The codeword bits are placed on the squares


• Each edge requires that the bits on the squares around it are in the base code 


Rate:              [ calc: #squares - #constraints ]


Distance:     [easy propagation argument]

CA ⊆ {0,1}A, CB ⊆ {0,1}B C0 ⊆ {0,1}d

CA, CB ≃ C0

C[G, A, B, CA, CB]

≥ 4r0 − 3

≥ δ2
0(δ0 − λ)

CODE = {f : Squares → {0,1} : ∀a, g, b, f([ ⋅ , g, b]) ∈ CA, f([a, g, ⋅ ]) ∈ CB}



Local views are tensor codes

Claim: Fix f CODE. For each ,   


Theorem: Assume Cay2(A,G,B) is a -expander, and  is 
-robustly testable. If , then  is locally 
testable. 


The tester is as follows:


1. Select a vertex g uniformly,


2. Read f on all squares touching g, namely . 


3. Accept iff this belongs to 


Then

∈ g ∈ G f([ ⋅ , g, ⋅ ]) ∈ CA ⊗ CB

λ CA ⊗ CB ρ
λ < δ0ρ/5 C[G, A, B, CA, CB]

|A | ⋅ |B | f([ ⋅ , g, ⋅ ])

CA ⊗ CB

Pr
g∈G

[ f([ ⋅ , g, ⋅ ]) ∉ CA ⊗ CB) ≥ const ⋅ dist( f, C[G, A, B, CA, CB])

A

B

∈ CB

∈
C

A

CODE = {f : Squares → {0,1} : ∀a, g, b, f([ ⋅ , g, b]) ∈ CA, f([a, g, ⋅ ]) ∈ CB}



Robustly-testable tensor codes

Definition [Ben-Sasson-Sudan’05]:  is -robustly testable if for 
all , row-distance + column-
distance


Row-distance : average distance of each row to  


Column-distance : average distance of each column to 


Lemma [Ben-Sasson-Sudan’05, Dinur-Sudan-Wigderson2006, Ben-Sasson-Viderman2009]: 


For every r>0 there exist base codes with rate r and constant distance 
whose tensors are robustly-testable. (Random LDPC codes, LTCs)

CA ⊗ CB ρ
w : A × B → {0,1} ρ ⋅ dist(w, CA ⊗ CB) ≤

CA

CB

A

B

∈ CA

∈
C

B



Proof of local-testability

Start with  and find 
f : Squares → {0,1} f′￼ ∈ C, rej( f ) ≥ dist( f, f′￼) ⋅ const

ALG “self-correct”:


1. Init: Each  finds  closest to 




[ define a progress measure  = # dispute edges ]


2. Loop: If g can change  and reduce  then do it


3. End: If  let  and output ,                     

If  quit

g ∈ G Tg ∈ CA ⊗ CB
f([ ⋅ , g, ⋅ ])

Φ

Tg Φ

Φ = 0 f′￼([a, g, b]) = Tg(a, b) f′￼

Φ > 0

• steps      rej(f)


• If  then



• If  then  so 
 

≤ Φ ≈

Φ = 0
rej( f ) ≥ dist( f, f′￼) ⋅ const

Φ > 0 Φ > 0.1
rej( f ) ≥ dist( f, f′￼) ⋅ 0.1



If ALG “self-correct” is stuck then rej ( f )  > 0.1

• If g,g’ are in dispute, there must be many squares on {g,g’} with 
further dispute edges


• Can try to propagate, but, they all might be clumped around g


• But then g’s neighbors all agree, so there must have been a 
better choice for  (using the LTCness of tensor codes)


• Random walk edge—>square—>edge + expansion ==> 
dispute set is large

Tg

Proof of local-testability



Theorem: For all  there exist  and  and an explicit construction of an infinite 
family of error-correcting codes  with rate , distance  and locally testable with q queries.


Proof: Take


1. Family of base codes  with rate  and constant robustness  and distance 


2. Set  small enough wrt  and 


3. Choose a family  of  expanding left-right Cayley complexes, with 



4. Output 

0 < r < 1 δ > 0 q ∈ ℕ
{Cn}n ≥ r ≥ δ

{Cd}d >
r + 3

4
ρ δ

λ δ ρ

{Cay2(An, Gn, Bn)}n λ
d = |An | = |Bn | = O(1/λ2)

{C[Gn, An, Bn, Cd, Cd]}n

A concrete choice of group & base codes



…questions?

• Can such ideas be used for constructing PCPs?


• Can these codes be made practical?


• Can one consrtuct LTCs on other HDX’s such as LSV simplical complexes? It all boils 
down to building one finite code in the links


• Can one construct higher dimensional (e.g. cubical) complexes similarly?
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