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| et’s recall

Definition: A random code ensemble C C [FZ is k-locally-similar to an RLC of rate R if
Pr|{v), ..., v} C C| S 27(-Rmdimiv,..u]

forall vy, ..., v, € [FZ.

Theorem: If a random code ensemble C is k-locally-similar to an RLC of rate R then it achieves

the list-decoding GV-bound and any other monotone, k-local and symmetric property of RLC
codes with high probability.



Warm up: The generalized Wozencraft Ensemble

Definition: Let n = 2m. Let ¢ : [, = [’ be the natural binary encoding.

Sample a uniformly at random from [Fq.

The Wozencraft ensemble Is

C, = { (@), p(ax)) | x€F) | C T3
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Warm up: The generalized Wozencraft Ensemble

1
Claim: C, is 1-locally-similar to an RLC of rate >

Proof: Let y € [F)\{0}.
There is a unique way to write y = (¢(x), @(px)) for some p € [,

Soy € C  onlyif @ = f5, which happens with probability 27" = 277



Warm up: The generalized Wozencraft Ensemble

1
Claim: C, is 1-locally-similar to an RLC of rate >

Corollary: The Wozencraft ensemble achieves the same |-local properties as an RLC

1
of rate —.
2

In particular, it achieves the GV-bound for minimal distance.



Warm up: The generalized Wozencraft Ensemble

Definition: Let n = 2m. Let ¢ : [, — 5 be the natural binary encoding.

Sample a uniformly random polynomial p of degree < k from I]:q[x].

The k-generalized Wozencraft ensemble is

G, = { (@0, () | xEF) | CF

|
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Warm up: The generalized Wozencraft Ensemble

|
Claim: Cp is k-locally-similar to an RLC of rate 5

Corollary: The Wozencraft ensemble achieves the same k-local properties as an RLC

1
of rate —.
2

In particular, it achieves the list-decoding GV-bound for list size up to k.
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Caveat: This theorem requires constant alphabet size.



Randomly Punctured Low-Blas codes

Partially derandomized by
[Putterman-Pyne]

Theorem [Guruswami-M]: Let D be a low-bias code and let C be a random puncturing

of D. Then C is k-locally similar to an RLC of similar rate.

Caveat: This theorem requires constant alphabet size.
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Usually n < m.
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If the punctured columns are chosen at random,

C is said to be a random n-puncturing of D.

Example: An RLC of rate R in [FZ is a random
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Puncturing of Codes

Fromacode D C IF’Z; create a new code C C [FZ. {

Usually n < m.

Codewords of D
A

If the punctured columns are chosen at random,

C is said to be a random n-puncturing of D.
Example: An RLC of rate R in [FZ is a random

Rn
puncturing of the Hadamard code H C [FZ . -

A Reed-Solomon code over a random evaluation
set is a random puncturing of the full Reed-
Solomon code. _

Codewords of C
A

=<
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 Theorem: C is locally-similar to an RLC.
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Puncturing of low-bias codes

Let’s focus on g = 2

m
Suppose every u € D has weight close to —

2

(low-bias). -
D can be, e.g., a dual-BCH code. // /

Theorem: C is locally-similar to an RLC.

Codewords of D
A

Corollary: C is as list-decodable and list-
recoverable as an RLC.

Codewords of C
A

=<
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Proof sketch: C is locally-similar to an RLC.
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Proof sketch: C is locally-similar to an RLC.
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Proof sketch: C is locally-similar to an RLC.

Q
©

o
= <
©

G
o
w U -
I
O O
2 5
2 < ()
o &
O ©

U\ \ /

—

f

00
S
-
: +:(I.:U
o

o

@

5

3 “

s

%< °

(@)

@)

—_— -

+ L

V1
U, V2
> eo o
Us 3 V3
O -
L )

V ‘_T_ V
n g n



Proof sketch: C is locally-similar to an RLC.
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L + 1 Codewords of D

Proof sketch: C is locally-similar to an RLC.
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L + 1 Codewords of D

Proof sketch: C is locally-similar to an RLC.
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L + 1 Codewords of C
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Column distribution of Wis

almost uniform due to low-bias
via the XOR lemma.

L + 1 Codewords of

Hadamard code
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Column distribution of H

is uniform over I]:g
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Drawbacks of the method

Locality Is nhecessary

Open problem:

Let C C IF’; be an RLC and fix € > 0.

Prove that C is (z, gt 27" (1 + e))-list-recoverable with high probability.

g
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Drawbacks of the method

Can only deal with “2,” properties.

Open problem:

Say that a code C'is (p, L)-covering if every x € [ is p-close to at least L codewords

of C.

Find the rate threshold for (p, L)-covering with regard to RLCs.

<
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Drawbacks of the method

Local-similarity to RLC requires 2(77) random bits

Open problem:

Construct a code achieving the GV bound with o(n) random bits.

<




Drawbacks of the method

Alphabet cannot be large.



Drawbacks of the method

Alphabet cannot be large.

e Recall that the number of possible row distributions for a matrix in [—2 IS
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Drawbacks of the method

Alphabet cannot be large.

e Recall that the number of possible row distributions for a matrix in [—2 IS

L
roughly n’ . We need to union bound over this.

 For general g this is nd".

* Suppose g = n, then there are n” types! Yoz &
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Alphabet cannot be large.



Drawbacks of the method

Alphabet cannot be large.

* |s there any hope for reasoning about Reed-Solomon codes with this
method??
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Reed-Solomon codes

« A Reed-Solomon (RS) code over [Fq is defined by:

 Arank ]l <k <g

« An evaluation set S C I]:q.

. The codewords are (p(x)) where p € [F [ x] has degree < k.
X

Sh)

« We denote RS[S, k].

. The code has dimension k and lengthn = |S|,so R = —.
n

* Notethatn < g.
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List-Decodability of RS codes

Problem:

Are there RS codes that achieve the list-decoding GV-bound?

How large does g need to be in terms of n?
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« Many works about list-decodability of RS[S, k] where § C I, is random (“random
RS code”)

[Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters],
[Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].
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® | ess is known for list-recovery.
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Types for large alphabet

» Suppose the columns of A € [F’;X(LH) are p-clustered.

 The row distribution of A contains too much information.

* For a given row, we only care about the identity relation.

n

AL+
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Types for large alphabet

Given 7 € [I:Icfrl let P, denote the partition of

{1,...,L+ 1} where

L~p ] &

The type of a matrix A € [ng(“l) IS a pair consisting of:

n

A list of partitions (PAi)

=1

The row-span of A.
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Types for large alphabet

Observation:

If a matrix A is p-clustered then so are all matrices of
the same type.

So the withesses for non-list-decodability are a union
of type classes.

List-recoverability can also be expressed this way. A
property expressible by type classes is called a local
identity property.

AL+1
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« Forconstant L and g > L+, the above is at most g which is tiny!



Types for large alphabet

* How many types are there?

+ There are at most (L + 1)X*!

equivalence relations.
e So at most qu (L + 1)"+D types.

L
« Forconstant L and g > L+, the above is at most g which is tiny!

 We can union bound over the p-clustered types.
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. Consider the type 1 = (P
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« Will an RLC of rate R contain a matrix of type 77?
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. Consider the type 1 = (P — (pi)f’_l’ [F’3’>

l

« Will an RLC of rate R contain a matrix of type 77?

* There are q3R” triplets x;, x,, x; of words in C.
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l

Will an RLC of rate R contain a matrix of type 77

There are q3R” triplets x;, x,, x; of words in C.

Each P;imposes 3 — | P;| linear conditions.

Let deg(P,F)) =3Rn— ) (3—|P;|).
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Consider the type 1 = (P = (Pl-)r.l_l, ﬂjg,l>

l

Will an RLC of rate R contain a matrix of type 77

There are q3R” triplets x;, x,, x; of words in C.

Each P;imposes 3 — | P;| linear conditions.

Let deg(P,F)) =3Rn— ) (3—|P;|).

If deg(T) < O then there is probably no type T matrix in C.
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3

11,2},{3}

{1,2,3}

U11:121,13)

{1,2,3}

11,3112}




Large alphabet types in RLCs - Intuition

3

11,2},{3}

{1,2,3}

U11:121,13)

n (1.2.3)

11,3112}




« What if deg(P, F}) > 0?
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« What if deg(P, F}) > 0?

 Then must be non trivial triplets x,, x,, x; € C satisfying P.
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« What if deg(P, F}) > 0?

 Then must be non trivial triplets x,, x,, x; € C satisfying P.

o ——

» But is their row span [F5?

n

X1

X9

AL +1
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« What if deg(P, F}) > 0?

 Then must be non trivial triplets x,, x,, x; € C satisfying P.

o ——

» But is their row span [F5?

e Maybe not!

n

X1

X9

AL +1
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« What if deg(P, F}) > 0?

 Then must be non trivial triplets x,, x,, x; € C satisfying P.

» But is their row span [F5? bttlﬂ

n Xl XZ .

e Maybe not!

AL +1

 It's possible that these X, X,, x5 are not even distinct!

Large alphabet types in RLCs - Intuition
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» In this example we have deg(P,F) > 0.

» However, it’s likely that all solutions will have x; = X,
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. What about the type ((P

l

):l=1’ V)
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. What about the type ((Pl)n . V)
[ =

o We take V = {ZE F;‘Zl‘FZz—ng:O}
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. What about the type ((Pl)n . V)
[ =

o We take V = {ZE F;‘Zl‘FZz—ng:O}

* Z3 is determined by 7, 7, so we only have 2Rn degrees of
freedom.
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. What about the type ((P)n . V)
[ =

l
o We take V = {ZE F;‘Zl‘FZz—ng:O}

* Z3 is determined by 7, 7, so we only have 2Rn degrees of
freedom.

e Ontheotherhand, z; = 2, = 71 = X
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Large alphabet types in RLCs - Intuition

. What about the type ((P)n . V)
[ =

* Z3 is determined by 7, 7, so we only have 2Rn degrees of

l

We take V = {ZE F;‘Zl‘FZz—ng,:O}

freedom.

e Ontheotherhand, z; = 2, = 71 = X

So {1,2,3} is just 1 constraint instead of 2.
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deg(P,V) =dimV-Rn— Y (dimV —dimVn V, )

=1

Where 3

11,2},{3}

Vp = {Z = [ng | z satisfies the equalities asserted by Pl-} {1,2,3}

U11:121,13)
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deg(P,V) = dimV-Rn— ¥ (dim V—dimVn VPl)
=1

Where

Vpl. = {Z & [Fgl | 7 satisfies the equalities asserted by Pl-}

Theorem [RLC thresholds for large alphabet]:

An RLC is likely to contain a type (P, V') matrix if and
only if

deg(P, V) > deg(P, U)

Forall U C V.
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deg(P,V) = dimV-Rn— ¥ (dim V—dimVn VPl)
=1

Where

Vpl. = {Z & [Fgl | 7 satisfies the equalities asserted by Pl-}

Theorem [RLC thresholds for large alphabet]:

An RLC is likely to contain a type (P, V') matrix if and

only if In particular
deg(P, V) > deg(P,{0}) =0

deg(P, V) > deg(P, U)

Forall U C V.
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Theorem [Reduction from RLC to random RS codes] (Levi-M-Shagrithaya):

Let &P be a local identity property achieved with high probability by an RLC.

Then, & is also achieved with high probability by a random RS code with g = O, (n).

Corollary:

A random RS code achieves the list-decoding GV-bound.
(Already proven by [AGL] using the GM-MDS theorem)

A random RS code is at least as list-recoverable as an RLC.
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Proof sketch: Reduction from random RS to RLC

By the threshold theorem, it suffices to solve the following problem:

Fix partitions P = (P)

l

Suppose that deg(P, J—SH) < —eén.
We need to prove:

Pr [A random RS code contains a type (P, [FL“) matrix] < q—ﬂ(n)
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Open Problems

Fully understand list-Recoverability of RLC and random RS.

Break €2(7) randomness barrier
Handle non-local properties

 List-recoverability with large list size.

Handle [ 1, properties

* (p,L)-covering

Find limit objects for codes.

Thank you!



