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q k R
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Theorem: If a random code ensemble  is -locally-similar to an RLC of rate  then it achieves 
the list-decoding GV-bound and any other monotone, -local and symmetric property of RLC 

codes with high probability.

C k R
k



Warm up: The generalized Wozencraft Ensemble

Definition: Let . Let  be the natural binary encoding.


Sample  uniformly at random from . 


The Wozencraft ensemble is 


n = 2m φ : 𝔽2m → 𝔽m
2

α 𝔽q

Cα = {(φ(x), φ(αx)) ∣ x ∈ 𝔽q)} ⊆ 𝔽n
2
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Warm up: The generalized Wozencraft Ensemble

Claim:  is -locally-similar to an RLC of rate .Cα 1
1
2

Proof: Let . 


There is a unique way to write  for some .  


So  only if , which happens with probability .

y ∈ 𝔽n
2∖{0}

y = (φ(x), φ(βx)) β ∈ 𝔽n
2

y ∈ ℂα α = β 2−m = 2− n
2



Warm up: The generalized Wozencraft Ensemble

Corollary: The Wozencraft ensemble achieves the same -local properties as an RLC 

of rate . 

In particular, it achieves the GV-bound for minimal distance.

1
1
2

Claim:  is -locally-similar to an RLC of rate .Cα 1
1
2



Warm up: The generalized Wozencraft Ensemble

Definition: Let . Let  be the natural binary encoding.


Sample a uniformly random polynomial  of degree  from . 


The -generalized Wozencraft ensemble is 


n = 2m φ : 𝔽2m → 𝔽m
2

p < k 𝔽q[x]

k

Cp = {(φ(x), φ(p(x))) ∣ x ∈ 𝔽q)} ⊆ 𝔽n
2

Claim:  is -locally-similar to an RLC of rate .Cp k
1
2



Warm up: The generalized Wozencraft Ensemble

Claim:  is -locally-similar to an RLC of rate .Cp k
1
2



Warm up: The generalized Wozencraft Ensemble

Corollary: The Wozencraft ensemble achieves the same -local properties as an RLC 

of rate . 

In particular, it achieves the list-decoding GV-bound for list size up to .

k
1
2

k

Claim:  is -locally-similar to an RLC of rate .Cp k
1
2



Randomly Punctured Low-Bias codes

Theorem [Guruswami-M]: Let  be a low-bias code and let  be a random puncturing 
of . Then  is -locally similar to an RLC of similar rate.
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Randomly Punctured Low-Bias codes

Theorem [Guruswami-M]: Let  be a low-bias code and let  be a random puncturing 
of . Then  is -locally similar to an RLC of similar rate.

D C
D C k

Caveat: This theorem requires constant alphabet size.

Partially derandomized by 
[Putterman-Pyne]
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Puncturing of Codes
• From a code  create a new code . 

Usually .
D ⊆ 𝔽m

q C ⊆ 𝔽n
q

n ≪ m

• If the punctured columns are chosen at random, 
 is said to be a random -puncturing of .C n D
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Puncturing of Codes
• From a code  create a new code . 

Usually .
D ⊆ 𝔽m

q C ⊆ 𝔽n
q

n ≪ m

• If the punctured columns are chosen at random, 
 is said to be a random -puncturing of .C n D

• Example: An RLC of rate  in  is a random  

puncturing of the Hadamard code .
R 𝔽n

q

H ⊆ 𝔽qRn

q

…

…

…
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Puncturing of Codes
• From a code  create a new code . 

Usually .
D ⊆ 𝔽m

q C ⊆ 𝔽n
q

n ≪ m

• If the punctured columns are chosen at random, 
 is said to be a random -puncturing of .C n D

• Example: An RLC of rate  in  is a random  

puncturing of the Hadamard code .
R 𝔽n

q

H ⊆ 𝔽qRn

q

• A Reed-Solomon code over a random evaluation 
set is a random puncturing of the full Reed-
Solomon code.

…

…
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Puncturing of low-bias codes
• Let’s focus on q = 2

• Suppose every  has weight close to  

(low-bias).

u ∈ D
m
2
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Puncturing of low-bias codes
• Let’s focus on q = 2

• Suppose every  has weight close to  

(low-bias).

u ∈ D
m
2

•  can be, e.g., a dual-BCH code.D
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• Let’s focus on q = 2

• Suppose every  has weight close to  

(low-bias).

u ∈ D
m
2

•  can be, e.g., a dual-BCH code.D
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Puncturing of low-bias codes
• Let’s focus on q = 2

• Suppose every  has weight close to  

(low-bias).

u ∈ D
m
2

•  can be, e.g., a dual-BCH code.D

• Theorem:  is locally-similar to an RLC.C

• Corollary:  is as list-decodable and list-
recoverable as an RLC.

C

…

…

…
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Column distribution of  
is uniform over 

H
𝔽b

2

Column distribution of  is 
almost uniform due to low-bias 

via the XOR lemma.

W

Proof sketch:  is locally-similar to an RLC.C
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Drawbacks of the method
Locality is necessary

Open problem:  

Let  be an RLC and fix . 


Prove that  is -list-recoverable with high probability.

C ⊆ 𝔽n
q ϵ > 0

C ( q
2

, qRn ⋅ 2−n ⋅ (1 + ϵ))
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Can only deal with “ ” properties.Σ1



Drawbacks of the method

Open problem:  

Say that a code  is -covering if every  is -close to at least  codewords 
of .  

 
Find the rate threshold for -covering with regard to RLCs.

C (ρ, L) x ∈ 𝔽n
2 ρ L

C

(ρ, L)

Can only deal with “ ” properties.Σ1
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Drawbacks of the method
Local-similarity to RLC requires  random bitsΩ(n)

Open problem:  

Construct a code achieving the GV bound with  random bits.o(n)
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• Recall that the number of possible row distributions for a matrix in  is 
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Drawbacks of the method
Alphabet cannot be large.

• Recall that the number of possible row distributions for a matrix in  is 
roughly . We need to union bound over this.

𝔽L
2

n2L

• For general  this is .q nqL

• Suppose , then there are  types! 😱q = n nnL



Drawbacks of the method
Alphabet cannot be large.



Drawbacks of the method
Alphabet cannot be large.

• Is there any hope for reasoning about Reed-Solomon codes with this 
method?
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Reed-Solomon codes
• A Reed-Solomon (RS) code over  is defined by:


• A rank 


• An evaluation set . 

𝔽q

1 ≤ k ≤ q

S ⊆ 𝔽q

• The codewords are  where  has degree .(p(x))x∈S
p ∈ 𝔽q[x] < k

• We denote .RS[S, k]

• The code has dimension  and length , so .k n = |S | R =
k
n

• Note that .n ≤ q
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List-Decodability of RS codes

Problem: 

Are there RS codes that achieve the list-decoding GV-bound?


How large does  need to be in terms of ?q n
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• Many works about list-decodability of  where  is random (“random 

RS code”)


• [Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters], 
[Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].
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Types for large alphabet

• Suppose the columns of  are -clustered.A ∈ 𝔽n×(L+1)
q ρ

• The row distribution of  contains too much information.A

• For a given row, we only care about the identity relation.

…x1 x2 xL+1n
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…x1 x2 xL+1n

zGiven  let  denote the partition of 
 where


z ∈ 𝔽L+1
q Pz
{1,…, L + 1}

i ∼Pz
j ⟺ zi = zj



Types for large alphabet

…x1 x2 xL+1n

zGiven  let  denote the partition of 
 where


z ∈ 𝔽L+1
q Pz
{1,…, L + 1}

i ∼Pz
j ⟺ zi = zj

The type of a matrix  is a pair consisting of:


1. A list of partitions 


2. The row-span of .

A ∈ 𝔽n×(L+1)
q

(PAi)
n

i=1

A
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Types for large alphabet

…x1 x2 xL+1n

Observation: 

If a matrix  is -clustered then so are all matrices of 
the same type.


So the witnesses for non-list-decodability are a union 
of type classes.


List-recoverability can also be expressed this way. A 
property expressible by type classes is called a local 

identity property.

A ρ
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Types for large alphabet

• How many types are there?

• There are at most  equivalence relations.(L + 1)L+1

• So at most  types.qL2 ⋅ (L + 1)n(L+1)

• For constant  and , the above is at most  which is tiny!L q ≥ L
L
ϵ qϵn

• We can union bound over the -clustered types.ρ
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• Each  imposes  linear conditions.Pi 3 − |Pi |

• Let .deg(P, 𝔽3
q) = 3Rn − ∑

i

(3 − |Pi | )

• If  then there is probably no type T matrix in . deg(T) < 0 C
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∑
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(dim V − dim V ∩ VPi)
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Theorem [RLC thresholds for large alphabet]: 

An RLC is likely to contain a type  matrix if and 
only if 





For all .

(P, V)

deg(P, V) > deg(P, U)

U ⊆ V

In particular  
deg(P, V) > deg(P, {0}) = 0
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Theorem [Reduction from RLC to random RS codes] (Levi-M-Shagrithaya): 

Let  be a local identity property achieved with high probability by an RLC. 


Then,  is also achieved with high probability by a random RS code with .

𝒫

𝒫 q = OL(n)

Corollary: 

A random RS code achieves the list-decoding GV-bound.  
(Already proven by [AGL] using the GM-MDS theorem)


A random RS code is at least as list-recoverable as an RLC.
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 Proof sketch: Reduction from random RS to RLC

By the threshold theorem, it suffices to solve the following problem:

Fix partitions .


Suppose that .


We need to prove: 

P = (Pi)
deg(P, 𝔽L+1

2 ) ≤ − ϵn

Pr [A random RS code contains a type (P, 𝔽L+1
2 ) matrix] ≤ q−Ω(n)

On the Board
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Open Problems
• Fully understand list-Recoverability of RLC and random RS.

• Break  randomness barrierΩ(n)

• Handle non-local properties

• List-recoverability with large list size.

• Handle  propertiesΠ2

• -covering(ρ, L)

• Find limit objects for codes.

Thank you!


