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What these talks are about

Combinatorial questions (and some answers)
No algorithmic results! (But some algorithmic motivation)

Example motivation: how List-decodable and list-recoverable are
Reed-Solomon codes?

<

A star player: The Random Linear Code (RLC) ﬁ

Technique: We reduce from RLC to more structured codes. @i



List-Decoding




List-Decoding

« Acode C C [FZ is p-uniquely-decodable if the receiver can always uniquely recover a

codeword x € ( given pn errors.



List-Decoding

« Acode C C [FZ is p-uniquely-decodable if the receiver can always uniquely recover a

codeword x € ( given pn errors.

O
 Namely, need to avoid this: ®
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« Acode C C [FZ is p-uniquely-decodable if the receiver can always uniquely recover a

codeword x € ( given pn errors.

O
 Namely, need to avoid this: ®

O O
« (s (p,L)-list-decodable if the receiver can always recover a list of at most L codewords,
such that the list contains x.
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List-Recovery

* In List-Decoding we want every Hamming ball to contain a small number
of codewords.

* |In List-Recovery we care about combinatorial rectangles instead of
balls.



List-Recovery

We say that C C [ is (£, L)-list-recoverable if:
For every Sy, ..., S, C F, with | §;[ < £ we have

[CN (S X8 X...xS,)| <L

51 X $, X ... X §, is called a
combinatorial rectangle




Random Linear Codes (RLCs)



Random Linear Codes (RLCs)

« An RLC of length n and rate R over alphabet [Fq is a uniformly-sampled Rn-dimensional

linear subspace of [Fz.



Random Linear Codes (RLCs)

« An RLC of length n and rate R over alphabet [Fq is a uniformly-sampled Rn-dimensional

linear subspace of [Fz.

 The go-to code for existence proofs!
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Random Linear Codes (RLCs)

* Achieves with high probability: « However:
* The Gilbert-Varshamov Bound * » Decoding is probably hard
R=~1-h/5)

» Certifying is probably hard
* The “List-decoding GV-bound”:
« Construction requires ® (nz)

|
k=1-o-0 (1) _
I random bits.

 List-recovery results as well.

*H(p) =plog,(g—1)—plog, p—(1—-p)log,(l—p)



The only thing you need to know about RLCs

Let C be an RLC of rate R. Fix v, ..., v, €

Then:

Pr[{v,...,v} C C] = 2-(-Rndim{y....n)
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List-Decodability of an RLC

* Motivation: Show that a binary RLC achieves the list-decoding GV-bound.

» More precisely: Show that an RLC with R =1 — h(p) — € is
(p, O(1/¢€))-list-decodable with high probability.



List-Decodability of an RLC

 Say that the vectors x,, ..., Xx; .| are p-clustered if they are distinct and
contained in some radius p ball.

» The tuple (x;, ..., Xx; ) is a witness to C not being (p, L)-list-decodable.
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* Maybe not!

 Analogy from random G(n, p) graphs.

« What is the probability that G contains an H subgraph?

“#HinG) ~n’ - p’

C(#Sin G) &~ n* - p®

o Let p =n" with =5/7T < a < —2/3.

e Then

=(

Hin G) = oo but

=(

SinG) — 0.
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|s the expectation method tight?

* Maybe not!

 Analogy from random G(n, p) graphs.

« What is the probability that G contains an H subgraph?

- EHHinG)~n’-p’

»
. E#SinG) ~n* p° e
. Letp = n% with —5/7 < a < — 2/3. »
e ThenE(#H inG) —» cobut E(#S5in G) — 0.
» »

e So almost surely not a single H can be found in G even though many
such subgraphs appear in expectation. S



Threshold for random graphs

 Theorem (Bollobas 1981): A subgraph  is

likely found in G if and only if E(#S in G) — oo ®
forall § C H. .><

! ? » 9
0.8 f H
Pr(G(n, p%) contains H) o _i
04 ; »
oo — |
1.0 -0.8 -0.6 -0.4 -0.2 0.0 ® ®
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Back to list-decodability of an RLC

- Notation: write a p-clustered set {x;,...,x; .} C [, asa ﬁ
matrix A.

* Observation: the family of p-clustered matrices is closed
to row permutations.

« To determine if A is p-clustered we only need to know its
row distribution. That is, how many times each vector In J-’g

appears in A.

2L+1

 There are at most n“ p-clustered distributions. This is a
tiny number so we can treat each clustered distribution
separately.




Expectations in an RLC

e Let 7 be a distribution over [Fli“.

« How many 7-distributed matrices do we expect in an RLC?

~(z-distributed matrices in C) = #r-distributed matrices - Pr (A C C)
A~T

~ 2nH(T) . 2—n(1—R)-dim{x1,...,xL+1}

_ Hn(H(®) — (1 = R) - dim(supp()))

gl %9 T |
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Expectations in an RLC

E(zIn C)

0

J

A

Here, does C almost surely contain 77?

Not nhecessarily!

0

Here, C almost surely does not contain .

nix | % -

' AL+1







* The distribution 7 is analogous to a subgraph H.
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* The distribution 7 is analogous to a subgraph H.

» What about subgraphs of H !

gl %9 T |
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—(L+1)Xb

o Suppose A C C. Then C also contains AB whenever B € |
b<L+1).

nlx | X || XL+ ® L+ 1




o Suppose A C C. Then C also contains AB whenever B € |

b<L+1).

—(L+1)Xb

A uniformly random row of AB is distributed like zB where 7 ~ 7.

 We denote this distribution T8
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Suppose A C C. Then C also contains AB whenever B € |

b<L+1).

—(L+1)Xb

A uniformly random row of AB is distributed like zB where 7 ~ 7.

We denote this distribution 7B

In order to contain 7, a linear code must contain 5.

A

9 |

® /41

B

b

4B
tb tttH




Theorem (thresholds for RLCs):

An RLC of rate R is likely to contain a 7 distributed matrix if and only if

- (#7B distributed matrices in C) — oo

for all B € [F(ZLH)X]’.



Theorem (thresholds for RLCs):

An RLC of rate R is likely to contain a 7 distributed matrix if and only if

- (#7B distributed matrices in C) — oo

for all B € [F(ZLH)X]’.

Corollary (list-decodability of RLCs):

An RLC of rate R is likely (p, L)-list-decodable if and only if

every p-clustered distribution 7 over . has some B € IF(ZLH)XI’ such that

- (#7B distributed matrices in C) — 0




Pr(C i1s (p, L)-list-decodable)

0

0 |
R
Corollary (list-decodability of RLCs):

An RLC of rate R is likely (p, L)-list-decodable if and only if

every p-clustered distribution 7 over [|:§+1 has some B € IF(ZLH)XI’ such that

- (#7B distributed matrices in C) — 0
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Take aways from the threshold theorem

* The list-decodability of an RLC can be explained by expectations.

 Namely, we only care about certain terms of the form

Hn(H(z) = (1 = R) - dim(supp(7)))

* This holds for more than just list-decodability.
* Any property characterized by “foribdden distributions” has such a characterization.
* For example, list-recoverability!

* In general, any monotone, local and symmetric property.
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But what did we gain?

 Reasoning about list-decodability of RLCs via expectations is complete.

 But what is this good for? we already know (through a long line of works)
that RLCs achieve the list-decoding GV-bound.

 But now these results tell us something about expectations!



Definition: A random code ensemble C C IF’; is locally-similar to an RLC of rate R if
Pr |{v), ..., v} C C| m 27 (=R mdimv,..u]

forall vy, ..., v, € [FZ.
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with high probability.

Proof:

Let D be an RLC of rate R. We know from previous works that an D almost surely achieves the list-decoding
GV-bound.

Let p,L such that D is likely (p, L)-list-decodable. It suffices to show that the same holds for C.

Let 7 be a p-clustered distribution over [FIC;“. Then D is unlikely to contain a 7-distributed matrix. By the
threshold theorem, there is some B such that

= [ tB-distributed matrices in D] < o(l).

But

(1—=R)n-dim(supp(7))

= [ tB-distributed matrices in C] ~ #rB-distributed matrices - 2~

= [E [ tB-distributed matrices in D] < o(1)

So C is unlikely to contain 5 and thus unlikely to contain 7.



Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound
with high probability.

The same argument works for list-recovery or any other local symmetric property:

Theorem: If C is locally-similar to an RLC of rate R then it achieves the same list-recovery
parameters as an RLC.
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The reduction paradigm

1. Choose a random code ensemble (.

2.]1 Show that C is locally-similar to an RLC.

3. Conclude that C has all the local symmetric properties of
an RLC, including achieving the list-decoding GV-bound.

Done successfully for:

e Random LDPC codes (Gallagher’s Ensemble) [M-Resch-(Ron-Zewi)-Silas,Wootters]

) Randomly punctured low-bias codes [Guruswami-M]
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Puncturing of Codes

From a code D C IF’Z]”‘ to C C [FZ. Usually n < m.

Codewords of D
A

If the punctured columns are chosen at random,

C is said to be a random n-puncturing of D. -

Example: An RLC of rate R in IF’; is a random
Rn
puncturing of the Hadamard code H C [Fz .

A Reed-Solomon code over a random evaluation
set Is a random puncturing of the full Reed-
Solomon code.

Codewords of C
A

=<
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e Let'sfocusong =2

e Conclusion: C is as list-decodable and list-

Puncturing of low-bias codes

m
A

Codewords of D

m
Suppose every u € D has weight close to —

° 2 -
(low-bias).
« Claim: C locally-similar to an RLC.

ﬂ
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Proof sketch: C locally-similar to an RLC.
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Proof sketch: C locally-similar to an RLC.
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Proof sketch: C locally-similar to an RLC.
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L + 1 Codewords of D

Proof sketch: C locally-similar to an RLC.
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Proof sketch: C locally-similar to an RLC.

s
~ wnwn O
'E_C
g8
< ee e 3 <
S E
- w—4'0\
+ T
%
E3\ / |
o U 5 ( V
5 1 5 1
S T
: < L) S < V2
9 o0 0 2 o0 0
S l/t © V
© UL 3 o L 3
+ L ) — \/
W : n

Column distribution of H

Column distribution of Wis is uniform over ”:15

almost uniform due to low-bias




