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Model Counting

• Given

• Boolean variables X1,X2, · · ·Xn
• Formula φ over X1,X2, · · ·Xn

• Sol(φ) = { satisfying assignments (aka models) of φ }

• Model Counting: Determine |Sol(φ)|

• Example φ := (X1 ∨ X2)

• Sol(φ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(φ)| = 3

Problem Compute (ε, δ) approximation of |Sol(φ)|
Concern Number of NP Queries
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Distinct Elements

• Given a stream a = a1, a2, . . . am where ai ∈ {0, 1}n

• DE(a) = | ∪i ai |
• Also known as F0 estimation

• Example a = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3

• F0(a) = | ∪i ai | = |{1, 2, 3, 5}| = 4

• Fundamental problem in databases with a long history of work

Problem Compute (ε, δ) approximation of F0

Concern Space Complexity
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Hashing-Based Techniques

Model Counting (S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16

KM18,ATD18,SM19,ABM20,SGM20)

Distinct Elements (FM85,AMS99,GT01,BKS02,BJKST02, CM03,CLKB04,PT07, TW12,SP09)
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2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping {0, 1}n to {0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h
R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2
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2-wise independent Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2
and XOR them

• X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
• Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · · )
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Therefore, h(X ) = α can be represented as AX = b
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ApproxMC

# of sols
≤ thresh?
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ApproxMC

# of sols
≤ thresh?

# of sols
≤ thresh?

# of sols
≤ thresh?

Estimate =
# of sols ×
# of cells # of sols

≤ thresh?

· · ·

No No

No

Yes
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Distinct Elements

1 2n2n−1

Number of balls ∝ 1
position of left most ball

Algorithm DE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: minhash← 2n;
3: for ai ∈ a do
4: if h(ai ) < minhash then
5: minhash = h(ai )
6: end if
7: end for
8: return 2n

minhash
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Is there more than meets the eyes?

• From Distinct Elements to Counting

• From Counting to Distinct Elements
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Hashing-based Distinct Elements

Algorithm SketchTemplate(a)

1: h← ChooseHashFunctions
2: S ← {}
3: for ai ∈ a do
4: ProcessUpdate(S , h, ai )
5: end for
6: Est← ComputeEst(S)
7: Return Est

Different Algorithms based on ProcessUpdate

• Minimum: Keep track of minimum h(ai )

• Bucketing

• ...
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From Distinct Elements to Counting: A Two Step Recipe

au : set of all distinct elements of the stream a.

Key Idea The formula φ can viewed as symbolic representation of some set au such
that Sol(φ) = au .

Step 1 Capture the relationship P(S, h, au) between the sketch S, h, and the set au
at the end of stream.

Step 2 Given a formula φ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate |Sol(φ)|
from S.
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Min-based Estimation

Algorithm minDE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: minhash← 2n;
3: for ai ∈ a do
4: if minhash < h(ai ) then
5: minhash = h(ai )
6: end if
7: end for
8: return 2n

minhash
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Application I: Min-based Counting Algorithm

Step1 Capture the relationship P(S, h, au) between the sketch S, h, and the set au at
the end of stream.

P(S, h, au) : S := miny∈au h(y)
P(S, h, Sol(φ)) S := miny∈Sol(φ) h(y)

Step2 Given a formula φ and set of hash functions H, design an algorithm to
construct sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate
|Sol(φ)| from S.
• Use polynomially many calls to NP Oracle to determine S
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Bucketing-based Streaming Algorithm

Algorithm BucketDE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: ℓ← 0;B ← ∅
3: for ai ∈ a do
4: if h(ai ) mod 2ℓ = 0ℓ then
5: B.Append(ai )

Elements that satisfy XOR

6: if |B| ≥ thresh then
7: ℓ++
8: Filter(B, h, ℓ)

Add another XOR

9: end if
10: end if
11: end for
12: return |B| × 2ℓ
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Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h, au) between the sketch S, hash function h
and set au at the end of stream.

P(S, h, au) : S = (ℓ,B) such that B = au ∩ h−1(0ℓ) and
|{au ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh.

P(S, h, Sol(φ)) : S = (ℓ,B) such that B = Sol(φ) ∩ h−1(0ℓ) and
|{Sol(φ) ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh

Step 2 Given a formula φ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate |Sol(φ)|
from S.
• Use polynomially many calls to NP Oracle to determine S

This is ApproxMC!
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From Distinct Elements to Counting: Implications

Given a formula φ and hash function h, design an algorithm to construct sketch S
such that P(S, h,Sol(φ)) holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS
for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

p(n) space algorithms in streaming imply (p(n))2 NP query complexity algorithms for
model counting

Theorem (Lower Bounds)

Lower bounds for Distributed Streaming translate to lower bounds for Distributed
DNF counting
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Is there more to it than meets the eyes?

• From Distinct Elements to Counting

• From Counting to Distinct Elements
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From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

• A stream can be viewed as a DNF

• a = a1, a2, a3, . . . am
• | ∪i ai | = |Sol(a1 ∨ a2 ∨ a3 ∨ am)|
• ai is represented by conjunction of n literals X1,X2, . . .Xn.

• So hashing-based FPRAS for DNF =⇒ F0 estimation

• A general scheme for structured sets

• Encompasses models such as ranges, affine spaces

• Application: Distinct Elements over Range

• Every item [ai , bi ] can be represented using a DNF formula.
• So just apply FPRAS for DNF
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Conclusion

Summary

• From Distinct Elements to Counting

• From Counting to Distinct Elements

Future Directions

• Practical scalability of newly devised counting techniques

• What’s the relationship for other problems between circuits/formulas and
streaming ?

• Higher moments
• Entropy
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