Model Counting meets Distinct Elements

Circuits meet Data Streaming

Kuldeep S. Meel

University of Toronto

Joint work with Arnab Bhattacharyya, A. Pavan, and N.V. Vinodchandran

Corresponding publications: PODS-21 and 2023 CACM Research Highlights

Slide 1/ 19

Model Counting

® Given

® Boolean variables X1, Xo,--- X,
® Formula ¢ over X1, X3, Xp

® Sol(p) = { satisfying assignments (aka models) of ¢ }

Slide 2/ 19

Model Counting

® Given

® Boolean variables X1, Xo,--- X,
® Formula ¢ over X1, X3, Xp

® Sol(p) = { satisfying assignments (aka models) of ¢ }

® Model Counting: Determine |Sol(y)|

Slide 2/ 19

Model Counting

® Given

® Boolean variables X1, Xo,--- X,
® Formula ¢ over X1, X3, Xp

Sol(p) = { satisfying assignments (aka models) of ¢ }
® Model Counting: Determine |Sol(y)|

® Example ¢ := (X1 V X2)

Slide 2/ 19

Model Counting

® Given

® Boolean variables X1, Xo,--- X,
® Formula ¢ over X1, X3, Xp

Sol(p) = { satisfying assignments (aka models) of ¢ }
® Model Counting: Determine |Sol(y)|

® Example ¢ := (X1 V X2)
Sol(¢) = {(0,1),(1,0),(1,1)}

Slide 2/ 19

Model Counting

® Given

® Boolean variables X1, Xo,--- X,
® Formula ¢ over X1, X3, Xp

Sol(p) = { satisfying assignments (aka models) of ¢ }
® Model Counting: Determine |Sol(y)|
® Example ¢ := (X1 V X2)

Sol(y) = {(0,1),(1,0),(1,1)}
Sol()] = 3

Slide 2/ 19

Model Counting

® Given

® Boolean variables X1, Xo,--- X,
® Formula ¢ over X1, X3, Xp

® Sol(p) = { satisfying assignments (aka models) of ¢ }
® Model Counting: Determine |Sol(y)|

® Example ¢ := (X1 V X2)

* Sol(¢) = {(0,1),(1,0),(1,1)}

* [Sol()| = 3

Problem Compute (g,) approximation of |Sol(p)|
Concern Number of NP Queries

Slide 2/ 19

Distinct Elements

® Given a stream a = ay, a, .. . am where a; € {0,1}"
® DE(a) = | U ai
® Also known as Fy estimation

Slide 3/ 19

Distinct Elements

® Given a stream a = ay, a, .. . am where a; € {0,1}"
® DE(a) = | U ai
® Also known as Fy estimation

® Examplea=1,2,1,1,2,1,3,5,1,2,1,3
Fo(a) =|U; a,-\ = ‘{1,2,3,5}| =4

Slide 3/ 19

Distinct Elements

® Given a stream a = a1, a2, ...am where a; € {0,1}"
® DE(a) = | U ai
® Also known as Fy estimation

® Examplea=1,2,1,1,2,1,3,5,1,2,1,3
Fo(a) =|U; a,-\ = ‘{1,2,3,5}| =4

® Fundamental problem in databases with a long history of work

Slide 3/ 19

Distinct Elements

® Given a stream a = a1, a2, ...am where a; € {0,1}"
® DE(a) = | U ai
® Also known as Fy estimation

® Examplea=1,2,1,1,2,1,3,5,1,2,1,3
L4 Fo(a) =|U; a,-\ = ‘{1,2,3,5}| =4

® Fundamental problem in databases with a long history of work

Problem Compute (e, §) approximation of Fgy
Concern Space Complexity

Slide 3/ 19

Hashing-Based Techniques

Model Counting (583,GS506,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16
KM18,ATD18,5M19,ABM20,SGM20)

Distinct Elements (FM85,AMS99,GT01,BKS02,BJKST02, CM03,CLKB04,PT07, TW12,5P09)

Slide 4/ 19

2-wise independent Hashing

® Let H be family of 2-wise independent hash functions mapping {0,1}" to {0,1}™
1,2 €{0,1}", a1, 00 € {0, 1}, h & H
1
P() = ax] = Prlhly) = a2l = (51,

2
Pr[h(yl) =a1 A\ h(y2) = a2] = (i)

2m

Slide 5/ 19

2-wise independent Hash Functions

® Variables: Xi, X2, X,
® To construct h: {0,1}" — {0,1}™, choose m random XORs
® Pick every X; with prob. 1 and XOR them

¢ X1 ®X3b Xp-- - D Xp—2
® Expected size of each XOR: 3

Slide 6/ 19

2-wise independent Hash Functions

Variables: Xi, X2, X,
To construct h: {0,1}" — {0,1}™, choose m random XORs
Pick every X; with prob. % and XOR them

¢ X1 ®X3b Xp-- - D Xp—2
® Expected size of each XOR: 3

To choose a € {0,1}™, set every XOR equation to 0 or 1 randomly
X1 ®X3D X D Xp—p =0
Xo@®Xs B X" DXp1=1

X1 XoB X5 DXpp=1

Therefore, h(X) = o can be represented as AX = b

(Q1)
(@)

(@m)

Slide 6/ 19

ApproxMC

/ # of sols
< thresh?

Slide 7/ 19

ApproxMC

e } - No} 4 } -
of sols # of sols
< thresh? < thresh?

Slide 7/ 19

ApproxMC

5C No} 5C No} 4
/ # of sols # of sols
< thresh? < thresh?

Slide 7/ 19

ApproxMC

No

of sols # of sols
< thresh? < thresh?
of sols \S
< thresh?

D (D

of sols «
< thresh? <\

Slide 7/ 19

ApproxMC

Estimate =
of sols x
of cells

No No

of sols # of sols
< thresh? < thresh?
2 e O
No
N N
8-~
Zoae N <>

Slide 7/ 19

Distinct Elements

on—1

on

Distinct Elements

on—1

on

Distinct Elements

on—1

on

Distinct Elements

}—0—0—0—0—0—.—0—{

Slide 8/ 19

Distinct Elements

}—0—0—0—0—0—.—0—{

Slide 8/ 19

Distinct Elements

}—0—0—0—0—“—0—{

1

Number of balls oc

on—1 on

position of left most ball

Algorithm DE(a)

® N O U WwN R

. return

: Choose h: {0,1}" — {0,1}"
. minhash < 27;
: for a; € ado

if h(a;) < minhash then
minhash = h(a;)
end if
end for

minhash

Slide 8/ 19

Is there more than meets the eyes?

® From Distinct Elements to Counting

® From Counting to Distinct Elements

Slide 9/ 19

Hashing-based Distinct Elements

Algorithm SketchTemplate(a)

1: h < ChooseHashFunctions
2 S+ {}

3: for a; € a do

4: ProcessUpdate(S, h, a;)
5. end for

6: Est <— ComputeEst(S)

7: Return Est

Slide 10/ 19

Hashing-based Distinct Elements

Algorithm SketchTemplate(a)

1: h < ChooseHashFunctions
2 S+ {}

3: for a; € a do

4: ProcessUpdate(S, h, a;)
5. end for

6: Est <— ComputeEst(S)

7: Return Est

Different Algorithms based on ProcessUpdate
® Minimum: Keep track of minimum h(a;)

® Bucketing

Slide 10/ 19

Hashing-based Distinct Elements

Algorithm SketchTemplate(a)

1: h < ChooseHashFunctions
2 S+ {}

3: for a; € a do

4: ProcessUpdate(S, h, a;)
5. end for

6: Est <— ComputeEst(S)

7: Return Est

Different Algorithms based on ProcessUpdate
® Minimum: Keep track of minimum h(a;)

® Bucketing

Slide 10/ 19

From Distinct Elements to Counting: A Two Step Recipe

a,: set of all distinct elements of the stream a.

Key Idea The formula ¢ can viewed as symbolic representation of some set a, such
that Sol(¢) = ay.

Step 1 Capture the relationship P(S, h,a,) between the sketch S, h, and the set a,
at the end of stream.

Step 2 Given a formula ¢ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(¢)) holds. And now, we can estimate |Sol(¢)|
from S.

Slide 11/ 19

Min-based Estimation

Algorithm minDE(a)

O NSO h N

: return

: Choose h: {0,1}" — {0,1}"
. minhash «+ 27;
. for a; € a do

if minhash < h(a;) then
minhash = h(a;)
end if
end for

_2"
minhash

Slide 12/ 19

Application |: Min-based Counting Algorithm

Stepl Capture the relationship P(S, h,a,) between the sketch S, h, and the set a, at
the end of stream.

Slide 13/ 19

Application |: Min-based Counting Algorithm

Stepl Capture the relationship P(S, h,a,) between the sketch S, h, and the set a, at
the end of stream.

P(S,h,ay) : S := minyca, h(y)

Slide 13/ 19

Application |: Min-based Counting Algorithm

Stepl Capture the relationship P(S, h,a,) between the sketch S, h, and the set a, at
the end of stream.

P(S,h,ay) : S := minyca, h(y)
P(S, h;Sol(p)) S := minyesoi(y) h(y)

Slide 13/ 19

Application |: Min-based Counting Algorithm

Stepl Capture the relationship P(S, h,a,) between the sketch S, h, and the set a, at
the end of stream.
P(S,h,ay) : S := minyca, h(y)
P(S, h,Sol(¢)) 8 := miny,esqi(y) hy)

Step2 Given a formula ¢ and set of hash functions H, design an algorithm to
construct sketch S such that P(S, h, Sol(¢)) holds. And now, we can estimate
|Sol(¢)| from S.

® Use polynomially many calls to NP Oracle to determine S

Slide 13/ 19

Bucketing-based Streaming Algorithm

Algorithm BucketDE(a)

=
N = O

C@ NG R @N R

: Choose h: {0,1}" — {0,1}"

L+ 0;B«0

. for 3; € a do

if h(a;) mod 2¢ = 0° then
B.Append(a;)
if |B| > thresh then
£++
Filter(B, h, £)
end if
end if

. end for
. return |B| x 2¢

Slide 14/ 19

Bucketing-based Streaming Algorithm

Algorithm BucketDE(a)

1: Choose h: {0,1}" — {0,1}"
24+ 0;B+0

3: for a; € a do

a: if h(a;) mod 2¢ = 0° then

5 B.Append(a;) Elements that satisfy XOR
6: if |B| > thresh then

7 €++

8: Filter(B, h, ¢) Add another XOR
o: end if

10: end if

11: end for

12 return |B| x 2¢

Slide 14/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h,a,) between the sketch S, hash function h
and set a, at the end of stream.

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h,a,) between the sketch S, hash function h
and set a, at the end of stream.

P(S,h,ay) : S = (¢,B) such that B=a, N h~1(0%) and
[{ay N h=1(0°~1)}| > thresh and |B| < thresh.

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h,a,) between the sketch S, hash function h
and set a, at the end of stream.

P(S,h,ay) : S = (¢,B) such that B=a, N h~1(0%) and
[{ay N h=1(0°~1)}| > thresh and |B| < thresh.

P(S, h,Sol(¢)) : S = (¢,B) such that B = Sol(p) N h—1(0¢) and
[{Sol() N h=1(0¢~1)}| > thresh and |B| < thresh

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h,a,) between the sketch S, hash function h
and set a, at the end of stream.

P(S,h,ay) : S = (¢,B) such that B=a, N h~1(0%) and
[{ay N h=1(0°~1)}| > thresh and |B| < thresh.

P(S, h,Sol(¢)) : S = (¢,B) such that B = Sol(p) N h—1(0¢) and
[{Sol() N h=1(0*~1)}| > thresh and |B| < thresh

Step 2 Given a formula ¢ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(¢)) holds. And now, we can estimate |Sol(y)|
from S.

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h,a,) between the sketch S, hash function h
and set a, at the end of stream.

P(S,h,ay) : S = (¢,B) such that B=a, N h~1(0%) and
[{ay N h=1(0°~1)}| > thresh and |B| < thresh.

P(S, h,Sol(¢)) : S = (¢,B) such that B = Sol(p) N h—1(0¢) and
[{Sol() N h=1(0*~1)}| > thresh and |B| < thresh

Step 2 Given a formula ¢ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(¢)) holds. And now, we can estimate |Sol(y)|
from S.

® Use polynomially many calls to NP Oracle to determine S

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h,a,) between the sketch S, hash function h
and set a, at the end of stream.

P(S,h,ay) : S = (¢,B) such that B=a, N h~1(0%) and
[{ay N h=1(0°~1)}| > thresh and |B| < thresh.

P(S, h,Sol(¢)) : S = (¢,B) such that B = Sol(p) N h—1(0¢) and
[{Sol() N h=1(0¢~1)}| > thresh and |B| < thresh

Step 2 Given a formula ¢ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(¢)) holds. And now, we can estimate |Sol(y)|
from S.

® Use polynomially many calls to NP Oracle to determine S

This is ApproxMCl!

Slide 15/ 19

From Distinct Elements to Counting: Implications

Given a formula ¢ and hash function h, design an algorithm to construct sketch S
such that P(S, h, Sol(¢)) holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS
for the corresponding class. E.g.: DNF, Union of XORs

Slide 16/ 19

From Distinct Elements to Counting: Implications

Given a formula ¢ and hash function h, design an algorithm to construct sketch S
such that P(S, h, Sol(¢)) holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS
for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

p(n) space algorithms in streaming imply (p(n))> NP query complexity algorithms for
model counting

Slide 16/ 19

From Distinct Elements to Counting: Implications

Given a formula ¢ and hash function h, design an algorithm to construct sketch S
such that P(S, h, Sol(¢)) holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS
for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

p(n) space algorithms in streaming imply (p(n))> NP query complexity algorithms for
model counting

Theorem (Lower Bounds)

Lower bounds for Distributed Streaming translate to lower bounds for Distributed
DNF counting

Slide 16/ 19

Is there more to it than meets the eyes?

® From Distinct Elements to Counting

® From Counting to Distinct Elements

Slide 17/ 19

From Counting to Distinct Elements

® ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

Slide 18/ 19

From Counting to Distinct Elements

® ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

® A stream can be viewed as a DNF

® a=aj,a,a3,...am

Slide 18/ 19

From Counting to Distinct Elements

® ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

® A stream can be viewed as a DNF

® a=2a1,a2,33,...am
® |Uja;| =1Sol(a1 VaxVazVam)|
® 3; is represented by conjunction of n literals Xi, Xa, ... X,.

Slide 18/ 19

From Counting to Distinct Elements

® ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

® A stream can be viewed as a DNF

® a=2a1,a2,33,...am
® |Uja;| =1Sol(a1 VaxVazVam)|
® 3; is represented by conjunction of n literals Xi, Xa,... X,.

® So hashing-based FPRAS for DNF = F(estimation

Slide 18/ 19

From Counting to Distinct Elements

ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

® A stream can be viewed as a DNF

® a=2a1,a2,33,...am
® |Uja;| =1Sol(a1 VaxVazVam)|
® 3; is represented by conjunction of n literals Xi, Xa, ... X,.

® So hashing-based FPRAS for DNF = F(estimation

® A general scheme for structured sets

Slide 18/ 19

From Counting to Distinct Elements

ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

® A stream can be viewed as a DNF

® a=2a1,a2,33,...am
® |Uja;| =1Sol(a1 VaxVazVam)|
® 3; is represented by conjunction of n literals Xi, Xa,... X,.

® So hashing-based FPRAS for DNF = F(estimation

® A general scheme for structured sets

® Encompasses models such as ranges, affine spaces

Slide 18/ 19

From Counting to Distinct Elements

ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

® A stream can be viewed as a DNF

® a=2a1,a2,33,...am
® |Uja;| =1Sol(a1 VaxVazVam)|
® 3; is represented by conjunction of n literals Xi, Xa,... X,.

® So hashing-based FPRAS for DNF = F(estimation

® A general scheme for structured sets

® Encompasses models such as ranges, affine spaces

® Application: Distinct Elements over Range

® Every item [a;, b;] can be represented using a DNF formula.
® So just apply FPRAS for DNF

Slide 18/ 19

Conclusion

Summary
® From Distinct Elements to Counting

® From Counting to Distinct Elements

Slide 19/ 19

Conclusion

Summary
® From Distinct Elements to Counting

® From Counting to Distinct Elements

Future Directions

® Practical scalability of newly devised counting techniques

® What's the relationship for other problems between circuits/formulas and
streaming ?

® Higher moments
® Entropy

Slide 19/ 19

