
Model Counting meets Distinct Elements

Circuits meet Data Streaming

Kuldeep S. Meel

University of Toronto

Joint work with Arnab Bhattacharyya, A. Pavan, and N.V. Vinodchandran

Corresponding publications: PODS-21 and 2023 CACM Research Highlights

Slide 1/ 19

Model Counting

• Given

• Boolean variables X1,X2, · · ·Xn
• Formula φ over X1,X2, · · ·Xn

• Sol(φ) = { satisfying assignments (aka models) of φ }

• Model Counting: Determine |Sol(φ)|

• Example φ := (X1 ∨ X2)

• Sol(φ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(φ)| = 3

Problem Compute (ε, δ) approximation of |Sol(φ)|
Concern Number of NP Queries

Slide 2/ 19

Model Counting

• Given

• Boolean variables X1,X2, · · ·Xn
• Formula φ over X1,X2, · · ·Xn

• Sol(φ) = { satisfying assignments (aka models) of φ }

• Model Counting: Determine |Sol(φ)|

• Example φ := (X1 ∨ X2)

• Sol(φ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(φ)| = 3

Problem Compute (ε, δ) approximation of |Sol(φ)|
Concern Number of NP Queries

Slide 2/ 19

Model Counting

• Given

• Boolean variables X1,X2, · · ·Xn
• Formula φ over X1,X2, · · ·Xn

• Sol(φ) = { satisfying assignments (aka models) of φ }

• Model Counting: Determine |Sol(φ)|

• Example φ := (X1 ∨ X2)

• Sol(φ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(φ)| = 3

Problem Compute (ε, δ) approximation of |Sol(φ)|
Concern Number of NP Queries

Slide 2/ 19

Model Counting

• Given

• Boolean variables X1,X2, · · ·Xn
• Formula φ over X1,X2, · · ·Xn

• Sol(φ) = { satisfying assignments (aka models) of φ }

• Model Counting: Determine |Sol(φ)|

• Example φ := (X1 ∨ X2)

• Sol(φ) = {(0, 1), (1, 0), (1, 1)}

• |Sol(φ)| = 3

Problem Compute (ε, δ) approximation of |Sol(φ)|
Concern Number of NP Queries

Slide 2/ 19

Model Counting

• Given

• Boolean variables X1,X2, · · ·Xn
• Formula φ over X1,X2, · · ·Xn

• Sol(φ) = { satisfying assignments (aka models) of φ }

• Model Counting: Determine |Sol(φ)|

• Example φ := (X1 ∨ X2)

• Sol(φ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(φ)| = 3

Problem Compute (ε, δ) approximation of |Sol(φ)|
Concern Number of NP Queries

Slide 2/ 19

Model Counting

• Given

• Boolean variables X1,X2, · · ·Xn
• Formula φ over X1,X2, · · ·Xn

• Sol(φ) = { satisfying assignments (aka models) of φ }

• Model Counting: Determine |Sol(φ)|

• Example φ := (X1 ∨ X2)

• Sol(φ) = {(0, 1), (1, 0), (1, 1)}
• |Sol(φ)| = 3

Problem Compute (ε, δ) approximation of |Sol(φ)|
Concern Number of NP Queries

Slide 2/ 19

Distinct Elements

• Given a stream a = a1, a2, . . . am where ai ∈ {0, 1}n

• DE(a) = | ∪i ai |
• Also known as F0 estimation

• Example a = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3

• F0(a) = | ∪i ai | = |{1, 2, 3, 5}| = 4

• Fundamental problem in databases with a long history of work

Problem Compute (ε, δ) approximation of F0

Concern Space Complexity

Slide 3/ 19

Distinct Elements

• Given a stream a = a1, a2, . . . am where ai ∈ {0, 1}n

• DE(a) = | ∪i ai |
• Also known as F0 estimation

• Example a = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3

• F0(a) = | ∪i ai | = |{1, 2, 3, 5}| = 4

• Fundamental problem in databases with a long history of work

Problem Compute (ε, δ) approximation of F0

Concern Space Complexity

Slide 3/ 19

Distinct Elements

• Given a stream a = a1, a2, . . . am where ai ∈ {0, 1}n

• DE(a) = | ∪i ai |
• Also known as F0 estimation

• Example a = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3

• F0(a) = | ∪i ai | = |{1, 2, 3, 5}| = 4

• Fundamental problem in databases with a long history of work

Problem Compute (ε, δ) approximation of F0

Concern Space Complexity

Slide 3/ 19

Distinct Elements

• Given a stream a = a1, a2, . . . am where ai ∈ {0, 1}n

• DE(a) = | ∪i ai |
• Also known as F0 estimation

• Example a = 1, 2, 1, 1, 2, 1, 3, 5, 1, 2, 1, 3

• F0(a) = | ∪i ai | = |{1, 2, 3, 5}| = 4

• Fundamental problem in databases with a long history of work

Problem Compute (ε, δ) approximation of F0

Concern Space Complexity

Slide 3/ 19

Hashing-Based Techniques

Model Counting (S83,GSS06,GHSS07,CMV13b,EGSS13b,CMV14,CDR15,CMV16,ZCSE16,AD16

KM18,ATD18,SM19,ABM20,SGM20)

Distinct Elements (FM85,AMS99,GT01,BKS02,BJKST02, CM03,CLKB04,PT07, TW12,SP09)

Slide 4/ 19

2-wise independent Hashing

• Let H be family of 2-wise independent hash functions mapping {0, 1}n to {0, 1}m

∀y1, y2 ∈ {0, 1}n, α1, α2 ∈ {0, 1}m, h
R←− H

Pr[h(y1) = α1] = Pr[h(y2) = α2] =

(
1

2m

)

Pr[h(y1) = α1 ∧ h(y2) = α2] =

(
1

2m

)2

Slide 5/ 19

2-wise independent Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2
and XOR them

• X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
• Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Therefore, h(X) = α can be represented as AX = b

Slide 6/ 19

2-wise independent Hash Functions

• Variables: X1,X2, · · ·Xn

• To construct h : {0, 1}n → {0, 1}m, choose m random XORs

• Pick every Xi with prob. 1
2
and XOR them

• X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2
• Expected size of each XOR: n

2

• To choose α ∈ {0, 1}m, set every XOR equation to 0 or 1 randomly

X1 ⊕ X3 ⊕ X6 · · · ⊕ Xn−2 = 0 (Q1)

X2 ⊕ X5 ⊕ X6 · · · ⊕ Xn−1 = 1 (Q2)

· · · (· · ·)
X1 ⊕ X2 ⊕ X5 · · · ⊕ Xn−2 = 1 (Qm)

• Therefore, h(X) = α can be represented as AX = b

Slide 6/ 19

ApproxMC

of sols
≤ thresh?

Slide 7/ 19

ApproxMC

of sols
≤ thresh?

of sols
≤ thresh?

No

Slide 7/ 19

ApproxMC

of sols
≤ thresh?

of sols
≤ thresh?

No No

Slide 7/ 19

ApproxMC

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

· · ·

No No

No

Slide 7/ 19

ApproxMC

of sols
≤ thresh?

of sols
≤ thresh?

of sols
≤ thresh?

Estimate =
of sols ×
of cells # of sols

≤ thresh?

· · ·

No No

No

Yes

Slide 7/ 19

Distinct Elements

1 2n2n−1

Number of balls ∝ 1
position of left most ball

Algorithm DE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: minhash← 2n;
3: for ai ∈ a do
4: if h(ai) < minhash then
5: minhash = h(ai)
6: end if
7: end for
8: return 2n

minhash

Slide 8/ 19

Distinct Elements

1 2n2n−1

Number of balls ∝ 1
position of left most ball

Algorithm DE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: minhash← 2n;
3: for ai ∈ a do
4: if h(ai) < minhash then
5: minhash = h(ai)
6: end if
7: end for
8: return 2n

minhash

Slide 8/ 19

Distinct Elements

1 2n2n−1

Number of balls ∝ 1
position of left most ball

Algorithm DE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: minhash← 2n;
3: for ai ∈ a do
4: if h(ai) < minhash then
5: minhash = h(ai)
6: end if
7: end for
8: return 2n

minhash

Slide 8/ 19

Distinct Elements

1 2n2n−1

Number of balls ∝ 1
position of left most ball

Algorithm DE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: minhash← 2n;
3: for ai ∈ a do
4: if h(ai) < minhash then
5: minhash = h(ai)
6: end if
7: end for
8: return 2n

minhash

Slide 8/ 19

Distinct Elements

1 2n2n−1

Number of balls ∝ 1
position of left most ball

Algorithm DE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: minhash← 2n;
3: for ai ∈ a do
4: if h(ai) < minhash then
5: minhash = h(ai)
6: end if
7: end for
8: return 2n

minhash

Slide 8/ 19

Distinct Elements

1 2n2n−1

Number of balls ∝ 1
position of left most ball

Algorithm DE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: minhash← 2n;
3: for ai ∈ a do
4: if h(ai) < minhash then
5: minhash = h(ai)
6: end if
7: end for
8: return 2n

minhash

Slide 8/ 19

Is there more than meets the eyes?

• From Distinct Elements to Counting

• From Counting to Distinct Elements

Slide 9/ 19

Hashing-based Distinct Elements

Algorithm SketchTemplate(a)

1: h← ChooseHashFunctions
2: S ← {}
3: for ai ∈ a do
4: ProcessUpdate(S , h, ai)
5: end for
6: Est← ComputeEst(S)
7: Return Est

Different Algorithms based on ProcessUpdate

• Minimum: Keep track of minimum h(ai)

• Bucketing

• ...

Slide 10/ 19

Hashing-based Distinct Elements

Algorithm SketchTemplate(a)

1: h← ChooseHashFunctions
2: S ← {}
3: for ai ∈ a do
4: ProcessUpdate(S , h, ai)
5: end for
6: Est← ComputeEst(S)
7: Return Est

Different Algorithms based on ProcessUpdate

• Minimum: Keep track of minimum h(ai)

• Bucketing

• ...

Slide 10/ 19

Hashing-based Distinct Elements

Algorithm SketchTemplate(a)

1: h← ChooseHashFunctions
2: S ← {}
3: for ai ∈ a do
4: ProcessUpdate(S , h, ai)
5: end for
6: Est← ComputeEst(S)
7: Return Est

Different Algorithms based on ProcessUpdate

• Minimum: Keep track of minimum h(ai)

• Bucketing

• ...

Slide 10/ 19

From Distinct Elements to Counting: A Two Step Recipe

au : set of all distinct elements of the stream a.

Key Idea The formula φ can viewed as symbolic representation of some set au such
that Sol(φ) = au .

Step 1 Capture the relationship P(S, h, au) between the sketch S, h, and the set au
at the end of stream.

Step 2 Given a formula φ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate |Sol(φ)|
from S.

Slide 11/ 19

Min-based Estimation

Algorithm minDE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: minhash← 2n;
3: for ai ∈ a do
4: if minhash < h(ai) then
5: minhash = h(ai)
6: end if
7: end for
8: return 2n

minhash

Slide 12/ 19

Application I: Min-based Counting Algorithm

Step1 Capture the relationship P(S, h, au) between the sketch S, h, and the set au at
the end of stream.

P(S, h, au) : S := miny∈au h(y)
P(S, h, Sol(φ)) S := miny∈Sol(φ) h(y)

Step2 Given a formula φ and set of hash functions H, design an algorithm to
construct sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate
|Sol(φ)| from S.
• Use polynomially many calls to NP Oracle to determine S

Slide 13/ 19

Application I: Min-based Counting Algorithm

Step1 Capture the relationship P(S, h, au) between the sketch S, h, and the set au at
the end of stream.

P(S, h, au) : S := miny∈au h(y)

P(S, h, Sol(φ)) S := miny∈Sol(φ) h(y)

Step2 Given a formula φ and set of hash functions H, design an algorithm to
construct sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate
|Sol(φ)| from S.
• Use polynomially many calls to NP Oracle to determine S

Slide 13/ 19

Application I: Min-based Counting Algorithm

Step1 Capture the relationship P(S, h, au) between the sketch S, h, and the set au at
the end of stream.

P(S, h, au) : S := miny∈au h(y)
P(S, h, Sol(φ)) S := miny∈Sol(φ) h(y)

Step2 Given a formula φ and set of hash functions H, design an algorithm to
construct sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate
|Sol(φ)| from S.
• Use polynomially many calls to NP Oracle to determine S

Slide 13/ 19

Application I: Min-based Counting Algorithm

Step1 Capture the relationship P(S, h, au) between the sketch S, h, and the set au at
the end of stream.

P(S, h, au) : S := miny∈au h(y)
P(S, h, Sol(φ)) S := miny∈Sol(φ) h(y)

Step2 Given a formula φ and set of hash functions H, design an algorithm to
construct sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate
|Sol(φ)| from S.
• Use polynomially many calls to NP Oracle to determine S

Slide 13/ 19

Bucketing-based Streaming Algorithm

Algorithm BucketDE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: ℓ← 0;B ← ∅
3: for ai ∈ a do
4: if h(ai) mod 2ℓ = 0ℓ then
5: B.Append(ai)

Elements that satisfy XOR

6: if |B| ≥ thresh then
7: ℓ++
8: Filter(B, h, ℓ)

Add another XOR

9: end if
10: end if
11: end for
12: return |B| × 2ℓ

Slide 14/ 19

Bucketing-based Streaming Algorithm

Algorithm BucketDE(a)

1: Choose h : {0, 1}n 7→ {0, 1}n
2: ℓ← 0;B ← ∅
3: for ai ∈ a do
4: if h(ai) mod 2ℓ = 0ℓ then
5: B.Append(ai) Elements that satisfy XOR
6: if |B| ≥ thresh then
7: ℓ++
8: Filter(B, h, ℓ) Add another XOR
9: end if

10: end if
11: end for
12: return |B| × 2ℓ

Slide 14/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h, au) between the sketch S, hash function h
and set au at the end of stream.

P(S, h, au) : S = (ℓ,B) such that B = au ∩ h−1(0ℓ) and
|{au ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh.

P(S, h, Sol(φ)) : S = (ℓ,B) such that B = Sol(φ) ∩ h−1(0ℓ) and
|{Sol(φ) ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh

Step 2 Given a formula φ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate |Sol(φ)|
from S.
• Use polynomially many calls to NP Oracle to determine S

This is ApproxMC!

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h, au) between the sketch S, hash function h
and set au at the end of stream.

P(S, h, au) : S = (ℓ,B) such that B = au ∩ h−1(0ℓ) and
|{au ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh.

P(S, h, Sol(φ)) : S = (ℓ,B) such that B = Sol(φ) ∩ h−1(0ℓ) and
|{Sol(φ) ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh

Step 2 Given a formula φ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate |Sol(φ)|
from S.
• Use polynomially many calls to NP Oracle to determine S

This is ApproxMC!

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h, au) between the sketch S, hash function h
and set au at the end of stream.

P(S, h, au) : S = (ℓ,B) such that B = au ∩ h−1(0ℓ) and
|{au ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh.

P(S, h, Sol(φ)) : S = (ℓ,B) such that B = Sol(φ) ∩ h−1(0ℓ) and
|{Sol(φ) ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh

Step 2 Given a formula φ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate |Sol(φ)|
from S.
• Use polynomially many calls to NP Oracle to determine S

This is ApproxMC!

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h, au) between the sketch S, hash function h
and set au at the end of stream.

P(S, h, au) : S = (ℓ,B) such that B = au ∩ h−1(0ℓ) and
|{au ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh.

P(S, h, Sol(φ)) : S = (ℓ,B) such that B = Sol(φ) ∩ h−1(0ℓ) and
|{Sol(φ) ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh

Step 2 Given a formula φ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate |Sol(φ)|
from S.

• Use polynomially many calls to NP Oracle to determine S

This is ApproxMC!

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h, au) between the sketch S, hash function h
and set au at the end of stream.

P(S, h, au) : S = (ℓ,B) such that B = au ∩ h−1(0ℓ) and
|{au ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh.

P(S, h, Sol(φ)) : S = (ℓ,B) such that B = Sol(φ) ∩ h−1(0ℓ) and
|{Sol(φ) ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh

Step 2 Given a formula φ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate |Sol(φ)|
from S.
• Use polynomially many calls to NP Oracle to determine S

This is ApproxMC!

Slide 15/ 19

Application II: Bucketing-based Counting Algorithm

Step 1 Capture the relationship P(S, h, au) between the sketch S, hash function h
and set au at the end of stream.

P(S, h, au) : S = (ℓ,B) such that B = au ∩ h−1(0ℓ) and
|{au ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh.

P(S, h, Sol(φ)) : S = (ℓ,B) such that B = Sol(φ) ∩ h−1(0ℓ) and
|{Sol(φ) ∩ h−1(0ℓ−1)}| > thresh and |B| ≤ thresh

Step 2 Given a formula φ and hash function h, design an algorithm to construct
sketch S such that P(S, h, Sol(φ)) holds. And now, we can estimate |Sol(φ)|
from S.
• Use polynomially many calls to NP Oracle to determine S

This is ApproxMC!

Slide 15/ 19

From Distinct Elements to Counting: Implications

Given a formula φ and hash function h, design an algorithm to construct sketch S
such that P(S, h,Sol(φ)) holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS
for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

p(n) space algorithms in streaming imply (p(n))2 NP query complexity algorithms for
model counting

Theorem (Lower Bounds)

Lower bounds for Distributed Streaming translate to lower bounds for Distributed
DNF counting

Slide 16/ 19

From Distinct Elements to Counting: Implications

Given a formula φ and hash function h, design an algorithm to construct sketch S
such that P(S, h,Sol(φ)) holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS
for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

p(n) space algorithms in streaming imply (p(n))2 NP query complexity algorithms for
model counting

Theorem (Lower Bounds)

Lower bounds for Distributed Streaming translate to lower bounds for Distributed
DNF counting

Slide 16/ 19

From Distinct Elements to Counting: Implications

Given a formula φ and hash function h, design an algorithm to construct sketch S
such that P(S, h,Sol(φ)) holds.

Theorem (FPRAS)

If construction of sketch S is in PTIME for a class of formulas, then there is FPRAS
for the corresponding class. E.g.: DNF, Union of XORs

Theorem (Space and Query)

p(n) space algorithms in streaming imply (p(n))2 NP query complexity algorithms for
model counting

Theorem (Lower Bounds)

Lower bounds for Distributed Streaming translate to lower bounds for Distributed
DNF counting

Slide 16/ 19

Is there more to it than meets the eyes?

• From Distinct Elements to Counting

• From Counting to Distinct Elements

Slide 17/ 19

From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

• A stream can be viewed as a DNF

• a = a1, a2, a3, . . . am
• | ∪i ai | = |Sol(a1 ∨ a2 ∨ a3 ∨ am)|
• ai is represented by conjunction of n literals X1,X2, . . .Xn.

• So hashing-based FPRAS for DNF =⇒ F0 estimation

• A general scheme for structured sets

• Encompasses models such as ranges, affine spaces

• Application: Distinct Elements over Range

• Every item [ai , bi] can be represented using a DNF formula.
• So just apply FPRAS for DNF

Slide 18/ 19

From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

• A stream can be viewed as a DNF

• a = a1, a2, a3, . . . am

• | ∪i ai | = |Sol(a1 ∨ a2 ∨ a3 ∨ am)|
• ai is represented by conjunction of n literals X1,X2, . . .Xn.

• So hashing-based FPRAS for DNF =⇒ F0 estimation

• A general scheme for structured sets

• Encompasses models such as ranges, affine spaces

• Application: Distinct Elements over Range

• Every item [ai , bi] can be represented using a DNF formula.
• So just apply FPRAS for DNF

Slide 18/ 19

From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

• A stream can be viewed as a DNF

• a = a1, a2, a3, . . . am
• | ∪i ai | = |Sol(a1 ∨ a2 ∨ a3 ∨ am)|
• ai is represented by conjunction of n literals X1,X2, . . .Xn.

• So hashing-based FPRAS for DNF =⇒ F0 estimation

• A general scheme for structured sets

• Encompasses models such as ranges, affine spaces

• Application: Distinct Elements over Range

• Every item [ai , bi] can be represented using a DNF formula.
• So just apply FPRAS for DNF

Slide 18/ 19

From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

• A stream can be viewed as a DNF

• a = a1, a2, a3, . . . am
• | ∪i ai | = |Sol(a1 ∨ a2 ∨ a3 ∨ am)|
• ai is represented by conjunction of n literals X1,X2, . . .Xn.

• So hashing-based FPRAS for DNF =⇒ F0 estimation

• A general scheme for structured sets

• Encompasses models such as ranges, affine spaces

• Application: Distinct Elements over Range

• Every item [ai , bi] can be represented using a DNF formula.
• So just apply FPRAS for DNF

Slide 18/ 19

From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

• A stream can be viewed as a DNF

• a = a1, a2, a3, . . . am
• | ∪i ai | = |Sol(a1 ∨ a2 ∨ a3 ∨ am)|
• ai is represented by conjunction of n literals X1,X2, . . .Xn.

• So hashing-based FPRAS for DNF =⇒ F0 estimation

• A general scheme for structured sets

• Encompasses models such as ranges, affine spaces

• Application: Distinct Elements over Range

• Every item [ai , bi] can be represented using a DNF formula.
• So just apply FPRAS for DNF

Slide 18/ 19

From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

• A stream can be viewed as a DNF

• a = a1, a2, a3, . . . am
• | ∪i ai | = |Sol(a1 ∨ a2 ∨ a3 ∨ am)|
• ai is represented by conjunction of n literals X1,X2, . . .Xn.

• So hashing-based FPRAS for DNF =⇒ F0 estimation

• A general scheme for structured sets

• Encompasses models such as ranges, affine spaces

• Application: Distinct Elements over Range

• Every item [ai , bi] can be represented using a DNF formula.
• So just apply FPRAS for DNF

Slide 18/ 19

From Counting to Distinct Elements

• ApproxMC is FPRAS for DNF formulas (CMV16,MSV17,MSV18)

• A stream can be viewed as a DNF

• a = a1, a2, a3, . . . am
• | ∪i ai | = |Sol(a1 ∨ a2 ∨ a3 ∨ am)|
• ai is represented by conjunction of n literals X1,X2, . . .Xn.

• So hashing-based FPRAS for DNF =⇒ F0 estimation

• A general scheme for structured sets

• Encompasses models such as ranges, affine spaces

• Application: Distinct Elements over Range

• Every item [ai , bi] can be represented using a DNF formula.
• So just apply FPRAS for DNF

Slide 18/ 19

Conclusion

Summary

• From Distinct Elements to Counting

• From Counting to Distinct Elements

Future Directions

• Practical scalability of newly devised counting techniques

• What’s the relationship for other problems between circuits/formulas and
streaming ?

• Higher moments
• Entropy

Slide 19/ 19

Conclusion

Summary

• From Distinct Elements to Counting

• From Counting to Distinct Elements

Future Directions

• Practical scalability of newly devised counting techniques

• What’s the relationship for other problems between circuits/formulas and
streaming ?

• Higher moments
• Entropy

Slide 19/ 19

